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A B S T R A C T

For a typical adhesive contact problem, a rigid sphere initially adhered to a relaxed viscoelastic 
substrate is pulled away from the substrate at finite speeds, and the pull-off force is often found to 
depend on the rate of pulling. Despite significant theoretical advancements in this area, how the 
apparent adhesion enhancement is affected by the Maugis parameter and preload remains un-
clear, and existing models are sometimes contentious. In this work, we revisit this adhesive 
contact problem and propose a theoretical model to predict the upper bound detachment 
behavior when the pulling speed approaches infinity. Our analysis reveals that the apparent work 
of adhesion can always be enhanced, regardless of the Maugis parameter, when the initial contact 
radius exceeds a critical threshold. Conversely, when the initial contact radius is below this 
critical value, the adhesion enhancement becomes limited and depends on both the Maugis 
parameter and the preload condition. Further model calculations suggest that the critical initial 
contact radius is dependent on the Maugis parameter. In the JKR-like regime, this critical radius 
converges to a constant value, whereas in the DMT-like regime, it diverges rapidly following an 
inverse power law with respect to the Maugis parameter. As a result, observing adhesion 
enhancement is generally more challenging in DMT-like contacts compared to JKR-like contacts. 
In the meantime, our model also suggests that the adhesion enhancement arises from the 
expansion of the cohesive zone area due to the viscoelastic properties of the material not only 
within the cohesive zone but also in the intimate contact zone. Overall, our findings offer a more 
comprehensive understanding of viscoelastic effects in adhesive contacts, which can be used to 
rationally predict or optimize adhesion strength in viscoelastic interfaces.

1. Introduction

Adhesion is ubiquitous in both natural and engineering systems, and the strength of adhered interfaces is often critical for their 
functionality and integrity (Kendall, 2001). The strength of an adhered interface is typically measured by the maximum tensile force 
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required to separate the joint, known as the pull-off force. For two elastic bodies with axisymmetric profiles interacting through an 
adhesive interface, several theoretical models have been developed to describe their mechanical behavior. Assuming that the adhesive 
forces are only present within the contact area, the Johnson-Kendall-Roberts (JKR) model (Johnson et al., 1971) predicts the pull-off 
force to be PJKR = 1.5πRw, where R is the equivalent radius of curvature (which depends on the radii of curvature of two contacting 
bodies as in Hertz theory) and w is the work of adhesion. In contrast, adopting a Hertzian type contact profile and taking account of the 
additional attractive interactions outside the area of contact, the Derjaguin-Muller-Toporov (DMT) model (Derjaguin et al., 1975) 
predicts the pull-off force to be PDMT = 2πRw. These two seemingly contradicting models were later found to be able to transit from one 

to the other by introducing a non-dimensional parameter μ =
[
Rw2/

(
E∗2h3

0

)]1/3
, where E∗ is the effective plane strain elastic modulus 

and h0 is the equilibrium distance of the adhesive interactions (Tabor, 1976). For stiff solids with small radii and low adhesion energies 
(μ ≪ 1), the DMT model is applicable. In contrast, for soft solids with large radii and high adhesion energies (μ ≫ 1), the JKR theory is 
more appropriate. The transition from the DMT regime to the JKR regime was also examined by Maugis by adopting a Dugdale 
cohesive zone model (Maugis, 1992), where the system behavior is controlled by a non-dimensional parameter similar to the Tabor 
parameter, λ = 2σ0 /

(
πwχ2/R

)1/3, where χ = 4E∗ /3 and σ0 denotes the adhesive strength. For all these classical theories, the pull-off 
force of an axisymmetric adhesive contact system would range from 1.5πRw to 2πRw, exhibiting only weak dependence on the 
elasticity of the contacting bodies.

