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Abstract

Motivated by roughness-induced adhesion enhancement (toughening and strengthening) in low modulus materials, we study
the detachment of a sphere from a substrate in the presence of both viscoelastic dissipation at the contact edge, and rough-
ness in the form of a single axisymmetric waviness. We show that the roughness-induced enhancement found by Guduru
and coworkers for the elastic case (i.e. at very small detachment speeds) tends to disappear with increasing speeds, where the
viscoelastic effect dominates and the problem approaches that of a smooth sphere. This is in qualitative agreement with the
original experiments of Guduru’s group with gelatin. The cross-over velocity is where the two separate effects are compa-
rable. Viscoelasticity effectively damps roughness-induced elastic instabilities and makes their effects much less important.
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[1] proved that even in low modulus materials (they used
rubbers with E ~ 1 MPa), a ~ 1 um of roughness destroy
adhesion almost completely, despite van der Waals adhe-
sive forces are quite strong, giving the so-called “adhesion

1 Introduction

It is well known that adhesion of hard solids is difficult
to measure at macroscopic scales, and Fuller and Tabor
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paradox” [2]. Adhesion of macroscopic bulk objects requires
smooth surfaces, and at least one of the solids has to have a
very low elastic modulus. Dahlquist [3, 4], while working
at 3 M, proposed a criterion largely used in the world of
adhesives, namely that the elastic Young modulus should be
smaller than ~ 1 MPa to achieve stickiness even in the pres-
ence of roughness. This clearly is just a rough indication,
but Tiwari [5] finds for example that the work of adhesion
(at a given retraction speed) is reduced of a factor 700 for a
rubber in contact with a rough hard sphere when the rubber
modulus is £ = 2.3 MPa (because of a certain roughness)
but is actually increased for the same roughness by a factor
2 when the rubber has modulus E = 0.02 MPa. The thresh-
old does not change much even if we consider nanometer
scale roughness, as in the recent results of Dalvi et al. [6]
for pull-off of PDMS hemispheres having four different elas-
tic moduli against different roughened plates: Dahlquist’s
criterion seems to work surprisingly well, as while there is
little effect of roughness for the three cases of low modulus
up to near E = 2 MPa, roughness has strong effect both dur-
ing approach and retraction for the high modulus material
(E = 10 MPa), where the hysteresis may be due partly to
viscoelastic effects!. However, for the 3 low modulus materi-
als, roughness almost systematically increases the work of
adhesion rather than decreasing it as for the high modulus
material, for a given retraction speed.

Roughness-induced adhesion enhancement was measured
with some surprise first by Briggs and Briscoe [7] and Fuller
and Roberts [8], and Persson—Tosatti’s [9] theory attributes
it to the increase of surface area induced by roughness>.
Another mechanism was put forward by Guduru et al. [10,
11]. Guduru considered a spherical contact having a concen-
tric axisymmetric waviness and considers that the contact is
complete over the contact area. The waviness gives rise to
oscillations in the load-approach curve which results in up to
factor 20 increase of the pull-off with respect to the standard
smooth sphere case of the JKR theory [12]. Also, the curves
fold on each other so that we expect jumps at some points in
the equilibrium curve, which corresponds to dissipation and
emission of elastic waves in the material and results in strong

! Despite the authors intended to remove as much as possible rate-
dependent effects by applying a retraction rate of only 60 nm/s, they
are probably still present. The authors claim a good correlation of
the energy loss during the cycle of loading and withdrawing with the
product of the real contact area at maximum preload with the “intrin-
sic” work of adhesion. Notice that this would not work for a smooth
sphere where JKR theory predicts that the energy loss is independ-
ent on preload and indeed the data of Dalvi et al. [6] with the lowest
roughness do show almost a constant trend. Also, the hard material
case shows almost no energy loss.

2 Instead, adhesion reduction is attributed by Persson and Tosatti [9]

to the elastic energy to flatten roughness, which is proportional to the
elastic modulus.

hysteresis. Later, Kesari and Lew [13] noticed that Guduru’s
solution has an elegant “envelope” obtained by expanding
asymptotically for very small wavelength of the waviness.

