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Abstract The mechanism of drag reduction via polymer additives is long debated in the literature. This
journal published a paper (Volokh in Acta Mech 229(10):4295-4301, 2018), in which the drag reduction was
explained based on the Navier—Stokes model enhanced with the viscous strength. This explanation was limited
by a qualitative consideration of the onset of material instability in the laminar pipe flow. In the present work,
we use the theoretical setting of Volokh (2018) in 3D numerical simulations of the realistic pipe flow where
material instabilities develop into turbulence. We observe in the simulations that the addition of the polymer
solute suppresses the chaotic turbulent motion, indeed, in accordance with the experimental observations of
the phenomenon.

1 Introduction

The use of polymer additives as drag-reducing agents in turbulent flows is an economical practice and finds
remarkable engineering applications. Toms [2] first reported the phenomenon of drag reduction using small
amounts of additives to the Newtonian solvent. Since then a vast literature is available on the topic, primarily
experimental in nature. For this, we can refer to the extensive bibliographical account in [3-5]. The relevant
recent reviews can be found in [6-14].

Despite such an enormous volume of experimental works, the theoretical explanation of drag reduction has
been long debated, possibly because the process of the transition to turbulence is yet to be understood properly.
In its first explanation, Oldroyd [15] suggested that the addition of polymer caused a flow slip near the wall that
reduced the drag. However, his hypothesis was questioned by Tanner and Walters [16] as the solvent did not
slip at the boundaries. In another possible explanation De Gennes [17] suggested that the storage and release
of energy by the polymer molecules reduced the drag by reducing the momentum flux near the wall. This
argument was contested by L'vov et al. [18] and Procaccia et al. [19] stating that the microscopic contributions
of polymer energy were unlikely to change the rate of energy flux, determined by the forcing mechanism at
the macroscopic scale. L'vov et al. [18] assumed that the primary cause behind the drag reduction was the
reduction in momentum flux from the bulk to the wall and they proposed an effective viscosity function that
increased with distance from the wall. This assumption needs further investigation.

Lumley [20] observed that the added polymers made fluid particles to move less chaotically and faster
reducing the drag. Hence, it is rather important to understand the role of polymer additives in the turbulent
flow of the solvent. The polymer molecules certainly help to suppress the local flow instabilities and, thus,
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they can qualitatively explain the drag reduction via the delayed transition to turbulence of laminar pipe flows.
Reynolds number (Re = pvD/n; where p is the density, 7 is the viscosity, v is the velocity of flow, and D
is the diameter of the cross-section of the channel) [21,22] is the controlling parameter to decide whether
the pipe flow remains laminar or turbulent in nature. Although experimental observations [23-26] suggest
an approximate range of 1600 < Re.; < 3000 for the transition to turbulence, it is well established that the
standard Navier—Stokes (N-S) constitutive model ensures linear stability for the shear flow problems [27,28]
and is unable to explain the transition to turbulence. While the presence of finite perturbation has been thought
of as a possible reason for [24,29] generating kinematic instabilities of the flow, disturbances often decay along
the flow and not always necessarily cause turbulence [30]. Hence kinematic instabilities might not be adequate
for the explanation of the transition to turbulence and, perhaps, we need to account for the contribution of
material instabilities of the laminar flow. The option of material instability of the laminar flow was introduced
in [31,32] as a Navier—Stokes model enhanced with the viscous strength. The latter continuum mechanics
setting was further confirmed by molecular dynamic simulations reported in [33].

Volokh [1] used the viscous strength model to explain the drag reduction. Analytical considerations reported
in [1] are rather qualitative. In the present work, we report the results of numerical simulations of 3D pipe
flows with polymer additives. The results show, indeed, that the solute can reduce the developed turbulence.

