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In this study, eigenvalue buckling analysis for cracked functionally graded cylindrical shells is performed
using eight noded degenerated shell elements in the framework of the extended finite element method.
First, validity and efficiency of the proposed method in comparison with available results are examined
and then the approach is utilized for examining cracked FGM cylindrical shells subjected to different
loading conditions, including axial compression, axial tension and combined internal pressure and axial
compression. Also, the effects of various parameters such as crack length and angle, gradient index of the
material, aspect ratio of the cylinder and internal pressure on the buckling behavior are extensively
investigated.
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1. Introduction

Composite shell structures have been extensively utilized for a
broad range of applications including space crafts, airplane fuse-
lage, thermal coating barriers, defense systems and many others
due to their considerably high strength to weight ratio. Neverthe-
less, fiber reinforced laminate shells suffer from many disadvan-
tages such as delamination vulnerability to impact loading, low
resistance to sustain in thermal environments. Functionally graded
materials are a new class of composite materials which have obvi-
ated the interface-related problems in traditionally laminate com-
posites due to their continuous and smooth variation of materials
across the thickness. Usually, these materials consist of a ceramic
surface, which can be imposed to a high gradient of thermal load-
ing, gradually changed into a metallic surface on the other side to
withstand in mechanical loadings. As a result, functionally graded
cylindrical shells have drawn special attention from the applica-
tion and theoretical points of view. Despite their superior charac-
teristics, there are several failure modes which may endanger the
overall safety of these structures. Among them, buckling can be
one of the dominant failure modes. On the other hand, because
functionally graded materials are often used in extreme environ-
ments, they are highly prone to imperfections such as voids and
cracks in their structure during the production and life service.
Hence, it is vital to perform accurate buckling analyses for cracked
functionally graded cylindrical shells to allow for better and more
reliable designs.

Many comprehensive studies have been performed on the
buckling behavior of functionally graded cylindrical shells in the
past decade. Ng et al. [1] presented an analytical formulation for
dynamic buckling behavior of FGM cylindrical shells subjected to
periodic loadings. They found out that the gradient index of the
material could crucially affect the buckling behavior of the prob-
lem. Another analytical solution was presented by Sofiyev [2] con-
cerning the buckling analysis of FGM cylindrical shells subjected to
axial dynamic loadings. Further analytical studies for buckling and
postbuckling of functionally graded cylindrical shells can be found
in [3–10].

On the other hand, there are only limited works on the buckling
of cracked cylindrical shells. Esteknachi and Vafai [11] studied the
buckling behavior of isotropic cracked cylindrical shells subjected
to axial loading using the classical finite element method. They
used a mesh zooming scheme for adaptive generation of the mesh
of the cylindrical shell so that with approaching to the crack tip the
size of the elements would decrease from the standard size of the
uncracked regions to a very finer size to better capture the crack tip
stress singularity. They also performed a similar study for cracked
plates [12]. The effect of internal pressure on the buckling behavior
of cracked cylindrical shells subjected to combined internal
pressure and axial compression was investigated by Vaziri and
Estekanchi [13] using the commercial FEM package ANSYS. They
concluded that the effect of the internal pressure on the buckling
stresses became completely different depending on the crack being

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2016.09.065&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2016.09.065
mailto:smoham@ut.ac.ir
http://dx.doi.org/10.1016/j.compstruct.2016.09.065
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


A. Nasirmanesh, S. Mohammadi / Composite Structures 159 (2017) 548–566 549
axial or circumferential. For instance, when the crack was in the
axial direction of the cylinder, the internal pressure had a detri-
mental effect on the buckling stresses, whereas, for the circumfer-
ential crack, the internal pressure had a stabilizing effect on the
buckling behavior [13]. Also, Vaziri [14] carried out a linear eigen-
value buckling analysis using the finite element method to study
the effect of crack length, crack orientation and the sequence of
the lamina on the buckling behavior of composite cylindrical shells
under axial compression. Dynamic stability and vibration of
cracked cylindrical shells under compressive and tensile periodic
loadings were investigated using the finite element method by
Javidruzi et al. [15]. They showed that the existence of crack could
considerably decrease the natural frequency of the shell. Also,
Tafreshi [16–18] performed a series of delamination buckling and
postbuckling analysis for laminate composite cylindrical shells
under various loading conditions by the finite element method.

In addition, there are a few works which have addressed the
buckling analysis of cracked plates in the framework of the
extended finite element method. Recently, Nasirmanesh and
Mohammadi [19] performed an eigenvalue buckling analysis for
cracked composite plates using the extended finite element
method. They examined several problems and thoroughly investi-
gated the effects of different parameters such as crack lengths,
crack angles and direction of fibers on the buckling behavior of
composite plates. They also concluded that even for the tensile
loading, changes in the fiber direction can alter the local instability
around the crack faces to a global buckling mode.