But most soft materials are viscoelastic, and therefore,
there is a strong velocity dependence of the pull-off result.
Many authors [14-22] have proposed that the process of
peeling involves an effective work of adhesion w which is the
product of the thermodynamic (Dupré) work of adhesion w,
and a function of velocity of peeling of the contact/crack line
and temperature, as long as there is no bulk viscoelasticity
involved, over a large range of crack speeds, namely of the
form that has been validated also by a large amount of data
including peeling tests at various peel angles:

w:wo[l +k(aTvp)n], €))]

where k and n are constants of the material, with n in the
range 0.1-0.8 and a; is the WLF factor [23], which permits
to translate results at various temperatures 7 from measure-
ment at a certain standard temperature. This form of effec-
tive work of adhesion can be obtained also from theoreti-
cal models (which start from the viscoelastic constitutive
equations of the material) using either Barenblatt models
[24, 25] and also [19, 20, 26], or crack tip-blunting models
[22], for quite wide class of materials, since the power law
tends to emerge even for a single relaxation time material
(standard material). But power laws emerge even for more
complex rheologies: for example, [22] showed that for a
frequency-dependent viscoelastic modulus E(w) ~ »'~*,
0 < s < 1, in the transition region between the “rubbery
region” and the “glassy region” (where the strong internal
damping occurs), Eq. (1) is satisfied at intermediate veloci-
ties withn = (1 — 5)/(2 — 5) (so that 0 < n < 1/2, in agree-
ment with most of the range cited above, except for the high
range n > 0.5). Remark that the Gent—Schultz law tends
to see viscoelasticity as an effect increasing the toughness
from an “adiabatic” value at very low propagation, since
the material is seen to have a finite relaxed or “equilibrium”
modulus E;, > 0, whereas the well-known Barenblatt-like
cohesive models of Schapery generally see viscoelasticity
as an effect reducing the elastic fracture limit, where speed
of propagation is wave speed in the material. There may
be deviations from the simple Gent—Schultz power law for
materials having more complex behaviour obtained with a
general relaxation spectrum, but for the scope of the present
paper, the simple form of the Gent—Schultz law permits to
show exemplary results.

In applying Gent—Schultz with viscoelastic effects con-
densed at the crack tip, “the only hypotheses are that failure
is an adhesive failure and that viscoelastic losses are limited
to the crack tip; this last condition means that gross displace-
ments must be elastic for I to be valid in kinetic phenomena”
[21]. This assumption greatly simplifies the analysis and
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1.0 precise function of the retraction rate in an experiment where
the cross-head of a rigid machine keeps the remote approach

0.5¢ . velocity as constant.
Various authors [15, 20, 27] have studied the peeling of
. 00 viscoelastic spheres with the above form of fracture mechan-
E ics formulation (1), and some approximate scaling results
-0.5¢ ] have also been given [27, 29], but a theoretical or numeri-
cal investigation about the coupled effect of viscoelasticity
-1.0p ] and roughness has not been attempted, in the best of the
s authors’ knowledge, not even with numerical simulations.