2 Navier-Stokes model with viscous strength

The classical N-S model fails to explain the transition to turbulence in the pipe flow. Volokh [31,32] assumed
that material instabilities should be allowed by the constitutive model and he proposed the viscous strength
model (VSM). In the latter model, the shear stresses generated within the flow possess an upper cap (termed
as the ‘viscous strength’) and cease to exist as the strain rate exceeds the critical value. Once the viscous
limit is passed, the flow behaves as an ideal fluid with almost zero viscosity. During this transition from the
standard viscous Newtonian fluid flow to the ideal fluid flow, infinitesimal perturbations grow into finite ones
and initiate the transition to turbulence [31,32,34]. Remarkably, Raghavan and Ostoja-Starzewski [33] also
reported similar observations on the strength of fluids in the context of molecular dynamics.
In VSM, the flow is described by the standard law of the balance of linear momentum in the form

ov

o1 + p(gradv) - v = —gradp + divr, (D)

0

where p is the mass density; v is the velocity obeying the incompressibility condition i.e, div(v) = 0; ¢ is time;
p is the hydro-static pressure; and t is the viscous stress tensor.
The viscous stress is defined by the constitutive law

T =27*D, 2)
where 2D = gradv + gradv! and n* is the viscosity function
D:D7"

=
in which 7 is the constant viscosity of the fluid and m is a mathematical parameter dictating the sharpness of

the viscosity drop beyond the critical strain rate ¢ (see Fig. 1).
Hence

n* =nexp [—

when D : D < ¢2
n*={” 4 @

0 whenD:D > ¢

The viscosity function in Eq.4 preserves the Newtonian nature of the flow. For D : D < ¢2, the fluid
behaves in accordance with the classical N-S approach, and as D : D > ¢2, the flow exhibits ideal fluid
characteristics (still Newtonian in nature with n* = 0).

For the sake of clarification of the constitutive law, Fig. 2 shows the variation of the normalised shear stress
(?—;) with normalised strain rate (D(;‘y ) for a 2D flow between two parallel plates in the XY plane. The shear

stress (Tyy) increases with strain rate (Dyy) like a Newtonian fluid and attains maximum (termed as the *viscous
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Fig. 1 Graphical representation of the variation of viscosity with strain rate
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Fig. 2 Variation of shear stress with strain rate for a 2D flow between parallel plates

strength’ of the fluid) before dropping to zero. We can sharpen the breakdown of friction between the fluid
layers by increasing the value of m. The stress-deformation rate curve attains its maximum at

1 2m
Dyy = [m} ®, )
and, hence, in the limiting case of m — oo, the viscous strength of the fluid can be analytically obtained as
Tyy = V2ne, (6)

and, subsequently, the critical velocity becomes

V2
Uer = thﬁ- (7)
We note that for the perfectly intact viscosity, i.e. ¢ — 00, the critical velocity approaches infinity: v — 00;
the flow becomes unconditionally stable—the case of the standard Navier—Stokes formulation. While, in the

presence of the finite viscous strength, we get the limiting critical velocity: vy = limy,— oo [ﬁhd)] =

ZW
V2ho.
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Fig. 3 Axi-symmetric flow through a pipe

3 Account of polymer additives

There are various theoretical models including the effect of polymer solutes on the flow of the solvent. For
example, it is possible to add the viscous stress 77 due to the polymer additive in the linear momentum balance,
Eq. 1, as follows

ov
ot
The constitutive relationship of the polymer stress follows the Upper Convected Maxwell model (UCM)

p— + p (gradv) - v = —gradp + div(z + 7). (8)

P + 2P = G1, 9)

where A is the relaxation time; 1 is the identity tensor; and G = npkgT is the shear modulus [12], in which
np is the number of molecular sub-chains per unit volume, kg is the Boltzmann constant and 7" is the absolute
temperature.

The Oldroyd objective rate 7 in Eq.9 is defined by

v at?
™’ = T + (gradz?) v — (gradv) =7 — =7 (gradv) (10)

Based on this formulation, Volokh [1] obtained the velocity of the laminar pipe flow (see Fig. 3)

D?* —4Y% —47% dp
V== (11)
16 (n* +AG) 09X

in which we have n* — 0 for any strain rate exceeding the critical value, i.e. D : D > ¢2, and the flow is
stabilized by the polymer additive via AG term.