Natarajan et al. [20] carried out thermo-mechanical buckling
analysis of cracked functionally graded plates in the framework
of the partition of unity method and examined the effects of gradi-
ent index of the material and crack lengths on the critical temper-
ature and critical buckling stresses. Another XFEM buckling
analysis for cracked FGM rectangular plates subjected to compres-
sive loading was reported by Liu et al. [21]. Baiz et al. [22] used the
smooth curvature method to study the effects of crack lengths and
locations on the critical buckling stresses for isotropic plates. None
of the existing works have studied the buckling behavior of cracked
functionally graded shells. The novelty of the present study is, for
the first time, to propose an XFEM shell formulation to carry out
an eigenvalue buckling analysis for cracked FGM cylindrical shells.

XFEMwas motivated by disadvantages of the classical finite ele-
mentmethod for fracture analysis; including the need formesh con-
formity to crack path and incapability to capture the exact stress
fieldnear a crack tip. InXFEM,while cracks are represented indepen-
dent of themesh, the exact analytical stressfield around the crack tip
is achieved. The method has been extended to static and dynamic
orthotropic problems for both fixed and propagating cracks
[23–30], bi-materials [31,32] and FGMs [33]. Recently, Rashetnia
and Mohammadi [34] proposed a new set of tip enrichment func-
tions for studying the fracture behavior of rubber-like materials
which experience large deformations. They concluded that the loga-
rithmic set of enrichment functions are more accurate and efficient.

There are other approaches that are capable of handling com-
plex problems including nonlinear dynamic fracture and fluid dri-
ven fracture of plates and shells. For instance, Nguyen-Thanh et al.
[35] proposed a model based upon the extended isogeometric
method in accordance with the Kirchhoff-Love theory to analyze
thin shells. In addition, a meshfree method was proposed for non-
linear dynamic fracture analysis of thin shells, which allowed to
predict crack propagation across the thickness of shell [36,37].
Recently, the phase-field method has been utilized to study the
fracturing behavior of plates and shells [38,39] with the goal of
avoiding explicit track of cracks in special problems.

The present paper is organized as follows: the basic formulation
of the functionally graded problem is presented. Definition of
degenerated shell elements is followed by deriving the stability
equations in the framework of the extended finite element
method. Numerical simulations are presented and discussed for
verifying the proposed method and then extended to cracked
FGM problems in Section 3. Finally, a brief review of the concluding
remarks is presented.

2. Theoretical formulation and XFEM discretization

In this study, the Young’s module (Ez) of the problem is assumed
to vary across the thickness; from the pure metallic surface at the
bottom (Em) to the fully ceramic surface at the top (Ec) of the shell
based on a power distribution law,

Ez ¼ Em þ ðEc � EmÞ 1
2
þ z

t

� �n

ð1Þ

where t is the thickness of shell, n is the gradient index of the mate-
rial and z changes along the thickness so that �t=2 6 z 6 t=2, as
shown in Fig. 1. The Poisson’s ratio m, however, is assumed constant.

In order to avoid mesh distortion and shear locking that usually
occur in buckling phenomena, 8-noded shell elements are adopted
to discretize the domain [19,40]. Geometry of the shell is defined
using the coordinates of the mid-surface of the shell and the unit
normal vector, which is perpendicular to the surface of the shell
at each node, V3

i , as depicted in Fig. 2,

x ¼
X8
i¼1

Nixi þ
X8
i¼1

tifi
2

NiV
3
i ; x ¼ fx; y; zgT ð2Þ

where, Ni’s are the shape functions of the plane eight noded ele-
ment, ti is the thickness of the shell at each node (which is assumed
constant in all nodes in this study) and f of the natural coordinate
system is perpendicular to the surface of the shell at each node.

Consider a cracked FGM medium, depicted in Fig. 3, the dis-
placement field of the problem in the framework of the extended
finite element method is presented as

u ¼
u

v
w
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where, u; v and w are the displacement components in the global
coordinate x; y and z directions, respectively. uFE and uEnr are the
conventional continuous finite element approximation and the
approximation of the discontinuous part of the displacements,
respectively. uFE can be written as,

uFE ¼
X8
i¼1

Ni

ui

v i

wi

8><
>:

9>=
>;þ

X8
i¼1

tfi
2
Ni bi

eiy1
eiy2
eiy2

8>><
>>:

9>>=
>>;

� ai

eix1
eix2
eix3

8><
>:

9>=
>;

8>><
>>:

9>>=
>>;

ð4Þ

where eiyk and eixk are the components of the unit orthonormal vec-

tors of the unit normal vector at node i, i.e. V3
i . ai and bi are the rota-

tional degrees of freedom with respect to x and y axes,
respectively.uEnr is composed of two separate parts to account for
discontinuous and singular fields; each part enriches the displace-
ment field with specific enrichment functions to overcome the lim-
itation of the conventional finite element method. As a result,
neither the mesh conformity to the crack edges nor the mesh refine-
ment around the crack tip is required.

uEnr ¼ uHeaviside þ uTip ð5Þ
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Fig. 1. Geometry of the cracked cylindrical shell and variation of material properties across the thickness.

Fig. 2. Eight noded shell element and local unit vectors.
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Fig. 3. Cracked medium and lo
where, aij and bi
j are the additional enrichment degrees of freedom.