_(‘).4 _6_2 0.0 012 04 06 08 1.0 It seems that in general, viscoelasticity can only increase
the “tack”, i.e. the force or the work needed to detach two
solids, whereas the role of roughness is more controversial,
Fig.1 The load-approach curve in the Guduru elastic problem _as we have discussed above. We are aware of the complex-
with E* = 16500 Pa; R =0.23 m; w, = 0.008 J/m?; 4/R =0.002; ity of the general problem, so here, we tackle the study of a
A/ A =0.005 and reference a; = 0.01 m simple problem that of a sphere with a single wave of rough-
ness, which generalizes the relatively recent work of Guduru
et al. [10, 11] and following related literature, to the case of
indeed is used by many authors, including in Refs. [20, 27, a viscoelastic substrate.
28], based on the evidence that the timescales of the crack
tip and the bulk deformations are very different.
The effective “toughness” w can increase of various 2 TheTheory
orders of magnitude over wy, as the velocity increases (more
precisely, of the ratio E(c0)/E(0), where E(w) is the fre- We consider the Guduru contact problem for a sphere against
quency-dependent elastic modulus), and the pull-off of a  a flat surface, where the gap is defined as
sphere has also been effectively measured to increase of vari- fr) = % +A(1-=cos % >, where R is the sphere radius, 1
ous orders of magnitude over an increase of peeling speed
[15]. On the contrary, during crack closure, the effective
work of adhesion is even smaller than w, (this time it is
reduced by the ratio E(0)/E(o0), see [20]), so in some cases,
loading could become essentially an elastic model without
adhesion. | N K@pp _ (Pr@-P)°
Equation 1 generalizes the thermodynamic equilibrium  G(a, P) = YR
of elastic cracks for the strain energy release G, namely, it
provides a condition for crack edge velocity—when G > w,, ~ where E* = E/ (1 - v2) is plane strain elastic modulus (i.e.
the crack accelerates under the force G — w, applied per  E is Young’s modulus and v the Poisson ratio, generally
unit length of crack, until a limit speed v, for equilibrium  equal to 0.5 in rubbery materials, while we consider that the
is found, depending on the loading conditions. For exam-  countersurface is generally much more rigid so we neglect
ple, G — wy is a constant for classical peeling experiments, its elastic properties). Notice that, according to the theory
whereas it monotonically increases for flat punches and has ~ of Muller [27] for the smooth sphere, we assume that vis-
a much richer behaviour for the smooth sphere. Therefore, coelastic effects are concentrated at the contact boundary,
for imposed tensile load smaller in absolute value than the while the bulk material remains relaxed; thus, we assume
JKR pull-off value P, = 3/2zxwR, the contact area simply  E* = E*(w = 0), i.e. the relaxed modulus of the viscoelastic
decreases to another equilibrium value (given asymptoti-  material.
cally by JKR theory), while for imposed load below the JKR Here, P,(a) is the load required to maintain a contact
value, it decreases with nonmonotonic velocity but without radius a in the absence of adhesion, while P is the smaller
the JKR pull-off instability, so up to complete detachment.  load to maintain the same contact radius in the presence of
Therefore, pull-off depends on the loading condition: canbe  adhesion. In particular, standard contact mechanics gives
anything greater than P if load is imposed, whereas itisa  [10]

" 2 47’A\ & rAa 2ra rtAd? 2ra
P'(“)‘ZE{<E+ 7 >?+TH'<T)‘ 7 HZ(T)} ’ 3)

a/ai

is wavelength of roughness and A is its amplitude.

The Guduru problem can be solved by considering the
stress intensity factor K at the contact edge (radius » = a) or
equivalently the strain energy release rate G [10]
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Fig.2 The geometry of the problem. A sphere of radius R with a sim-
ple axisymmetric roughness, being a single axisymmetric wave with
wavelength A and amplitude A. The smooth sphere case is obviously
obtained for A = 0

where H,, are the Struve functions of order 7.
In the adhesionless conditions, the remote approach (posi-
tive for compression) is

2 2
al(a)=%+7r —aH()(La) &)

so in the adhesive condition, we have to decrease this by

an amount given by a flat punch displacement giving the

general result for approach:
2A 2ra

Cl2
a(a,P) = E + 7 ZCZH()(T) -

P,(a)—P

2E*a ©)

From (5), we can obtain the general equation for the load as
a function of contact radius and approach

3 3¢
P(a,a) = Py(a) + 2E*aa(a) — 2E*% - ﬂz%cﬁHO(z%a),

(6)
where P|(a) is given by Eq. (3) above. Imposing the condi-
tion of thermodynamic equilibrium G(a) = w,, using Eqgs.
(2) and (3), permits to write the Guduru solution explicitly
as parametric equations of the contact radius a