In contrast to the quasi-static theories, the strength of adhered interfaces is often found to be significantly influenced by the pulling 
speed in the experiments, especially when viscoelastic materials are involved. Typically, one observes stronger apparent interface 
adhesion when the pulling speed is faster (Chen et al., 2013; Das and Chasiotis, 2021; Feng et al., 2007; Liang et al., 2020; Lorenz et al., 
2013; Maghami et al., 2024b; Meitl et al., 2006; Peng et al., 2014; Petroli et al., 2022; Vandonselaar et al., 2023; Violano et al., 2021b; 
Yin et al., 2024). Early study on the rate effect of the interface adhesion can be traced back to a series of peeling experiments in the 
1970s, where the apparent work of adhesion was found to be enhanced with increasing peeling speeds (Gent and Schultz, 1972; Maugis 
and Barquins, 1978). Such speed dependence is commonly described by the empirical Gent-Schultz law, wapp(vc) = w[1 + β(aTvc)

n
], 

where w is the intrinsic work of adhesion, vc is the velocity of the interfacial crack, aT is Williams-Landel-Ferry shift factor (Williams 
et al., 1955), β and n are material parameters. Owing to its simplicity, the Gent-Schultz law has been widely used in analyzing the 
viscoelastic adhesive contact problems by simply replacing the work of adhesion w with the apparent work of adhesion 
wapp(Ciavarella, 2021; Muller, 1999; Violano et al., 2021a; Wang and Liu, 2024). Despite the success in capturing the rate dependence, 
the phenomenological models fall short in providing an physical explanation, and their applicability is typically limited to the 
experimental data available for fitting (Lorenz et al., 2013; Peng et al., 2014; Petroli et al., 2022; Violano et al., 2021b, c).

Because the decohesion process of an adhesive interface involves propagation of the interfacial crack, the rate dependent adhesion 
behavior can be understood in the context of viscoelastic fracture mechanics. For a semi-infinite crack growing steadily in an infinite 
linear viscoelastic solid, Knauss (1973) formulated an expression for the crack opening displacement based on a left-trapezoid cohesive 
zone model and established a relationship between the apparent fracture toughness and the crack propagation speed. Schapery 
revisited this problem in a series of papers (Schapery, 1975a, b, c), where he introduced the concept of effective compliance and 
derived an approximate yet analytical expression for the apparent fracture toughness. Later, a numerical but exact solution was 
proposed by Greenwood ( 2004) based on the classic three-element viscoelastic solids and the Dugdale cohesive zone model. Besides 
the cohesive zone model approach, viscoelastic fracture can also be examined from an energy balance perspective. By considering 
equilibrium between the work by the applied load and the bulk dissipation due to viscoelasticity and the energy related to the creation 
of new surfaces, de Gennes obtained a dissipation scaling law semi-qualitatively (de Gennes, 1996). This scheme was further developed 
by Persson and Brener, who derived an analytical expression for the apparent fracture toughness as a function of crack propagation 
speed by assuming a linear elastic K-field (Persson and Brener, 2005). Although the energy based models seem different from the 
cohesive zone models, it has been found that these two types of approaches can give consistent results if the size of the cut-off radius 
adopted in the Persson-Brener theory is properly chosen (Afferrante and Violano, 2022; Ciavarella et al., 2021; Hui et al., 2022; 
Persson, 2021). Furthermore, both types of theories predict that the apparent fracture toughness at very high crack speeds Γ∞

app would 
be amplified to a value that is determined by the ratio between the instantaneous and relaxed moduli of the viscoelastic materials, i.e. 
Γ∞

app /Γ0 = EI /ERwhere Γ0 is the intrinsic fracture toughness. This theoretical amplification factor is valid for semi-infinite cracks, but 
finite size effects may strongly reduce it even considering infinite crack speed (Maghami et al., 2024a).