The vector of nodal displacements (d) and enrichments (h and t) are
defined as

d ¼ fu; v;w;a;bgT ð8Þ

h ¼ fa1; a2; a3; aa; abgT ð9Þ

t ¼ fb1; b2; b3; ba; bbgT ð10Þ
and the vector of unknowns D,

D ¼ fd h t1 t2 t3 t4gT ð11Þ
In Eq. (6), HðxÞ is the Heaviside function and is defined as [41]

HðxÞ ¼ þ1 x above the crack
�1 x under the crack

�
ð12Þ

Also, the in-plane, out of plane and rotational enrichment func-
tions in the local polar coordinate system (r; h) are expressed as
[40],
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cal crack tip coordinates.
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To obtain the governing equations, the total potential energy is

written as:

w ¼
Y
b

þ
Y
r

�
Y
X

ð16Þ

where
Q

b is the bending strain energy and
Q

r represents the mem-
brane energy, necessary in buckling problems [42] and

Q
X is the

potential of external loads.
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where r0 is the tensor of initial stresses, which is computed from a
static analysis, C is the matrix of the material property, q is the trac-
tion tensor, and eL & eNL are the linear and nonlinear terms of the
Green-Lagrange strains, respectively,
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r0 ¼ frx0;ry0;rz0; sxy0; syz0; sxz0gT ð22Þ
Also, strain and stress tensors are related by the tensor of mate-

rial properties C,

r ¼ Ce ð23Þ

C ¼

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

2
666666664

3
777777775

ð24Þ

where Cij components depend only to the modulus of elasticity Ez

and the Poisson’s ratio m of the material,

C11 ¼ Ez

1� m2
; C12 ¼ mEz

1� m2
; C44 ¼ Ez

2ð1þ mÞ ð25Þ

Eq. (18) can be rewritten as:

Y
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Z
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ð26Þ
S0 is computed from the stresses obtained from the first stage of the
buckling analysis; a static analysis,

S0 ¼
Ŝ0 0 0
0 Ŝ0 0
0 0 Ŝ0

2
64

3
75; Ŝ0 ¼

r0
x s0xy s0xz

s0xy r0
y s0yz

s0xz s0yz r0
z

2
664

3
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Vectors of eLl and u are related to the nodal displacement vec-
tor D as

eL ¼ BD; l ¼ BGD and u ¼ ND ð28Þ
where B and BG correspond to linear and nonlinear parts of the
Green-Lagrange strain, respectively [19], and N is constructed from
the shape functions as

Nr=s
i ¼

/i 0 0 � fi t
2 ex1ui

fi t
2 ey1ui

0 /i 0 � fi t
2 ex2ui

fi t
2 ey2ui

0 0 ji � fi t
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2 ey3ui

2
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Substituting Eq. (28) into Eqs. (17), (18) and (19), the total
potential energy becomes

w ¼ 1
2

Z
V
DTBTCBDdV þ 1

2

Z
V
DTBT

GS0BGDdV �
Z
V
DTqdV ð30Þ

Based on the principle of minimum potential energy, variation
of the total potential energy must vanish at equilibrium (dw ¼ 0),

dw ¼ dD
Z
V
BTCBdV þ

Z
V
BT
GS0BGdV

� �
D�

Z
V
NTqdV

� �
¼ 0 8dD–0

ð31Þ
Applying the XFEM displacement approximation (3), the follow-

ing equilibrium state is obtained after some manipulation and
simplification [42]

fKþ KGgfDg ¼ Fext ð32Þ
where K and KG are the conventional and geometric stiffness matri-
ces, respectively, and Fext is the vector of external forces.

For a linear problem, if the external load vector is multiplied by
a factor k, then, the geometric stiffness matrix is also multiplied by
k,

fKþ kKGgfDg ¼ kFext ð33Þ
Having the definition of buckling by Cook [42], when buckling

occurs, the external load does not change for an infinitesimal dis-
placement of dD,

fKþ kKGgfDþ dDg ¼ kFext ð34Þ
Subtracting Eq. (34) from Eq. (35) leads to the stability equation

of the problem,

fKþ kKGgfdDg ¼ 0 ð35Þ
where k is the eigenvalue of the system. The buckling stress is
obtained by multiplying k to the initial external stress of the system,
and the minimum value of k corresponds to the critical buckling
stress of the system. For any specified value of k, there is an eigen-
vector dD which represents the buckling mode shape of the
problem.

Krs
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For facilitating the construction of Br=s
i ;Br=s

Gi and Nr=s
i for different

r; s ¼ d;h; t, the following functions are defined
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ð39Þ
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if : r=s ¼ d�!/ ¼ u ¼ j ¼ Ni

if : r=s ¼ h�!/ ¼ u ¼ j ¼ NiðHðxÞ � HðxiÞÞ
if : r=s ¼ t�!/;u;j ¼ as defined in equation ð33Þ

8><
>: ð42Þ

It should be noted that because of the highly complex stress
field around the crack tip and the displacement discontinuity
across the crack faces, the conventional Gauss quadrature integra-
tion technique is not adequate to properly evaluate the integrals of
Fig. 4. Element types and their associated enric
Eqs. (36), (37) and (38). In this study, the sub-triangulation method
along with the Gauss quadrature rule is adopted due to its simplic-
ity and acceptable accuracy [21–23]. In this approach, 13 Gauss
points per triangle are considered for elements enriched by the
tip enrichment functions, while, for split elements, 7 Gauss points
are adopted per triangle, and a simple 2� 2 Gauss quadrature rule
is used for the standard ordinary elements, as depicted in Fig. 4.