P(a) = P,(a) — a**\/8zw,E* (7

a(a) = a,(a) — a'/*\2zw,/E* (8)

Using the Kesari and Lew [13] expansion, Ciavarella [30]
obtained that the Guduru solution has oscillations bounded
between two exact JKR [12] envelope curves for the smooth
sphere, but with a corrected (enhanced or reduced, respec-
tively, for unloading or loading) surface energy

P, (a) = A pd 87sz*<1 + \/_1 > )
oLy

3R

2 /
— a_ 172 2w 1+ 1
o) R E < - \/;(XKLJ ’ (o
2wy A
agry =/ TR AL (11)

is the parameter Johnson [31] introduced for the JKR adhe-
sion of a nominally flat contact having a single-scale sinu-
soidal waviness of amplitude A and wavelength A. Thus,
since Eq. (9) is JKR equation for a smooth sphere of radius
R, the factor

2
w,
Werr _ (41 (12)
Wo oy

is a roughness-induced increase that holds as long as a
compact contact area can be obtained, which requires not
too large roughness and/or sufficiently strong precompres-
sion. In practice, factors up to 20 have been obtained also
experimentally by Guduru and Bull [11], although of course,
these were achieved in geometry built for the specific goal
to achieve very large enhancement. Figure 1 elucidates the
behaviour of the oscillations in the Guduru solution for a
representative case, which we shall later extend to the vis-
coelastic solution. Given these gulfs and reentrances, in the
elastic solution, the real followed path will depend on the
loading condition. For a soft system (close to “load con-
trol””), there will be horizontal jumps in approach while in a
stiff system (close to “displacement control”), there will be
vertical jumps to the next available stable position. In both
cases, there will be areas “neglected” during these jumps
which represent mechanical dissipated energy. Indeed, in
the “envelope” solution of Kesari—-Lew—Ciavarella, the
combined effect of these jumps results in the different JKR
loading and unloading curves that give an additional hyster-
esis with respect to the standard JKR case, where the only
hysteresis comes as a single elastic instability in pull-in and
another (different) single instability at pull-off. The dashed
lines in Fig. 1 are the Kesari—-Lew—Ciavarella envelopes Eqs.
(9, 10) using Eq. ( 11).

2.1 Viscoelastic Problem

For a given remote applied withdrawing of the sphere

V= —'2—‘: , we can write the velocity of the contact edge as
follows:
da da
Vv, =——=v—.
P dt da (13)
@ Springer
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Fig.3 The load P/P, (a), the contact radius a/a; (b), and the veloc-
ity of contact line da/da =v,/v (¢) as a function of approach a/q;
for the smooth sphere. The inner black curve is the JKR classi-
cal solution, and the other five curves are obtained numerically for
V =10.0002,0.002,0.02,0.2,2] (follow the arrow). Here, n = 0.33,
and other constants as indicated in Fig. 2 caption

@ Springer

The condition G(a) = w (which replaces the thermodynamic
equilibrium G(a) = w,, for the elastic sphere), therefore,
defines a differential equation for a = a(a), obtained using
Egs. (1,2 and 13)

2 1/n
1 (Pi(@) - P) 1 _da
k'/"apv\  8rxE*a’w, "~ da

Hence, using Eq. (6) and defining the dimensionless
parameters

(14)

s)

vV =k'/n ; =
arv ¢ < RE*

we write Eq. (14) as
da 1|R/a)(a da*> LAa,, (27ma :
da _ L|\M/D (e _a  pAdy (Zra))
da Vl§3<R RZ”AR(’(A)
(16)

which can be solved with a numerical method. After a solu-
tion is obtained for a = a(a), we substitute back into Eq. (6)
to compute the load. Notice that, for a given starting point
of the peeling process in terms of load P, the term under

1/n

parenthesis in Eq. (14) is zero, and hence, Z—Z starts off zero
giving some delay with respect to the elastic curve, which is
hard to eliminate even at very low withdrawal speeds.