The relationship between the apparent fracture toughness and the crack propagation speed can be extended to explain the rate 
effect in the viscoelastic adhesion. Greenwood and Johnson examined the rate-dependent adhesion between a viscoelastic sphere and a 
rigid plane based on the fracture mechanics approach (Greenwood and Johnson, 1981). Specifically, by invoking Schapery’s effective 
compliance to calculate the crack opening displacement, they attributed the enhanced adhesion at high loading rates to the extension 
of the cohesive zone. Later, Johnson and coworkers (Johnson, 1999; Johnson and Greenwood, 2002) worked out the apparent work of 
adhesion wapp for opening and closing interfacial cracks under a constant loading rate, where they found that the maximum 
enhancement for the pull-off force could be up to a factor of (EI /ER). In their derivations, the bulk material exhibits a relaxed modulus, 
while the material around the cohesive zone is deformed with an instantaneous modulus. Such treatment is based on the implicit 
assumption that the cohesive zone size is much smaller than the contact radius, placing it withinthe JKR-like regime. However, using 
finite element method (FEM) simulations, Lin and Hui showed that such assumption might break down even in the JKR-like regime if 
the loading rate is fast enough such that the bulk deformation rate is comparable to the viscoelastic relaxation rate (Lin and Hui, 2002). 
Barthel and coworkers have also developed theories for viscoelastic adhesion problems by considering either the JKR-like regime 
(Barthel, 2008; Barthel and Haiat, 2002) or a more general contact configuration (Haiat et al., 2003). However, their derivations are 
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mathematically complex, which significantly limits their applications.
Recently, Das and Chasiotis revisited the contact problem of a rigid sphere being retracted from a fully relaxed viscoelastic substrate 

at a finite speed by extending the Maugis-Dugdale model with an apparent work of adhesion (Das and Chasiotis, 2021). They found 
that the pull-off force would monotonically increase with the retraction rate and saturate at an amplification factor of (EI /ER) at an 
infinite speed. Moreover, their model predicts that the adhesion enhancement is independent of the initial contact radius a0 and the 
Maugis parameter λ. In contrast to the Das-Chasiotis approach, Ciavarella used the Schapery effective compliance to incorporate the 
viscoelastic effect in the Maugis-Dugdale model (Ciavarella, 2022; Ciavarella et al., 2023). The model calculations by Ciavarella show 
that increasing the loading rate does not necessarily lead to stronger apparent adhesion; instead, the adhesion enhancement is 
dependent on the Maugis parameter. In the JKR-like regime (λ > 100), the pull-off force increases monotonically with the loading rate, 
eventually reaching a plateau at an amplification factor of (EI /ER). However, in the DMT-like regime (λ < 0.1), increasing the loading 
rate does not enhance the pull-off force. The lack of adhesion enhancement in the DMT-like regime is qualitatively consistent with the 
FEM simulations by Violano and Afferrante (2022a), where the loading rate was found to have little effect on the pull-off force for 
systems with long-range adhesive interactions. However, in the FEM simulations (Jiang et al., 2021; Violano and Afferrante, 2022b) 
and boundary element method (BEM) simulations (Maghami et al., 2024b), the enhanced pull-off force in cases of short- or mid-range 
adhesive interactions can be significantly affected by the initial contact radius, which is not captured by the existing theoretical 
predictions (Ciavarella, 2022; Ciavarella et al., 2023; Das and Chasiotis, 2021).

In summary, for the typical viscoelastic adhesive contact problem, where an indenter initially adhered to a fully relaxed viscoelastic 
substrate is then retracted at finite speeds, two fundamental questions remain unresolved despite the extensive studies. First, how does 
the enhancement of the apparent adhesion depend on the Maugis parameter? Should we expect an enhanced apparent adhesion at high 
loading rates in the DMT-like regime? Second, for those cases showing enhanced apparent adhesion, how does the adhesion 
enhancement depend on the preload? To address these questions, we will revisit the detachment behavior of the aforementioned 
system. To make the problem more tractable while still being able to address the above key questions, we will focus on an upper bound 
analysis in the present paper, examining the detachment behaviors when the retracting speed is infinitely large. The cases involving 
finite loading speeds will be discussed in a separate paper later. In this work, we will first propose a theoretical model to describe the 
rate-dependent detachment behavior based on the Barthel framework (Haiat et al., 2003) and Maugis-Dugdale contact configuration 
(Maugis, 1992). We will then examine the dependence of the apparent work of adhesion on the Maugis parameter and preload 
conditions, followed by a discussion of our findings in the context of existing predictions in literature. Finally, our model predictions 
will be validated through boundary element method (BEM) simulations.

