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Abstract
Based on the integral theorems for mean curvature and Gauss curvature,
geometric conservation laws for perfect Y-branched carbon nanotubes are
presented. From the conservation laws, simple geometric regulations
observed by spontaneous Y-branched carbon nanotubes are revealed, i.e. the
angle between two neighbouring branches should be 120◦ and the radii of the
three branches should be equal. These results coincide well with all
experimental facts without exceptions. Possible applications of the geometric
regulations to the design of super carbon nanostructures with self-similarities
are predicted.

1. Introduction

Recently, geometric conservation laws [1] for three-way
nanotube junctions [2, 3] are revealed. A three-way
nanotube junction, with three lipid vesicles interconnected
by three membrane nanotubes intersecting at a point
(figure 1), may be formed through dynamic self-organizations
of lipid molecules [2, 3]. Geometrically, this beautiful
bionanostructure has been proved to observe very simple
geometric regulations [1]. Surprisingly, such kind of geometric
structures exist not only in biology but also in physics and
material sciences. A very typical example is Y-branched
carbon nanotubes [4–14]. Hence, the question may be
asked: Do Y-branched carbon nanotubes also obey geometric
conservation laws or what geometric regulations control their
growth? To answer this question, similar ideas and procedures
to those in [1] will be used.

2. Methods and details

In this paper, perfect Y-branched carbon nanotubes will be
studied. Here ‘perfect’ means that there are no defects such
as dislocations or misconnected bonds. Geometrically such
perfect structures may be idealized as globally smooth curved
surfaces or two-dimensional (2D) Riemann manifolds. There
are two reasons for this idealization: (a) it coincides with
existing evidence [13]—a seamless and smooth transition has
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Figure 1. Smooth and closed curved surface formed from three
vesicles and a three-way nanotube junction.

been found at the connecting locations between neighbouring
branches of a perfect Y-branched carbon nanotube; (b) it makes
differential geometry applicable and meaningful information
about Y-branched carbon nanotubes available. To deal with
the perfect Y-branched carbon nanotube correctly, a general
smooth curved surface as shown in figure 2 is considered
first. Let n be the outward unit normal of the surface and
C be any smooth and closed curve drawn on the surface.
At any point of the curve, let t be the unit tangent to the
curve and along the positive direction of the curve. Let m

be the unit vector tangential to the surface and normal to the
curve, drawn outward from the region enclosed by C. Unit
vectors t, n and m form a right-handed system on curve C
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Figure 2. Schematic diagram of a curved surface with unit vectors
m, t and n at its boundary.

(figure 2) with the relation m = t × n satisfied. On such a
surface, integral theorems about two characteristic geometric
quantities, i.e. the mean curvature H = (c1 + c2)/2 and
Gauss curvature K = c1c2 with c1 and c2 the two principle
curvatures, will be specially focused. The first integral theorem
in differential geometry is about the mean curvature H :

∮
C

ds =
∫ ∫

A
2H dA. (1)

The second one is about the Gauss curvature K [15]:
∮

C

(
knm + τgt

)
ds =

∫ ∫
A

2K dA. (2)

Here ds = m ds is the vector element with ds the length
element along the curve C. kn = dt

ds · n and τg = dn
ds · m are

respectively the normal curvature and the geodesic torsion at a
point on the curve C. dA = n dA is the element area vector
in the normal direction of the curved surface and A is the area
enclosed by C. Equations (1) and (2) lay the foundation of the
conservation laws for perfect Y-branched carbon nanotubes.

Once equations (1) and (2) are applied to the perfect Y-
branched carbon nanotube, a problem may not be avoided:
How do we properly select the boundary curve C along which
the line integrals are carried out? Here three principles are
suggested. First, the line integrals should be easy enough to
calculate. Second, they should include enough information
about the geometric characteristics of the Y-branched carbon
nanotube. Third, they should lead to simple conservation
laws. According to these principles, we cut the three branches
respectively along their cross sections (figure 3(a)). Thus
a smooth and open curved surface A with three boundaries
Ci (i = 1, 2, 3) may be obtained (figure 3(b)). If the location
of Ci is far enough from the junction, then the branch’s shape
near Ci may be treated as part of a circular cylindrical surface.
Thus the unit vector mi on Ci may be parallel to the axis of
the branch and the line integrals will become∮

Ci

ds = mi

∫ 2π

0
ri dθ = 2πrimi (3)

∮
Ci

(
knm+τgt

)
ds = mi

∮
Ci

knds

= −mi

∫ 2π

0
dθ = −2πmi ,

(
τg

)
i = 0. (4)

(a)

(b)

Figure 3. (a) Perfect Y-branched carbon nanotube with the three
branches cut respectively along their cross sections. (b) Smooth and
open curved surface with three boundaries, abstracted from the
perfect Y-branched carbon nanotube in (a).