4 Numerical simulations of 3D pipe flow with additives

In this section, we present results of simulations of the flow through a straight cylindrical three-dimensional pipe
of 60 mm length and a uniform circular cross-section of D = 4 mm diameter (see Fig.4) with the polymeric
stress in addition to the viscous strength. The material flowing through the pipe is water with mass density
p = 1000 kg/m? and viscosity 7 = 0.001 kg/ms. The values of the viscous strength parameters m = 20, and
¢ = 848.5s~! were calibrated in [32].

We note, in passing, that the numerical simulations of the pipe flow without the polymer additives are
reported in [34].

4.1 Numerical framework

The 3D flow in the pipe is discretized with 1,514,133 nodes in the commercial software ANSYS-2021R2
[35]. Figure5 shows the mesh at a typical cross-section. The boundary of the pipe section is assumed to
be perfectly smooth to avoid any additional perturbation within the system, and the inlet is provided with a
parabolic velocity profile to ensure a fully developed flow regime. We adopt the large eddy simulation (LES)
[36] approach, which is computationally effective and can capture the transition to turbulence with reasonable



Drag reduction via polymer solute

Plane XZ 7

»|
Ll

! 15D
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Fig. 5 Discretization at a typical cross-section of the numerical model in ANSYS2021R2

Table 1 Inlet velocity (vip) and Reynolds number (Re) for numerical case studies (p = 1000 kg/m3; D = 4mm; n =
0.001 kgm~'s~1)

. 2pvin D
Load case Inlet velocity (vip) (m/s) Re = 3
n
A 0.8 2133
B 0.9 2400

accuracy. Among the available sub-grid turbulence models, we incorporate the Wall Adopted Local Eddy-
Viscosity (WALE) [37] approach, which is specifically advantageous for problems related to transitional
flows. We consider Cw = 0.325, which has been reported to ensure satisfactory results over a wide range of
Reynolds numbers [35]. The LES-WALE model of the transient pipe flow is solved within a pressure-based
solver by the bounded second-order implicit numerical scheme with a stable time increment of 1.0 e ™ s.

Table 1 lists the inlet velocities and corresponding Reynolds numbers considered in numerical examples. For
a parabolic velocity profile with peak vj, at the inlet of the pipe, an approximate estimate of the corresponding
Reynolds number (Re) can be calculated from the average velocity generated within the flow. Generally, for
laminar flow, the average flow velocity is related to the peak velocity as vy = 2vi,/3. We consider a relaxation
time A = 0.6 s and viscosity 7 = 0.001 kgm~! s~! for all the numerical problems in this paper.

4.2 Case study A
We consider the peak velocity vi; = 0.8 m/s and present a comparative study between the numerical predictions
of four different models:

1. standard Navier—Stokes model without polymer;
2. viscous strength model (VSM) without polymer: G = 0Pa;
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Standard N-S (constant viscosity)

VSM (no polymer) (G = 0)

VSM with polymer (G = 0.1 Pa)

VSM with polymer (G = 10 Pa)
Fig. 6 Profile of longitudinal velocity (v, ) profile in plane X Z (see Fig. 4) for different polymer concentrations with vi, = 0.8 m/s
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Standard N-S VSM (G =0)
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Fig. 7 Contour of longitudinal velocity (vy) profile in plane MM (see Fig.4) for different polymer concentrations with vi, =
0.8m/s

3. viscous strength model with polymer: G = 0.1 Pa;
4. viscous strength model with polymer: G = 10 Pa.

Figures 6, 7, 8 and 9 present the variation of longitudinal and transverse velocity profiles in plane X Z (see
Fig.4) along the length of the pipe for all models. The longitudinal velocity profile (Fig.6) suggests that the
standard N-S approach (1) predicts a perfectly stable laminar solution, whereas the viscous strength model
(2) predicts turbulence within the flow. By adding mixing polymer within the solution (i.e. considering the
effect of polymer shear modulus, G)—models (3) and (4)—we observe a reduction in turbulence. We can
draw a similar conclusion from the variation of transverse velocities in Figs.8 and 9, where the transverse
perturbations do not exist for the standard N-S model, and significant perturbations occur for VSM model,
which reduces with the addition of polymer. Although G = 0.1 Pa stabilises the flow, it does not completely
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Fig. 8 Profile of transverse velocity (vy) profile in plane X Z (see Fig.4) for different polymer concentrations with vj, = 0.8 m/s
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Fig. 9 Profile of transverse velocity (v;) profile in plane X Z (see Fig. 4) for different polymer concentrations with vi, = 0.8 m/s

restore the laminar nature of the flow. To further study the contribution of G, we consider the next case study
with a peak inlet velocity of 0.9 m/s.