Fig. 1. (a) Model Setup: a rigid sphere, initially compressed to adhere to a fully relaxed viscoelastic substrate, is then retracted at an infinite speed. 
(b) The separation-traction law of the Dugdale-type cohesive zone model. (c) Typical relaxation and creep functions with k = 0.05.
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2. Theoretical model

In this work, we consider the adhesive contact problem between a rigid sphere and a viscoelastic substrate. As depicted in Fig. 1 (a), 
a rigid sphere of radius R is first slowly pressed into a viscoelastic substrate under a normal force P0, resulting in an initial contact 
radius a0, an outer radius of the cohesive zone c0, and an indentation displacement δ0. The sphere is then retracted from this relaxed 
viscoelastic substrate at an infinite speed until full detachment. It is assumed that the contact interface is frictionless and the adhesive 
interactions can be described by the Dugdale cohesive zone model where a constant traction σ0 exists within a critical distance δc, as 
shown in Fig. 1 (b). In our model, the viscoelastic substrate is assumed to be linear viscoelastic and the stress-strain relations can be 
determined as follows: 

σ(t) =
∫ t

− ∞
dτ ⋅ ψ(t − τ) dε(τ)

dτ , (1) 

and 

ε(t) =
∫ t

− ∞
dτ ⋅ ϕ(t − τ) dσ(τ)

dτ , (2) 

where ψ(t) is the relaxation function and ϕ(t) is the creep compliance function. Similar to the previous studies (Afferrante and Violano, 
2022; Ciavarella, 2022; Greenwood and Johnson, 1981; Violano and Afferrante, 2022a), a three-element standard linear solid is 
adopted for the viscoelastic substrate. The relaxation function and creep compliance function are 

ψ(t) = ER

[

1+

(
1 − k

k

)

exp
(

−
t

kτ0

)]

, (3) 

and 

ϕ(t) =
1
ER

[

1 − (1 − k)exp
(

−
t

τ0

)]

, (4) 

where ER is the relaxed modulus, k is the relaxed-to-instantaneous modulus ratio and τ0 is the characteristic relaxation time. The 
typical relaxation and creep curves for a three-element standard linear viscoelastic solid are schematically shown in Fig. 1 (c).

The formulation of our model is based on the framework proposed by Barthel and his coworkers (Haiat et al., 2003). For 
axisymmetric contact problems, two auxiliary functions of the Abel type integral transforms can be defined as: 

g(r) =
∫ ∞

r
ds ⋅

− sσ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s2 − r2

√ , s > r, (5) 

and 

θ(r) =
d
dr

∫ r

0
ds ⋅

su(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − s2

√ , s < r, (6) 

where σ(r) is the normal stress along the contact interface (positive values represent tensile stress), and u(r) the surface displacement in 
the normal direction (positive values indicate downward). The inverse of the above two auxiliary functions are: 

σ(r) = 2
π

∫ ∞

r
ds ⋅

gʹ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s2 − r2

√ , s > r, (7) 

and 

u(r) =
2
π

∫ r

0
ds ⋅

θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − s2

√ , s < r. (8) 

For the viscoelastic problem considered in this work, the relationship between the two auxiliary functions are 

g(r, t) = KR

∫ t

− ∞
dτ ⋅ ψ(t − τ) ∂

∂τ θ(r, τ), (9) 

and 

θ(r, t) =
1
KR

∫ t

− ∞
dτ ⋅ ϕ(t − τ) ∂

∂τ g(r, τ), (10) 

where KR = E∗
R /2, E∗

R = ER/
(
1 − ν2) is the plane strain modulus, ν is the Poisson’s ratio and ψ(t) = ψ(t) /E∗

R and ϕ(t) = ϕ(t) ⋅ E∗
R are the 

non-dimensional relaxation and creep compliance functions, respectively. Given that the initial state is fully relaxed, we have g0(r) =