3. Numerical simulations

In this section, linear eigenvalue buckling analysis is performed
for several mixed-mode cracked homogeneous and inhomoge-
neous FGM plates and cylindrical shells in the framework of the
extended finite element method. Due to the fact that there is no
published document on the buckling of cracked functionally
graded cylindrical shells, first, a problem of cracked FGM plate
under compressive loading is analyzed to show the capability of
the proposed method and to perform the required comparisons.
Then, buckling of a cracked isotropic cylindrical shell under com-
bined internal pressure and compressive loading as well as pure
axial tension is investigated and the obtained results are verified
with available studies. Afterward, a perfect functionally graded
cylindrical shell subjected to axial compression is adopted and
the predicted buckling stresses are compared with the available
results. A thorough study is then carried out on the buckling
behavior of mixed-mode cracked functionally graded cylindrical
shells subjected to three different cases of loading including axial
tension, axial compression and combined internal pressure and
axial compression. In addition, the effect of different parameters
such as crack lengths, crack angles, gradient index of the material,
thickness and the aspect ratios of the shell on the buckling behav-
ior are extensively discussed. Finally, because the proposed XFEM
approach can handle the problems with multiple cracks without
any additional complexity, the buckling analysis is performed on
a compressive FGM cylindrical shell with three parallel cracks.

3.1. Cracked FGM rectangular plate subjected to uniaxial compressive
loading

As the first example, a central cracked FGM rectangular plate
under compression, as depicted in Fig. 5, is considered. It is
assumed that the elasticity modulus of the plate varies through
the thickness based on a power distribution law, from the fully
metallic surface in the bottom to the fully ceramic in the top sur-
hed nodes, triangulation and Gauss points.



Fig. 5. A central cracked FGM plate under compression.
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face of the plate. This problem has recently been studied by a so-
called stabilized discrete shear gap extended 3-node triangular
plate element [21]. The young’s modulus is Em ¼ 70� 109 MPa
and Ec ¼ 151� 109 MPa on metallic and ceramic surfaces, respec-
tively. Also, the constant Poisson’s ratio of 0.3 is assumed through
the thickness.

A 35� 35 structured mesh is adopted for the eigenvalue buck-
ling analysis and the computed critical buckling stresses are nor-

malized by the parameter kuni ¼ 12ð1� m2Þr0
xkcrb

2
=p2t3Ec. The

aspect ratio of the plate, thickness, crack length and the angle of
the crack are adopted as a=b ¼ 1, t=a ¼ 0:01, c=a ¼ 0:6 and h ¼ 0�,
respectively.

Computed normalized buckling parameters for different values
of gradient index of the material are shown in Table 1. It is
observed that the buckling stress decreases as the gradient index
of the material increases. Also, very close results to Ref. [21] are
obtained; showing sufficient accuracy for modeling the buckling
behavior of cracked functionally graded plates.

3.2. Cracked homogeneous cylindrical shells

3.2.1. Simultaneous internal pressure and axial compression
As the second example, the problem of buckling of a cracked

homogeneous isotropic cylindrical shell for two different loading
conditions; including combined internal pressure and axial com-
pression and pure axial tension, is considered. This problem was
earlier investigated comprehensively by Vaziri and Estekanchi
[13] and Seifi et al. [43] using commercial finite element analysis
programs. Very fine meshes were adopted to model the stress con-
centration at the crack tips. In the present study, the stress singu-
larity at crack tips is captured in a more accurate manner using the
tip enrichment functions. Then, the bifurcation buckling analysis is
performed in the framework of the extended finite element
method.

First, the same problem of [13] is considered (Fig. 1). Material
and geometric properties of the problem are E ¼ 69 GPa, m ¼ 0:3,
L ¼ 2 m, R ¼ 0:5 m and t ¼ 0:5 mm. Here, only a comparison is
made between the results of the present XFEM and the classical
finite element method to assess the reliability of the proposed
method for modeling this complex instability problem.
Table 1
Normalized buckling parameters of a central cracked FGM plate for various values of
gradient indices of material (n).

n kuni
Ref. [21] Present study Difference (%)

0.0 2.9995 3.0148 0.51
0.2 2.6548 2.6760 0.80
0.5 2.3470 2.3552 0.35
1.0 2.0977 2.1166 0.90
2.0 1.9222 1.9262 0.21
5.0 1.7825 1.7860 0.20
10.0 1.6751 1.6828 0.46
A dimensionless buckling load factor c is defined as the ratio of
the computed critical buckling stress of the cracked cylindrical
shell (rcr) to the theoretical buckling stress of the perfect cylindri-
cal shell subjected to axial compression (rth),

c ¼ rcr

rth
ð43Þ

rth ¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� m2Þ

p t
R

� �
ð44Þ

Also, another dimensionless loading parameter k is defined as
the ratio of the induced membrane stress due to internal pressure
(rmembrane) to the total axial compressive stress, developed due to
internal pressure and axial compression (raxial), in the perfect
cylindrical shell.

k ¼ rmembrane

raxial
ð45Þ

rmembrane ¼ pR
t

ð46Þ

where p is the internal pressure applied on the inner surface of the
cylinder.