Here ri is the radius of Ci . Finally, equations (1) and (2) may
be changed into

∫ ∫
A

H dA = 1
2

3∑
i=1

∮
Ci

ds = π

3∑
i=1

(rimi ) (5)

∫ ∫
A

K dA = 1
2

3∑
i=1

∮
Ci

(
knm + τgt

)
ds = −π

3∑
i=1

mi .

(6)
Equations (5) and (6) are the geometric conservation laws for
perfect Y-branched carbon nanotubes. Of course these laws
may not be valid for imperfect ones, because the basis for
the assumption of a globally smooth curved surface is lost.
Equation (5) means that the integral of the mean curvature H
on the Y-branched carbon nanotube is determined not only by
the directions but also by the radii of branches. Equation (6)
implies that the integral of the Gauss curvature K on the Y-
branched carbon nanotube is just related to the directions of
branches.

3. Results and discussions

Technically there are different ways to produce branched
carbon nanotubes, for example, ‘forced’ branching [4]
in templates with branched nanochannels, spontaneous
branching [5–12] and electron beam welding [16]. To evaluate
the reasonability of equations (5) and (6), spontaneous Y-
branched carbon nanotubes will be carefully investigated.
From experiments [6, 7, 11, 14], it is found that a spontaneous
Y-branched carbon nanotube usually has very regular geometry
and the radius of each branch looks very uniform along the
branch. Thus every branch may be further abstracted as
a circular cylindrical surface Ai on which constant mean
curvature (Hi = const.) and zero Gauss curvature (Ki = 0) are
kept. If all three branches are long enough, then the following
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integrals in which the contribution of the junction is omitted
may be approximated:∫ ∫

A
H dA ≈

3∑
i=1

(∫ ∫
Ai

Hi dA

)

=
3∑

i=1

(
Hi

∫ ∫
Ai

dA

)
= 0 (7)

∫ ∫
A

K dA ≈
3∑

i=1

∫ ∫
Ai

Ki dA = 0. (8)

Equations (5)–(8) together will give

3∑
i=1

(rimi) = 0 (9)

3∑
i=1

mi = 0. (10)

Equations (9) and (10) may lead to detailed information about
the geometry of the spontaneous Y-branched carbon nanotube.
Here equation (10) will be discussed first. Mechanically,
equation (10) may be equivalent to the equilibrium equation
for three unit forces. In mechanics, it is well known that the
necessary and sufficient conditions for this equilibrium are:
(a) the three unit forces intersecting at a point should remain
on the same plane; and (b) the angle between two neighbouring
forces should be 120◦, i.e.,

α1 = α2 = α3 = 120◦. (11)

Similarly, equation (9) may also be regarded as an equilibrium
equation for three forces. With equation (11) satisfied,
the necessary and sufficient condition for the equilibrium in
equation (9) is that the radii of the three branches should be
equal:

r1 = r2 = r3 (12)

Equations (11) and (12) are the geometric regulations for
spontaneous Y-branched carbon nanotubes. From experiments,
it may be confirmed that forced Y-branched nanotubes [7]
have non-equal angle between branches but spontaneous ones
possess structures with branches oriented at 120◦ [6, 7, 11, 14].
Therefore equation (11) coincides strictly with existing
experiments. Besides, TEM images have shown that the
radii of the three branches of a spontaneous Y-branched
carbon nanotube are roughly the same [10, 11, 14]. Hence
equation (12) also agrees well with experiments. Such
coincidences support the validity of the geometric conservation
laws in equations (5) and (6).