KRθ0(r), where g0(r) and θ0(r) are the auxiliary functions at t = 0, i.e. the moment right before the retraction starts. Then, during the 
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retraction process, Eqs. (9) and (10) can be written as 

g(r, t) = g0(r) + KR

∫ t

0
dτ ⋅ ψ(t − τ) ∂

∂τ θ(r, τ), (11) 

and 

θ(r, t) = θ0(r) +
1
KR

∫ t

0
dτ ⋅ ϕ(t − τ) ∂

∂τ g(r, τ). (12) 

The governing equations for the system can be derived by considering the following conditions:

2.1. Continuity of the auxiliary functions

At any time t during the detachment process, the corresponding indentation depth is denoted by δ, the contact radius is a and the 
outer radius of the cohesive zone is c. Within the contact zone, the surface of the substrate is deformed to match the profile of the 
indenter. Therefore, the displacement u(r) can be determined as 

u(r) = δ −
r2

2R
,0 ≤ r ≤ a. (13) 

Here, we approximated the shape of the sphere using a parabola by assuming a ≪ R. Following Eq. (6), the function of θ is 
determined to be 

θ(r) = δ −
r2

R
,0 ≤ r ≤ a. (14) 

Considering the upper bound behavior associated with a rapid detachment, we set t→0. In this case, Eq. (11) is simplified as 

g(r) = g0(r) +
KR

k
[θ(r) − θ0(r)],0 ≤ r ≤ a, (15) 

where θ0(r) = δ0 − r2 /R and g0(r) = KRθ0(r). Meanwhile, since the interfacial stress has a constant value σ0 within the cohesive zone, 
the function g can be obtained from Eq. (5) as 

g(r) = − σ0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − r2

√
, a ≤ r ≤ c. (16) 

Considering the continuity of g at r = a, we can obtain the first governing equation from Eqs. (15) and (16) as 

δ + (k − 1)δ0 =
ka2

R
−

kσ0

KR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√
. (17) 

2.2. Balance of the forces

Considering the force balance of the sphere, we have 

P +

∫ c

0
dr⋅2πrσ(r) = 0, (18) 

where P is the normal force (positive values correspond to compression, while negative means tension) and σ(r) is the interfacial stress. 
Invoking the function of g, one gets 

P = 4
∫ c

0
dr ⋅ g(r). (19) 

Substituting Eqs. (15) and (16) into Eq. (19), we obtain 

P =
4KRa

k
[δ+(k − 1)δ0] −

4KR

3
a3

R
− 2σ0a2

(
m2 ⋅ arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ )
, (20) 

where m = c /a.

2.3. Critical opening displacement at the edge of the cohesive zone

As the sphere detaches from the substrate, both the contact zone and the cohesive zone contract towards the center of the contact. 
Particularly, the gap between the upper and lower surfaces of the interface at the outer edge of the cohesive zone remains at the critical 
value of δc, i.e. 

h(c) = δc, (21) 
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where h is the interfacial gap. For the Dugdale-type cohesive zone, the critical gap for imminent separation can be expressed as δc =

w /σ0. Considering the geometry of the sphere and the surface displacement, one can calculate the interfacial gap as 

h(c) = − δ +
c2

2R
+ u(c), (22) 

where u(c) is the surface displacement at r = c. According to the inverse of θ function, u(c) can be determined from 

u(c) =
2
π

∫ c

0
ds ⋅

θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − s2

√ . (23) 

Since the expression of θ function in the contact zone 0 ≤ s ≤ a is given by Eq. (14), Eq. (23) can be rewritten as 

u(c) =
2
π

[

δarcsin
a
c
−

1
2R

(
c2arcsin

a
c
− a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√ )]

+
2
π

∫ c

a
ds ⋅

θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − s2

√ . (24) 

Substituting Eq. (24) into Eq. (22) yields 

h(c) =
2

πR

[
a
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√
+

(
c2

2
− a2

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]

−
2
π

(

δ −
a2

R

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+

2
π

∫ c

a
ds ⋅

θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − s2

√ . (25) 

Calculation of the last term on the right-hand side of Eq. (25) needs the expression of θ(s) in the cohesive zone a ≤ s ≤ c. Due to the 
viscoelastic nature, θ(s) will depend on the loading history of the system, which requires a detailed examination on the interfacial 
debonding process. As illustrated in Fig. 2, starting from the initial state (a = a0,c = c0), both a and c begin to decrease as the sphere is 
retracted from the substrate. During the early stage, referred to as Stage-I, c remains larger than a0 and the cohesive zone can be 
divided into two regions: a ≤ s ≤ a0 and a0 ≤ s ≤ c.