First, an un-cracked cylindrical shell is considered and the effect
of the internal pressure on the buckling stress associated with the
first buckling mode is examined. It can be observed from Fig. 6 that
with increasing the internal pressure the buckling stress increases
slightly, which is consistent with the available results [13].

Then, an axially cracked cylindrical shell subjected to combined
internal pressure and axial compression is considered and the crit-
ical buckling stresses are obtained for various internal pressures by
the present method and then compared with available reference
results [13], as plotted in Fig. 7. It is observed that, the computed
buckling load parameters (c) are in the very good agreement with
the reference results [13]. It should be noted that, the number of
elements was not mentioned in Ref. [13], so it is not possible to fur-
ther compare the efficiency of the two methods. Moreover, it is
observed that, for small crack length ratios (a=R ¼ 0:05), with
increasing the internal pressure, the buckling load parameter starts
to increase, followed by a decreasing trend, showing the stabilizing
effect of the internal pressure at low values. On contrary, for larger
crack length ratios (a=R ¼ 0:1), the internal pressure has a destabi-
lizing effect on the buckling behavior of the cylinder, because with
increasing the internal pressure, the buckling stress decreases.

To further examine the efficiency of the present XFEM formula-
tion, a circumferentially cracked cylindrical shell (h ¼ 0�) subjected
to combined internal pressure and axial compression [13] is con-
sidered. Variations of the computed buckling load parameter ver-
sus the internal pressure are compared with Ref. [13] in Fig. 8,
which shows a good agreement. In contrast to the case of axial
crack (h ¼ 90�), the internal pressure improves the local buckling
behavior of cylinder due to its stabilizing effect on crack faces. Also,
it is observed that for relatively long cracks, the effect of internal
pressure is more significant on the buckling behavior of the cylin-
drical shell (Fig. 8).

3.2.2. Pure axial tensile load
A simply supported cracked cylindrical shell subjected to axial

tension, recently studied by Seifi et al. [43], is considered. The
material properties are E ¼ 70 GPa and m ¼ 0:3, and the geometric
specifications are L ¼ 300 mm, R ¼ 60 mm, t ¼ 1:5 mm, h ¼ 45�

and a=R ¼ 1:0. A structured 35� 45 (35 elements in the circumfer-
ential and 45 elements in the longitudinal direction) mesh is
adopted for the analysis.

The critical buckling stress related to the first mode of buckling
is predicted as rcr ¼ 231:9 MPa, which is in good agreement with
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the reference value of r ¼ 231:81 MPa. Ref. [43] used 3466 ele-
ments with 5 Gauss integration points in the thickness direction
that leads to the total number of 17,330 Gauss points, which is
far more than the total number of Gauss points and elements used
in this study, since only two Gauss integration points considered
across the thickness (1575 elements and 3150 Gauss points). The
ability of the present method to capture the stress singularity at
crack tips without refining the element size allows for higher accu-
racy and lower computational cost than the reference finite ele-
ment solution [43], i.e. the approach employed for this particular
case results in 5.5 times less computational cost.

3.3. Functionally graded cylindrical shells

After examining the accuracy and efficiency of the proposed
XFEM in handling the problem of buckling of cracked homoge-
neous cylindrical shells, the method is now applied for modeling
Fig. 7. Buckling load parameters versus internal

Fig. 6. Effect of the internal pressure on the buckling stress of t
the more complex problem of buckling analysis of cracked func-
tionally graded shells.

First, the problem of buckling analysis of an un-cracked FGM
cylindrical shell under compressive load is considered and the
validity of the proposed method is verified with available Ref.
[44]. Then, the method is adopted for buckling analysis of cracked
functionally graded cylindrical shells for three different cases of
loading conditions; axial tension, axial compression and combined
internal pressure and axial compression, as well as a compressive
FGM cylindrical shell with three parallel cracks.

3.3.1. Uncracked FGM cylindrical shell subjected to axial compression
Consider a simply supported functionally graded cylindrical

shell, which is subjected to axial compression, as depicted in
Fig. 1. The length to the radius ratio of the shell is L=R ¼ 2 and
the effects of different radius to thickness ratios (R=t) and gradient
index of the material (n) on the buckling behavior are investigated
pressure for axially cracked cylindrical shell.

he first buckling mode for the un-cracked cylindrical shell.
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by the present method and compared with the available reference
results [44]. The material properties of the problem are
Ec ¼ 3:8� 105 MPa and Em ¼ 7� 104MPa on the ceramic and
metallic sides of the FGM thickness, respectively, and the Poisson’s
ratio is considered constant across the thickness (m ¼ 0:3).

Computed buckling stresses for various gradient indices are
normalized by Ec and then plotted versus different radius to thick-
ness ratios of the cylinder in Fig. 9. Clearly, the obtained results are
very close to the reference results [44]. In addition, as the gradient
index increases, the normalized buckling stress decreases signifi-
cantly. Moreover, increasing the radius to thickness ratio affects
the buckling behavior of the cylinder dramatically.