A spontaneous Y-branched carbon nanotube with equa-
tions (11) and (12) satisfied corresponds to a equilibrium state
with both minimum energy and symmetric geometry as well.
This judgment may be interpreted in detail as follows. For sim-
plicity (but without losing generality), an arbitrary Y-branched
carbon nanotube with junction S is supposed to grow in such
a way that its three branches S Ai (i = 1, 2, 3) are connected
exactly with three fixed points A1, A2 and A3 on the plane
(figure 4). The total elastic curvature energy of this Y-branched
carbon nanotube may be written as

E =
3∑

i=1

Ei (13)

Figure 4. Y-branched carbon nanotube with three branches
connecting with three fixed points.

where Ei is the i th branch’s elastic curvature energy. Through
a continuum limit treatment [17] to the potential given by
Lenosky et al [18], the curvature elastic energy of a single layer
curved graphite has been proved to be

Es =
∫ ∫

A
[ 1

2 kc(2H)2 + k̄1K ] dA (14)

where kc and k̄1 are the bonding elastic constants. Once
equation (14) is applied to the Y-branched carbon nanotube
with Hi = −1/2ri and Ki = 0, one has

Ei = πkcli

ri
. (15)

Here li is the length of the i th branch. Suppose r1 = r2 = r3 =
r ; then equations (13) and (15) will lead to

E = πkc

r

3∑
i=1

li = πkcl

r
(16)

where l = ∑3
i=1 li is the total length of the three branches.

The total potential energy F for an arbitrary Y-branched carbon
nanotube is determined by F = E + Fp with Fp the potential
of external forces. However, for a spontaneous Y-branched
carbon nanotube external forces do not exist and F = E is met.
Thus the equilibrium of the spontaneous Y-branched carbon
nanotube will render F a minimum value Fmin = Emin:

Emin = πkclmin

r
. (17)

Equation (17) clearly reveals that the spontaneous Y-branched
carbon nanotube, at equilibrium and with minimum energy,
is of minimum total length lmin. According to the theory
of the Steiner minimal tree [19] in geometry, the necessary
and sufficient condition for lmin is to set S as the Steiner
point S ′ at which � A1S ′ A2 = � A2S ′ A3 = � A3S ′ A1 =
120◦ (figure 4). Therefore equation (17) includes the
following information. (a) For a spontaneous Y-branched
carbon nanotube at equilibrium, minimum energy means
symmetric geometry, and vice versa. (b) Once a Y-branched
carbon nanotube is grown spontaneously through dynamic self-
organization, it tends to form automatically into a perfect
geometry with low energy and high symmetry. In other
words, the symmetric geometry described by equations (11)
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(a) (b)

(c) (d)

Figure 5. (a) Template with one symmetric Y-branched nanochannel.
(b) Template with two symmetric Y-branched nanochannels.
(c) Template with a network formed by four symmetric Y-branched
nanochannels. (d) Template of a nanochannel network covered
periodically with hexagonal cells.

and (12) is a ‘natural’ one to which a spontaneous branching
process will approach with priority. (c) Any Y-branched
carbon nanotube that diverges from the symmetric geometry
may possess higher energy. In fact, any divergence needs
external forces. For example, once a Y-branched carbon
nanotube is grown through a template, the external forces
caused by the template will force the nanotubes to grow along
the channels. Finally the forced Y-branched carbon nanotube
not only possesses non-symmetric structure such as curved
branches, non-equal radii and non-equal angles, but also stores
residual stresses or energies inside. In short, for spontaneous
Y-branched carbon nanotubes at equilibrium, minimum energy
and symmetric geometry are unitary.

To one’s surprise, although the derivation processes are
different, both the conservation laws in equations (5) and (6)
and the geometric regulations in equations (11) and (12) for Y-
branched carbon nanotubes are similar to those for three-way
membrane nanotube junctions [1]. Why do these similarities
exist? There are three reasons. First, Y-branched carbon
nanotubes and three-way membrane nanotube junctions have
similar geometries. Second, the major premises for the
derivation processes, i.e. the integral theorems in equations (1)
and (2), are the same. Third, the philosophies or beliefs for the
two studies are the same: i.e. 2D Riemann manifolds instead
of Euclidian spaces should be the natural choice of both the
carbon nanoworld and the bionanoworld.

