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Dielectric elastomers
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Pelrine, Kornbluh, Pei, Joseph  
High-speed electrically actuated elastomers with strain greater than 100%.  
Science 287, 836 (2000).
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Dielectric elastomer actuators
•Large deformation
•Compact
•Lightweight
•Low cost
•Low-temperature fabrication

Kofoda, Wirges, Paajanen, Bauer
APL 90, 081916, 2007
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Maxwell stress in vacuum (1873)
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Include Maxwell stress in 
a free-body diagram
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Trouble with Maxwell stress in dielectrics
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Our complaints:

•In general, ε varies with deformation.
•In general, E2 dependence has no special significance.
•Wrong sign of the Maxwell stress?

In solid, Maxwell stress is not even wrong; it’s a bad idea.

Suo, Zhao, Greene, JMPS (2007)
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James Clerk Maxwell (1831-1879)

“I have not been able to make the next step, namely, to 
account by mechanical considerations for these stresses in 
the dielectric.  I therefore leave the theory at this point…”

A Treatise on Electricity & Magnetism (1873), Article 111
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Trouble with electric force in dielectrics 

In a vacuum, 
force is needed to maintain equilibrium of charges
Define electric field by E = F/Q
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Historical work
•Toupin (1956)
•Eringen (1963)
•Tiersten (1971)
……+Q +Q

In a dielectric,
force between charges is 
NOT an operational concept

Recent work
•Dorfmann, Ogden (2005)
•Landis, McMeeking (2005)
•Suo, Zhao, Greene (2007)
……

ii qEF =



The Feynman Lectures on Physics
Volume II, p.10-8 (1964)

“What does happen in a solid?  This is a very difficult 
problem which has not been solved, because it is, in a 
sense, indeterminate.  If you put charges inside a dielectric 
solid, there are many kinds of pressures and strains.  You 
cannot deal with virtual work without including also the 
mechanical energy required to compress the solid, and it is 
a difficult matter, generally speaking, to make a unique 
distinction between the electrical forces and mechanical 
forces due to solid material itself.  Fortunately, no one ever 
really needs to know the answer to the question proposed.  
He may sometimes want to know how much strain there is 
going to be in a solid, and that can be worked out.  But it is 
much more complicated than the simple result we got for 
liquids.”

9
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All troubles are gone if we use measurable quantities
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Game plan

• Extend the theory to 3D.
• Construct free-energy function W.
• Study interesting phenomena.
• Add other effects (stimuli-responsive gels).



12

3D inhomogeneous field
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Material law
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Work-conjugate, or not
Reference State Current State
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True vs nominal
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Dielectric constant is insensitive to stretch

Kofod, Sommer-Larsen, Kornbluh, Pelrine
Journal of Intelligent Material Systems and Structures 14, 787-793 (2003). 
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Ideal dielectric elastomers
Zhao, Hong,  Suo, Physical Review B 76, 134113 (2007).
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Electromechanical instability

Stark & Garton, Nature 176, 1225 (1955).
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Pre-stresses enhance actuation
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Experiment:  Pelrine, Kornbluh, Pei, Joseph
Science 287, 836 (2000).

Theory:  Zhao, Suo
APL 91, 061921 (2007)
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Coexistent states
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Coexistent states:  flat and wrinkled
Experiment:  Plante, Dubowsky, 
Int. J. Solids and Structures 43, 7727 (2006).

Theory:  Zhao, Hong, Suo
Physical Review B 76, 134113 (2007)..
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Elastomer:  extension limit
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Coexistent states

Zhao,  Hong, Suo, Physical Review B 76, 134113 (2007).
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Finite element method
Thick State

Transition

Thin State

Thick State

Transition

Thin State

Zhou, Hong, Zhao, Zhang, Suo, IJSS, 2007
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Stimuli-responsive gels

Gel
•long polymers (cross-linked but flexible)
•small molecules (mobile)

collapsed swollen

reversible

Stimuli

•temperature
•electric field
•light
•ions
•enzymes

Ono et al, Nature Materials, 2007
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Applications of gels

Drug delivery

Contact lenses
Artificial tissues

Gates in microfluidics
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Summary

• A nonlinear field theory.  No Maxwell stress.  No electric 
body force.

• Effect of electric field on deformation is a part of material law.
• Ideal dielectric elastomers:  Maxwell stress emerges.
• Electromechanical instability:  large deformation and electric 

field.
• Add other effects (solvent, ions, enzymes…)
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