3.3.2. Cracked FGM cylindrical shell subjected to axial tension
In this section, the buckling analysis is carried out using the

proposed XFEM method for extracting the critical buckling stress
of a simply supported mixed-mode cracked functionally graded
Fig. 9. Normalized buckling stress against the radius to thickness ratio fo

Fig. 8. Buckling load parameters versus internal press
cylindrical shell under axial tension, as shown in Fig. 1. It should
be noted that, under a uniform axial tensile load, a cracked cylin-
drical shell can buckle locally around the crack faces due to the
generated compressive stress fields in these region. The material
properties of the thin cylindrical shell is assumed similar to Sec-
tion 3.3.1 and the length to radius ratio (L=R) and the radius to
thickness ratio (R=t) of the shell are 4 and 1000, respectively.

All cracked FGM shells are modelled by a 45� 55 structured
mesh (45 elements in the longitudinal and 55 elements in the cir-
cumferential direction), unless otherwise mentioned. The effects
of crack lengths and angles, gradient index of material, thickness
and the length of the cylinder on the buckling behavior of the shell
are investigated comprehensively. Also, the buckling mode shapes
are presented to better illustrate the local instability of crack
edges.

The tensile buckling stresses for different crack lengths and gra-
dient indices for crack direction of h ¼ 0� are presented in Table 2.
r an uncracked FGM cylindrical shell subjected to axial compression.

ure for circumferential cracked cylindrical shell.
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It is observed that the predicted critical buckling stresses are so
sensitive to the ratio of the crack length to radius of the shell, so
that for the constant gradient index n ¼ 2, the buckling stress dra-
matically decreases from 1675 MPa to 148 MPa when the ratio of
the crack length to radius increases from 0.5 to 1.0. Furthermore,
Table 2
Critical buckling stresses for various gradient indices and crack length to radius ratios for

a=R n

0.5 1 2

Critical buckling Stress (MPa)

0.5 2717 2165 1675
0.7 1397 1099 853
1.0 243 191 148
1.2 172 136 105

Fig. 10. Tensile buckling stresses for different

Fig. 11. Effect of the aspect ratio of the cracked FGM cy
with increasing the gradient index of the material, the expected
buckling stress decreases. For example, when the crack length to
radius ratio is equal to 1.0 and the gradient index is n ¼ 0:5, the
buckling stress is approximately two times higher than its value
for n ¼ 10.
a circumferentially cracked FGM cylindrical shell subjected to axial tension.

4 6 10

1336 1194 1054
700 638 572
122 112 101
86 78 69

crack angles for a FGM cylindrical shell.

lindrical shell on the critical tensile buckling stress.
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For examining the effects of crack orientation on the buckling
behavior of the problem, Fig. 10 compares the results for various
crack angles for the constant gradient index of n ¼ 2:0. Clearly,
with increasing the crack angle, the buckling stress increases sig-
nificantly. For instance, for the case of a=R ¼ 1:0, the critical
Fig. 12. The first three buckling mode shapes of the circumferent
buckling stress for h ¼ 60� is approximately 7 times greater than
the buckling stress for h ¼ 0�.

Fig. 11 examines the effects of thickness and length of the cylin-
der on the critical buckling stress. The results are related to the
case of n ¼ 4:0 and a=R ¼ 1:0. Accordingly, the length to radius
ially cracked FGM cylindrical shell subjected to axial tension.
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ratio of the cylinder highly affects the buckling behavior so that
with decreasing the length to radius ratio the buckling stress sig-
nificantly decreases. For instance, the buckling stress for the case
of L=R ¼ 2:0 and R=t ¼ 400 is approximately 3.4 times greater than
the case with the same thickness and L=R ¼ 0:5. Clearly, the buck-
ling stress is so sensitive to the radius to thickness ratios, where
increasing the radius to thickness ratio leads to a considerable
reduction in the buckling stress.

The buckling mode shapes related to the case of gradient
index n ¼ 2 and a=R ¼ 1:2 are presented in Fig. 12. The local
instability of crack edges are clearly observed in the Fig. 12.
Higher critical stresses are obtained for the second and third
modes of buckling.

Moreover, in order to investigate the sensitivity of the results to
the number of elements, different number of meshes are adopted
for the case of a=R ¼ 0:5 and n ¼ 6:0 and the buckling stresses
are obtained. It is observed from the Fig. 13 that by increasing
Fig. 13. Sensitivity of the buckling stress to the number of elements for the

Fig. 14. Effects of the crack length ratios and the gradient index on the buckl
the number of elements, the buckling stress converges to
1197:63 MPa.

It is clearly demonstrated that cracked functionally graded
cylindrical shells, even in the tensile loading condition, which is
the safest loading state, are highly prone to local buckling around
the crack faces. Moreover, even a slight increase in the crack length
could substantially jeopardize the stability of the cylinder.

3.3.3. Cracked functionally graded cylindrical shell subjected to axial
compression

Buckling analysis for cracked functionally graded cylindrical
shell subjected to axial compression in general mixed-mode condi-
tion is now performed with the developed extended finite element
method. Geometric parameters and material properties of the shell
are similar to Section 3.3.2, unless mentioned otherwise. Besides, it
is investigated that how different parameters such as crack lengths
and orientations, gradient index of the material, thickness and the
circumferential cracked FGM cylindrical shell subjected to axial tension.

ing stress of axial cracked FGM cylindrical shell under axial compression.
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length of the shell can influence the buckling behavior of the FGM
cylindrical shell.