3 Results
3.1 Smooth Sphere

Let us first consider the detachment of a smooth sphere from
a viscoelastic substrate having n = 0.33 and dimension-
less withdrawal velocity V = [0.0002,0.002,0.02,0.2,2];
the other constants, as indicated in Fig. 2 caption, are
E* =16500 Pa; R =0.23 m; w, = 0.008 J/m?; for the gen-
eral problem with waviness, we will use 4/R = 0.002;
A/ A =0.005. However, we solve first the problem for the
smooth sphere (the equation for the smooth sphere is obvi-
ously obtained for A = 0 in the equations above), and the
obtained results are shown in Fig. 3. As we discussed in
the theory paragraph, in the initial point Z—z =0, and we
find (Fig. 3c) that the velocity remains practically zero for
a longer time when V is bigger. The velocity of the contact
line increases monotonically from zero to infinite when
pull-off occurs at zero contact area.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Fig.4 Load P/P, (a) and the contact radius a/a; (b) as a func-
tion of approach a/a;. P is JKR pull-off of the smooth sphere, and
a; the initial value of approach for unloading. The inner black wavy
curve is the equilibrium Guduru solution, and the other five curves
increasingly departing from it are obtained numerically for increasing
dimensionless velocities of withdrawal (see the verse of the arrow)
V =10.0002,0.002,0.02,0.2,2]. Here, n = 0.33, and other constants
as indicated in Fig. 2 caption

3.2 Rough Sphere

We consider here the same parameters used above, but
A/A > 0. According to Eq. (12) derived from the Guduru
theory, this corresponds to an “adiabatic” elastic enhance-
ment of the pull-off of weﬂ/ wy = 1.42. We indicate with
Py =3/2zw,R the JKR value of pull-off for the smooth
sphere. The loading curve follows the elastic solution
(Eqgs. 7, 8), and we start withdrawing the indenter from
a reference value of @; = 0.01 m. Corresponding values
of initial approach «; and load P; can, therefore, be found
from Eqgs. (7, 8). Numerical solutions are found with the
NDSolve algorithm in Mathematica with default options.
Figure 4a shows the obtained load-approach curve in terms

of P/P, and a/a; where P, is JKR pull-oft of the smooth
sphere, and Fig. 4b shows the contact radius a/a, peeling as
a function of approach. The inner black wavy curves are the
equilibrium Guduru solutions, and the other five curves are
obtained numerically for increasing dimensionless velocities
of withdrawal V = [0.0002, 0.002, 0.02, 0.2, 2]. As expected,
the viscoelastic peeling terminates only when contact radius
is zero, and not at the JKR unstable radius. However, the
minimum load is found for a contact radius which, for low
velocities, is not too different from the unstable pull-off con-
tact radius in the JKR theory.

Figure 5a—c gives some details of the solution at the lowest
dimensionless velocity of withdrawal V = 0.0002. In particu-
lar, Fig. 5a shows clearly that the numerical solution follows
closely the prediction of the Guduru elastic solution under
displacement control, as expected, with almost sharp jumps
of the force at specific values of the approach. After the jump,
the solution seems to return to the Guduru equilibrium solu-
tion. Obviously with the viscoelastic theory, the strict elastic
solution should be obtained asymptotically at extremely low
velocities, but the differential equation would then become
very “stiff” corresponding to numerical difficulties follow-
ing the jumps. The same behaviour is clarified in terms of
the contact radius in Fig. 5b, which follows very closely the
Guduru solution in some time intervals, and then extends a
little before jumping almost abruptly to the following branch
of the equilibrium curve. In other words, the curve does not
have a “rainflow” type of behaviour over the Guduru equi-
librium solution, which would be the elastic real behaviour
with jump instabilities, but the contact radius “drops” over the
Guduru curve only after some delays. This is further clarified
in Fig. Sc, where the velocity of the contact line da/da = v, /v
is found to follow an oscillatory trend with “bursts” of very
high (but finite) velocity where the peeling velocity is much
larger than the imposed withdrawing velocity, after which the
velocity drops to a low value that is where the contact area
approaches the adiabatic Guduru curve since G ~ w,,, and
which increases progressively with the decreasing approach.
Slowly, the solution departs from the Guduru elastic one,
because of the cumulative effects of the acceleration periods.
However, from Figs. 4 and 5d, we see that there are no real
“jumps”, and the solution curve is generally smoother for high
velocities, with the difference between the slow regime and
the fast regime being smaller. Notice that, while the velocity
of peeling remains in every case equal to zero at the initial
point, it remains closer to zero for a much extensive range
of approach for high velocities, resulting in a curve depart-
ing away from the equilibrium Guduru curve immediately.
This effect at high velocity produces curves that are generally
closer to the viscoelastic curves for the smooth sphere, and
therefore, closer results for pull-off and work for pull-off, as
we have described in the previous paragraph.