In the region a0 ≤ s ≤ c, the upper and lower surfaces are continuously separated with a constant adhesive stress σ0. Because the 
stress is known, one can calculate g function in this region using Eq. (16) and then covert it to θ function using Eq. (12). It is noted that, 
for the upper bound limit with an infinite retraction speed, Eq. (12) can be further simplified to 

θ(r) = θ0(r) +
k

KR

[
g(r) − g0(r)

]
. (26) 

Therefore, substituting Eq. (16) into Eq. (26), we obtain θ(s) in the region a0 ≤ s ≤ c as 

θ(s) =
k

KR
g(s) +

1 − k
KR

g0(s), a0 ≤ s ≤ c, (27) 

where g0(r) = − σ0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c2
0 − r2

√

.
In the region a ≤ s ≤ a0, the loading history of the interface is more complicated. Initially, the interface lies within the contact area. 

As detachment begins, the upper and lower surfaces become separated and enter the cohesive zone. Similar to the region a0 ≤ s ≤ c, g 
function in this region can be obtained from Eq. (16). According to the Eq. (26), we can also determine the θ function in this region. 
Therefore, θ(s) is determined as follows 

θ(s) =
k

KR
g(s) + (1 − k)θ0(s), a ≤ s ≤ a0, (28) 

Fig. 2. A schematic diagram showing the evolution of the contact and cohesive zones during the interfacial crack propagation.

Q. Wang et al.                                                                                                                                                                                                          Journal of the Mechanics and Physics of Solids 196 (2025) 106028 

6 



where θ0(r) = δ0 − r2 /R. It is worth mentioning that reducing Eq. (12) to Eq. (26) is only applicable for the upper bound limit when the 
retraction speed is infinitely large. If the retraction rate is finite, the treatment is much more complicated, which will be addressed 
separately in a future paper.

Therefore, by invoking Eqs. (27), (28) and (25), the critical gap condition at the edge of the cohesive zone for Stage-I becomes 

2
πR

[
a
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√
+

(
c2

2
− a2

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]

−
2
π

(

δ −
a2

R

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+

2
π

σ0

KR
k(a − c)

+
2

πR
(1 − k)

[(

δ0 −
c2

2

)(
arcsin

a0

c
− arcsin

a
c

)]

+
2

πR
(1 − k)

(
1
2
a0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c2 − a2
0

√

−
1
2

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√ )

+
2
π

σ0

KR
(k − 1)c0

[

EllipticE
(

π
2
,
c2

c2
0

)

− EllipticE
(

arcsin
a0

c
,
c2

c2
0

)]

=
w
σ0

, (29) 

where EllipticE(α, p) =
∫ α

0 dx ⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − psin2x
√

is the elliptic integral of the second kind. A more detailed derivation of Eq. (29) can be 
found in Appendix A.

As the retraction proceeds, a and c continue to decrease, entering a second stage where c ≤ a0 (referred to as Stage-II). As illustrated 
in Fig. 2, the whole cohesive zone initially lies within the contact zone in Stage-II. Therefore, the corresponding θ(s) is determined by 
Eq. (28), and the governing equation at this stage becomes 

2
πR

[
a
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√
+

(
c2

2
− a2

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]

−
2
π

(

δ −
a2

R

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+

2
π

σ0

KR
k(a − c)

+
2

πR
(1 − k)

[(

δ0 −
c2

2

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
−

1
2

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√ ]

=
w
σ0

. (30) 