4.3 Case study B

We increase the peak inlet velocity to 0.9 m/s with four different polymer shear moduli: G = 0, 0.1, 1.0, 100 Pa.
We present the contour maps of velocities in longitudinal and transverse directions in Figs. 10, 11, 12 and 13
for all simulation models. Figure 10 indicates that the standard N—S model (1) predicts a perfectly laminar
longitudinal flow profile, but the viscous strength model (2) exhibits a transition to turbulence in the flow. This
numerical result also fits the experiments reported in [26], in which transition to turbulence was observed at
Re= 2400.
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Fig. 10 Profile of longitudinal velocity (v, ) profile in plane X Z (see Fig. 4) for different polymer concentrations with vj, = 0.9 m/s
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Fig. 11 Contour of longitudinal velocity (v, ) profile in plane M M (see Fig.4) for different polymer concentrations with vi, =
0.9m/s
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Fig. 12 Profile of transverse velocity (vy) profile in plane X Z (see Fig.4) for different polymer concentrations with vi, = 0.9m/s
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Fig. 13 Profile of transverse velocity (v;) profile in plane X Z (see Fig. 4) for different polymer concentrations with v;, = 0.9m/s

By adding polymer with shear modulus G, it is possible to stabilize and laminarize the turbulent flow—
Fig. 10 —with a significant reduction in the transverse perturbations in the pipe—Figs. 12 and 13.

4.4 Reduction in wall shear stress

The polymer additives reduce the shear stress generated at the wall of the pipe section significantly. The
maximum wall shear stress are listed in Tables 2 and 3 for two inlet velocity cases vi; = 0.8 and 0.9 m/s. We
note—Fig. 14—that the transition to turbulence from laminar flow significantly increases the wall shear stress
when no polymer is added to the solvent. The addition of polymer reduces the drag causing a decrease in the
maximum wall shear stress. For vj; = 0.8m/s, the contribution of polymer to shear modulus of G = 0.1Pa
reduces the wall shear stress by ~ 18%. For vj; = 0.9m/s, the contribution of polymer to shear modulus of
G = 100Pa reduces the wall shear stress by &~ 47%.
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wall shear stress (Pa)
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Fig. 14 Contour of shear stress (Pa) at the wall of the pipe section with increasing amount of polymer

Table 2 Maximum wall shear stress (Pa) for vj, = 0.8 m/s

Standard N-S VSM VSM VSM
G =0Pa G =0Pa G =0.1Pa G = 10Pa
0.8 8.8 7.20 5.11

Table 3 Maximum wall shear stress (Pa) for vi, = 0.9 m/s

Standard N-S VSM VSM VSM VSM

G =0Pa G =0Pa G =0.01Pa G =0.1Pa G = 100Pa
0.9 13.68 13.12 10.86 7.12

5 Closure

In this work we numerically simulated pipe flow of water with polymer additives. Beyond the critical Reynolds
number of & 2400 the laminar flow becomes turbulent. Such transition cannot be described by the standard
Navier—Stokes model, which only accommodates kinematic instabilities of the flow. So, we used a modified
Navier—Stokes model with the finite viscous strength (VSM). The latter model accommodates both kinematic
and material instabilities of the flow and it can describe the transition to turbulence in the pipe flow observed
experimentally.

We further modified the VSM model to account for the polymer solute via additional viscous stress defined
by the Upper Convected Maxwell model. Introduction of the polymer molecules adds strengths to the laminar
flow and suppresses chaotic turbulent fluctuations. These results are the first explanation of the drag reduction
via polymer solute based on the direct 3D numerical simulations. A detailed investigation of the correlation
between the polymer shear modulus and the concentration of the solute would provide better physical insight
into the problem and it is kept for further work.
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