@ Springer
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Fig.5 Detail of the solution at the lowest dimensionless velocity of
withdrawal a—¢ V = 0.0002, and d V = 2. Here, n = 0.33, and other
constants as indicated in Fig. 2. In particular a Load-approach b con-

10.0

P/Py

Fig.6 The pull-off amplification with respect to the JKR value, P/P,
as a function of dimensionless speed of withdrawal V for various
amplitudes of waviness increasing as indicated by arrow: A/A = 0 for

3.3 Some Comparisons

Summarizing the pull-off results for » = 0.33 but adding
some solutions also at different amplitudes of roughness A,

@ Springer

(d)

tact radius vs approach ¢ velocity of contact line da/da =v,/v. d
velocity of contact line da/da = v, /v but for the highest dimension-
less speed V =2

10.0

P/Py

the smooth sphere (black), A/A = 0.005 (green),A/A = 0.015 (red),
A/ A = 0.045 (blue). Here, all constants as indicated in Fig. 2, except
an=0.33; bn = 0.6 (Color figure online)

we obtain the amplification factor for pull-off with respect
to the JKR value as in Fig. 6. Notice initially that the smooth
sphere results tend to a power-law scaling (linear in the
log—log plot) as expected from the material law Eq. (1), after

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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a transition from the elastic behaviour. As it is evident from
Fig. 6, starting off at low velocity with increasing amplitude
of roughness increases the “elastic”” amplification according
to the Guduru theory, but eventually the effect disappears at
sufficiently large peeling speeds in the viscoelastic regime.
In other words, there seems to be a “cross-over” between
the two phenomena at the speed for which the two increases
are the same. For example, in Fig. 6, the amplification factor
P/P,is shown for different A/ A = [0,0.005,0.015,0.045, n
=0.33 (a) and n = 0.6 (b). Panel (a) shows that for the very
“rough” sphere with A/A = 0.045 (blue line), the Guduru
enhancement factor is larger (=~ 7.5) than the viscoelastic
one in this velocity range. Panel (b) (n = 0.6) shows that,
increasing n, the pull-off force increases faster with the
dimensionless speed factor V, confirming our conclusion
about the cross-over. Eventually, for large speed, the smooth
sphere result is obtained. Obviously, with so many constants
in the problem, it is not easy to give comprehensive results.