2.4. Non-dimensionalization of the governing equations

Following the non-dimensional formulations by Maugis (1992), we define the dimensionless contact radius A, dimensionless outer 
radius of the cohesive zone C, dimensionless penetration Δ, dimensionless normal force P, and the Maugis parameter λ, as follows 

A =
a

(
πwR2

χ

)1/3, (31) 

C =
c

(
πwR2

χ

)1/3, (32) 

Δ =
δ

(
π2w2R

χ2

)1/3, (33) 

P =
P

πwR
, (34) 

λ =
2σ0

(
πwχ2

R

)1/3, (35) 

where χ = 8KR /3. The first two governing equations can be written in a non-dimensional form as 

Δ + (k − 1)Δ0 = kA2 −
4
3

kλA
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
, (36) 

P =
3A
2k

[Δ + (k − 1)Δ0] −
1
2
A3 − λA2

(
m2arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ )
. (37) 

The third governing equation in the Stage-I (C ≥ A0) becomes 
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λA2

2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+
(
m2 − 2

)
arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]
− λ
(
Δ − A2)arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+

4
3

λ2k(A − C)

+λ(1 − k)
[(

Δ0 −
C2

2

)(

arcsin
A0

C
− arcsin

A
C

)

+
1
2
A0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2 − A2
0

√

−
1
2

A
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2 − A2

√ ]

+
4
3

λ2(k − 1)C0

[

EllipticE

(
π
2
,
C2

C2
0

)

− EllipticE

(

arcsin
A0

C
,
C2

C2
0

)]

= 1

. (38) 

While, in the Stage-II (C ≤ A0), it becomes 

λA2

2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+
(
m2 − 2

)
arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]
− λ
(
Δ − A2)arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+

4
3

λ2k(A − C)

+λ(1 − k)
[(

Δ0 −
C2

2

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
−

1
2

A
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2 − A2

√ ]

= 1

. (39) 

The above governing equations can be solved numerically through the computational procedure explained in Appendix B.

3. Results

In contrast to the elastic system, whose response is solely governed by the Maugis parameter λ, the behavior of the viscoelastic 
system is further affected by the ratio of the relaxed to instantaneous moduli, k, and the initial contact conditions, such as a0 and δ0. It is 
noted that, for the initial relaxed state, δ0 is correlated to a0 through the elastic Maugis-Dugdale model. In order to explore the in-
fluences of these three parameters and to identify possible mechanisms for the apparent adhesion enhancement (if there are any), the 
detachment behaviors of the viscoelastic systems will be first presented in two typical regimes in this section. A more general dis-
cussion will be followed in a later section. Specifically, in this section, we will calculate the unloading curves from different initial 
contact conditions for systems with either a very large λ value (the JKR-like regime) or a very small λ value (the DMT-like regime). In 
our calculations, the ratio of the relaxed to instantaneous moduli is kept at k = 0.05, unless otherwise specified.

3.1. JKR-like regime

To explore the behavior in the JKR-like regime, we calculated the responses for a system with the Maugis parameter of λ = 100. It is 
noted that the Maugis parameter defined in Eq. (35) is based on the relaxed modulus. Fig. 3 (a) and (b) are the calculated unloading 
curves of P ∼ A and P ∼ Δ, where the different colors represent the responses with different initial contact radii A0 = [1,2,3,4,5]. It is 
noted that the unloading curves in the figure depict the process from the initial contact state all the way to the point of interfacial 
instability under displacement control condition (i.e., when the governing equations no longer have real solutions). In each calculated 
curve, the Stage-I response is represented by a solid-line segment, while Stage-II response is shown by a dashed-line segment. For better 
comparison, we also included the elastic Maugis-Dugdale solution in the figures.