First, the effects of crack length to radius ratio (a=R) and the gra-
dient index of the material on an axially cracked (h ¼ 90�) FGM
Fig. 15. The first four buckling mode shapes for (a) uncracked and (b) axially cr
shell are examined. According to Fig. 14, different conclusions
can be made. First, the crack length substantially affects the buck-
ling behavior of the shell. For example, for the constant gradient
index n ¼ 0:5, the buckling stress related to a=R ¼ 1:0 is decreased
acked functionally graded cylindrical shell subjected to axial compression.
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significantly from 43:35 MPa to 24:72 MPa, associated with the
crack length to radius ratio of a=R ¼ 2:5. Then, the buckling stress
can crucially be affected by the gradient index of the material, so
higher increase of the gradient index leads to more reduction in
the buckling stress. Also, it can be noted that for all cases of crack
lengths, the buckling stresses for n ¼ 0:5 are approximately 2.6
times greater than those in which n ¼ 10.

To better illustrate how the presence of crack can alter the
buckling behavior of the FGM cylindrical shell, the first four buck-
ling mode shapes and their corresponding buckling stresses for
uncracked and axially cracked FGM cylindrical shells are presented
in Fig. 15. Clearly, existence of the crack can totally change the
buckling behavior from the global buckling to local buckling
around the crack faces in a very lower value of critical applied
stress.
Fig. 16. Compressive buckling stresses fo

Fig. 17. Effects of aspect ratios on the critical buckling stresses of the
In order to investigate the influence of crack orientation on the
buckling behavior of the problem, the critical compressive buckling
stress for different crack lengths and orientations for the constant
gradient index n ¼ 2:0 are computed and depicted in Fig. 16. It is
observed that variations of crack lengths and angles lead to differ-
ent and complex buckling behaviors, making it impossible to make
a general conclusion. Notwithstanding, for all a=R cases, the mini-
mum critical buckling stress corresponds to the axial crack
(h ¼ 90�).

Fig. 17 is given to probe the effects of aspect ratios of shell on
the critical buckling stresses for a=R ¼ 0:8, n ¼ 4:0 and h ¼ 90�.
Generally, with increasing the radius to thickness ratios (decreas-
ing the thickness), the buckling stress decreases considerably.
Nevertheless, the critical buckling stresses are not highly affected
by variation of the length of the cylinder. For instance, for the case
r different crack lengths and angles.

axially cracked FGM cylindrical shell subjected to compression.
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of R=t ¼ 400, the buckling stress decreases about 15% when the
length to radius ratio of the cylinder decreases from 3 to 1.

Also, Fig. 18 presents the influence of crack orientation and
length of the shell on the buckling behavior. The first four buckling
Fig. 18. The first four compressive buckling mode shapes for mix
mode shapes and their associated buckling stresses for two differ-
ent cases of h ¼ 15� and h ¼ 30� and the length to radius ratio of
L=R ¼ 2 and R=t ¼ 50 are shown in Fig. 18. Based upon the plots
given in Figs. 15 and 18, it is observed that any variations in crack
ed-mode cracked FGM cylindrical shell a) h ¼ 15� b) h ¼ 30� .
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orientation or the geometrical parameters (L=R and R=t) severely
alter the buckling behavior of the cracked FGM cylindrical shell.

3.3.4. Cracked functionally graded cylindrical shell subjected to
combined internal pressure and axial compression

One of the dominant loading conditions in the cylindrical shells
is when simultaneous axial compression and internal pressure are
applied to the shell. This problem with homogeneous isotropic
material was briefly studied in Section 3.2 and verified with the
available results. Now, the problem is further extended to cracked
FGM cylindrical shell and the buckling analysis is performed using
the extended finite element method. The material properties and
geometric parameters are identical to previous FGM examples
and the shell is simply supported at the both ends.

Fig. 19 presents the effect of crack length to radius ratio and
gradient index of the material on the critical internal pressure
Fig. 19. Effects of gradient index and crack length ratios on the critical internal pres

Fig. 20. Effect of internal pressure on the critical axial buckling stress for the axially cr
which causes buckling. It is observed that the critical internal pres-
sure decreases significantly as the crack length ratios and gradient
index increase.

Fig. 20 depicts the effects of internal pressure on the critical
axial compressive buckling stresses for axially cracked functionally
graded cylindrical shell in terms of various crack length to radius
ratios for the constant value of n ¼ 2:0. Pc denotes the critical inter-
nal pressure, computed in Fig. 19. It is observed that the internal
pressure has a detrimental effect on the buckling behavior, where,
with increasing the applied internal pressure, the axial buckling
stress decreases dramatically. Also, for high values of internal pres-
sure, buckling occurs at approximately the same axial compression
for all crack lengths.

Now, the effect of internal pressure on the circumferential
cracked FGM cylindrical shell is examined. According to Fig. 21,
the critical buckling stress highly depends to the internal pressure.
sure for the axially cracked FGM cylindrical shell subjected to internal pressure.

acked FGM cylindrical shell for different values of crack length ratios and n ¼ 2:0.