4 Discussion

Considering the experiments on our geometry done by Gud-
uru and Bull [11], their gelatin material is indeed a viscoe-
lastic material. Although Guduru and Bull [11] recognized
this, unfortunately, they did not characterize the material in
particular and tried to minimize the loading rate effects by
keeping in their tensile test machine a cross-head velocity at
v = 3mm/min = 50 pm/s in all experiments. Even this speed
is not enough to avoid viscoelastic effects, as indeed even
the smooth sphere case they use for measuring the base-
line work of adhesion shows significant deviations between
loading and the unloading curves which are not present in
the standard elastic JKR theory. The unloading has specific
features similar to what we found for the smooth sphere,
namely when unloading begins, the contact radius does not
begin to decrease immediately. Fitting JKR curves, Guduru
and Bull [11] extracted w, = 0.008 N/m during loading and
wy, = 0.22 N/m during unloading, a difference of a factor
27.5. They used as baseline for their comparison with the
wavy surfaces the unloading value. Despite experimental
results capture generally the trend of the predictions, there is
a “systematic difference between the experimental observa-
tion and the theoretical prediction” as the authors say, of the
order of a—25%. A possible explanation could be the effect
observed in the present paper, namely that there is no multi-
plicative effect of roughness-induced adhesion enhancement
and viscoelasticity-induced adhesion enhancement. In other
words, as Guduru and Bull [11] used their elastic theory
with the work of adhesion already increased by viscoelastic
effects, they may have overestimated the effect of roughness-
induced load amplification.

In general, there are several reasons to assume that vis-
coelastic effects will generally dominate over roughness-
induced enhancement. Adhesion experiments with a glass
ball of radius 2.19 mm on a polyurethane surface (n = 0.6,
which incidentally is not well explained by Barenblatt mod-
els or crack tip-blunting models which start from the linear
viscoelastic constitutive equations of the material [19, 20,
22]) by Barquins and Maugis [15] showed viscoelastic
toughness Eq. ( 1) and pull-off increased by a factor of up to
3 orders of magnitude. That is the viscoelastic effect can be
very large, and therefore, generally much larger than the
geometric one studied originally by Guduru, as it has been
recently shown also for other geometries, like a dimpled
surface [32]. Also, Guduru effect only holds for a quite spe-
cial waviness (single scale, axisymmetric), when the contact
area “peels” quite uniformly around a circle and requires the
initial contact area to be compact. This poses some limits to
the amplitude of roughness, hence, the amplification factor
that can be reached (see a more general numerical solution
using Lennard-Jones force-separation law in Papangelo and
Ciavarella [33]). Regarding the non-axisymmetric effect, Li
et al. [34] numerical experiments for the pull-off of a sphere
in contact with an elastic substrate with 2-dimensional wavy
roughness, showed that the adhesion enhancement is further
much reduced. For a Johnson parameter (11) ag,; = 0.37,
they found an increase of a factor 1.7, while from Eq. (12),

valid for the Guduru axisymmetric geometry, one obtains a
2

much higherM = (1 + ﬁ) = 6.37. Numerical experi-
wo 0.

ments with random roughness suggested that this enhance-
ment is also if not more largely reduced [34].

Returning finally to the experiments of Dalvi et al. [6], the
increase of apparent work of adhesion in the smoother speci-
men (Polished UltraNanoCrystalline Diamond (PUNCD))
is of a factor 2, at the retraction speed of 60 nm/s. Given
the large amplification factors that can be obtained due to
viscoelasticity (orders of magnitude as shown by Barquins
and Maugis [15]), the factor 2 increase cannot be excluded
not even at the 60 nm/s speed. It remains to be clarified if
the latter enhancement factor obtained in Dalvi et al. [6]
experiments could be either due to area increase as from the
Persson—Tosatti [9] theory, or from a reduced Guduru effect.

5 Conclusions

We have revisited the Guduru model for roughness-induced
enhancement of adhesion of a sphere/flat contact, adding the
effect of viscoelasticity which is expected in soft materials.
The results have demonstrated that the roughness-induced
amplification of pull-off in the Guduru model, which effec-
tively can be modeled as an increased work of adhesion in
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the unloading curve, is reduced progressively when veloc-
ity increases with respect to the baseline smooth viscoe-
lastic sphere. This is also in qualitative agreement with the
original experiments of Guduru and Bull [11]. A significant
reduction has already occurred at a “cross-over” velocity
for which the two enhancements (the Guduru and the vis-
coelastic one) are of equal magnitude. We may be tempted,
therefore, to speculate that viscoelasticity effectively damps
the roughness-induced elastic instabilities, reduces rough-
ness effects in unloading, while its effects are concentrated
in the loading phase.
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