4. Potential applications

Equations (11) and (12) may be of potential applications
in nanoscience and nanotechnology—they may provide
inspirations for probing new carbon nanostructures. One
possible carbon nanostructure is the periodic network of carbon
nanotubes. As mentioned above, spontaneous branching has
symmetry but no controllability, whereas forced branching has
controllability but no symmetry. This may stimulate such
an inspiration: Is it possible to design a forced branching

(a)

(b)

Figure 6. (a) Periodic network of hexagonal cells constructed by
carbon nanotubes, grown from the template in figure 5(d). (b) Super
carbon nanotube theoretically manufactured from the network of
carbon nanotubes in (a).

process with both controllability and symmetry? The answer
is positive: If a template with a symmetric Y-branched
nanochannel is prepared (figure 5(a)), then the controllable
forced branching with equations (11) and (12) satisfied will
be equivalent to a symmetric spontaneous one. Extending
this inspiration, one can have two symmetric Y-branched
nanochannels interconnected (figure 5(b)). If four symmetric
Y-branched nanochannels are connected in the way shown
in figure 5(c), a hexagonal nanochannel network may be
formed. Repeating the above procedures one can get a
nanochannel network covered periodically with ‘hexagonal
cells’ (figure 5(d)). From this template, a periodic hexagonal
network constructed by carbon nanotubes may be grown
(figure 6(a)). This is an interesting structure: it possesses
low energy and high symmetry not only locally but also
globally. Besides, it includes the first-level self-similarity—
the similarity between the network of carbon nanotubes and
the network of carbon atoms (or single layer graphite).

Another possible carbon nanostructure is the super carbon
nanotube made from the network of carbon nanotubes in
figure 6(a). In carbon nanoscience and technology, it is well
known that a common carbon nanotube may be ‘theoretically
manipulated’ by rolling up a single layer of graphite into a tube.
Similarly, a super carbon nanotube may also be ‘theoretically
manufactured’ by curling up the network of carbon nanotubes
into a tube (figure 6(b)). Figure 6(b) also displays an interesting
structure: it includes the second-level self-similarity—the
similarity between the super carbon nanotube and the common
carbon nanotube.

In organic worlds such as the bioworld, self-similarity is
one of the most effective rules to create structures from a low
level to a high one or from a smaller scale to a larger one. In
inorganic worlds such as the carbon nanoworld, self-similarity
seems also effective for designing new structures. Although the
new carbon nanostructures above are just imaginary ones, they
are reasonable—because they are designed according to self-
similarity. What is more, at each level of self-similarity the
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geometric regulations reflecting the principles of low energy
and high symmetry are strictly observed. Once the new carbon
nanostructures are realized, our understanding and knowledge
about the carbon nanoworld may be enriched and deepened.

Except for the concept of self-similarity, the concept
of the template also needs to be further annotated. In
the above proposed manipulation process for super carbon
nanotubes, the term ‘theoretically’ is used, because two
technical difficulties exist: one is to roll up the planar network
of nanotubes into a cylindrical one, and the other is to ‘weld’
the cylindrical network into a seamless tube. How do we
overcome these difficulties? The answer is to give up the
concept of ‘planar template’ and introduce the concept of
‘circular cylindrical template’. In differential geometry, a
circular cylindrical surface is a developable one that may
be unrolled into a plane after it is cut along its generatrix.
Hence, the nanochannel network in the planar template in
figure 5(d) may be manipulated conformably on the surface
of a circular cylinder, and then a circular cylindrical template
may be made. From this template, the super carbon nanotube
may be grown directly and ‘practically’. Furthermore, if the
concept of circular cylindrical template is extended into a more
general one such as a ‘curved template’, then various super
carbon nanostructures may be available. For example, super
carbon nanotube cones may be formed from conic templates.
From spherical templates, super carbon nanotube spheres with
geometries similar to C60 may be created, though the spherical
surface is not a developable one.

5. Conclusions

In short, perfect Y-branched carbon nanotubes should observe
certain geometric conservation laws, and spontaneous ones

should obey simple geometric regulations. These laws and
regulations may enable us to understand better the formations
of Y-branched carbon nanotubes, and may possibly be used to
explore new carbon nanostructures with self-similarities.
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