Fig. 21. Effects of internal pressure on the critical buckling stresses for circumferential cracked FGM cylindrical shell for different crack length ratios and n ¼ 2:0.

Fig. 22. An FGM cylindrical shell with three parallel cracks.

Table 3
Critical buckling stresses of an FGM cylindrical shell with three parallel cracks for various crack lengths and distances between cracks.

a=R d=L

0.05 0.125 0.25 0.375 0.45

Critical buckling stress (MPa)

0.7 61.55 57.34 50.75 43.90 38.07
1.0 25.56 24.80 21.11 13.41 10.67
1.2 15.42 11.86 9.31 5.85 4.84
1.5 10.66 7.05 5.28 3.30 2.53
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Also, it should be noted that, in contrast to the axially cracked
cylinder, the internal pressure has a significant stabilizing effect
on the buckling behavior of the circumferential cracked function-
ally graded cylindrical shell.
3.3.5. FGM cylindrical shell with multiple cracks subjected to axial
compression

Compared with the conventional finite element method, one of
the advantages of XFEM is its ability to model problems involving



Fig. 23. The first four buckling mode shapes of the FGM cylindrical shell for two different values of d=L, a) d=L ¼ 1=3 b) d=L ¼ 1=10.
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multiple cracks without noticeably altering the geometry of the
mesh. Thereupon, as the last example, the buckling behavior of
an FGM shell with three parallel cracks subjected to compression,
as depicted in Fig. 22, is investigated. Geometric and material prop-
erties of the shell is identical to those in the previous examples.
Also, the shell is clamped at both ends. The effect of the distances
between the cracks on the critical buckling stress and the corre-
sponding mode shapes are probed.
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For investigating the effects of crack length and distance
between cracks, critical buckling stresses associated with n ¼ 2:0
are obtained and presented in Table 3. Clearly, the buckling stres-
ses are drastically decreased by increase of crack lengths. For
instance, in the case of d=L ¼ 0:05, the buckling stress for
a=R ¼ 1:5 is 6 times greater than the case associated with
a=R ¼ 0:7. Besides, the buckling behavior of shell is affected by
the variation of distance between cracks, so that the buckling
stress decreases when the distance between cracks increease. For
example, in the case of a=R ¼ 1:5, the buckling stress for
d=L ¼ 0:45 is 3 times smaller than the case in which d=L ¼ 0:05.

The buckling mode shapes related to d=L ¼ 1=10andd=L ¼ 1=3
and their associated buckling stresses for the crack length to radius
ratio a=R ¼ 1:5 and n ¼ 0:5 are depicted in Fig. 23. Clearly, the dis-
tances between the cracks can crucially alter the buckling behavior
of the shell.

4. Conclusion

A comprehensive study on the buckling behavior of cracked
FGM cylindrical shells has been performed by the extended finite
element method to numerically solve the stability equation. First,
the method has been verified by the analysis of reference cracked
isotropic cylindrical shells. It has been illustrated that not only the
present XFEM formulation is accurate enough, it is also computa-
tionally more efficient than the conventional finite element
method. From the computational cost standpoint, the work pre-
sented herein is several times more efficient compared with, for
example, the work done by Seifi et al. [43]. Then, the method has
been implemented to analyze the buckling behavior of a cracked
FGM cylindrical shell under three different loading conditions
and also an FGM cylindrical shell with three parallel cracks under
axial compression. The effects of several parameters such as crack
lengths and angles, aspect ratios of the shell and the gradient index
of the material on the buckling behavior of the problem have been
examined thoroughly.

Some of the most important conclusions of the study can be
outlined as follows:

In general, as the length of the crack increases, the critical buck-
ling stress of the shell drops. The same conclusion can be made
about the gradient index of the functionally graded material (n).
Thus, the value of the critical buckling stress of the FGM cylindrical
shell is highly depends on the aforementioned parameters.

� The buckling behavior of the FGM shell is under the severe
influence of the angle of the crack (h). So much so that in ten-
sion, as the angle of the crack heightens, the critical buckling
stress of the shell noticeably increases, whereas in compression,
due to the complex nature of the mechanics of the problem, a
definite conclusion cannot be made. Nevertheless, for h ¼ 90�,
the critical buckling stress is minimized.

� It is obvious that the thickness of the FGM shell can greatly
affect the critical buckling stress of the FGM shell.

� The length of the shell, also, plays an important role in the buck-
ling behavior of the FGM shell. As the length of the shell
decreases, the buckling stress of the shell experiences a drop.
This assertion can be attributed to both tensile and compressive
external loads. But the effect is much more strongly felt in
tension.

� The effect of the internal pressure on the buckling of shell has
been thoroughly investigated for two different crack angles
(h ¼ 0� and h ¼ 90�). It was observed that when crack is along
the axis of the shell, the increase in the internal pressure of
the FGM shell results in a significant reduction in the buckling
stress. For h ¼ 0�, the internal pressure in the FGM shell exerts
a stabilizing effect on the critical buckling stress. i.e. as the
internal pressure increases, the buckling stress increase as well.
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