From the unloading curves, one can clearly see that the detachment process depends on the initial contact conditions. To illustrate 

Fig. 3. (a) Variation of P with A, and (b) variation of P with Δ for different values of initial contact radius in the JKR-like regime (λ = 100). The 
solid and dashed lines represent the responses in Stage-I and Stage-II, respectively, while the dash-dot curve in (a) indicates the Stage-II mas-
ter curve.
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the response of the system during the detachment process, we will first focus on cases where the initial contact radius is relatively large 
(say A0 > 3). Taking the case of A0 = 4 as an example, one can see that the detachment process involves two stages. In Stage-I, when 
the detachment initiates, the normal force decreases rapidly compared with the elastic case. The pronounced decrease can be 
attributed to the unloading of the Hertzian contact zone according to the instantaneous modulus. As the detachment proceeds, C 
reduces to be less than A0 and the system enters Stage-II, where A continues to decrease until the interface becomes unstable and fully 
detached under displacement control. During this process, the normal force P initially decreases, reaching a maximum negative 
(tensile) value Pmin, and then its absolute value decreases again until Δ reaches the minimum value. It is noted that the maximum 
tensile force may occur while the indentation depth remains positive. This unique behavior can be understood as follows: When the 
indenter is rapidly retracted, the viscoelastic substrate does not have sufficient time to fully recover from its initial deformation. As the 
deformation of the substrate lags behind the indenter’s motion during its rapid retraction, the interface starts to separate, leading to 
enhanced adhesion even while the overall indentation depth is still positive. The magnitude of the maximum tensile force, |Pmin|, is 
defined as the pull-off force. According to Fig. 3 (a), we notice that the unloading curves P ∼ A with different A0 all converge to a single 
curve as the system enters Stage-II. Such behavior is not unexpected and can be explained as follows. By substituting Eq. (36) into Eqs. 
(37) and (39) and simplifying the expressions, we can get 

P = A3 − λA2
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m2 − 1
√

+m2arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ )
(40) 

and 

k
λA2

2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
+
(
m2 − 2

)
arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]
+ k

4λ2A
3

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
⋅ arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√
− m + 1

)
= 1 . (41) 

Therefore, once the system enters Stage-II, the unloading curve P ∼ A is fully determined by Eqs. (40) and (41), which are both 
independent of the initial contact conditions. This Stage-II master curve is shown as the dash-dot curve in Fig. 3 (a). By examining the 
Stage-II master unloading curve, we observe that the pull-off force under rapid loading will be enhanced by a factor up to (1 /k)
compared with the elastic case (see the maximum tensile point marked by a star). Here, the maximum adhesion amplification factor 
(1 /k) can only be achieved when the initial contact radius is large than a critical value Ac (in the example case here, Ac = 3.11). If the 
initial contact radius is relatively small, e.g. A0 = 2, the corresponding unloading curve in Stage-II will not pass through the maximum 
tensile point. As a result, the adhesion amplification will be reduced and will depend on the specific value of the initial contact radius. If 
the contact radius is even smaller, e.g. A0 = 1, the system will become unstable at the end of Stage-I without entering Stage-II. In this 
case, the pull-off force will also depend on the specific value of the initial contact radius.

To explore the amplification mechanism, we took A0 = 4 as an example again and analyzed the variations of the contact and 
cohesive zones at different moments during the detachment process. As shown in Fig. 4 (a), as the detachment progresses, both A and C 
decrease monotonically, but the normalized area of the annular cohesive zone, π

(
C2 − A2), increases notably, especially during Stage- 

I. To better visualize this effect, we plotted the profiles of the sphere and the substrate at both the initial moment and the pull-off 
moment in Fig. 4 (b) and (c). One can see that the size of the cohesive zone at the moment of pull-off under a rapid loading is sub-
stantially larger than its initial state. This increase in the cohesive zone can also be understood from the fracture mechanics point of 
view. It is known that the size of the process zone near a crack tip is proportional to the square of the critical value of stress intensity 
factor K2

Ic, which in turn is proportional to the elastic modulus of the material (Ciavarella et al., 2021; Greenwood and Johnson, 1981). 
For the interfacial crack formed during the detachment process, the effective modulus of the substrate at high speeds becomes (1 /k)

Fig. 4. (a) Variations of the contact radius A, outer radius of the cohesive zone radius C, and the normalized cohesive zone area with indentation Δ, 
in the case of A0 = 4. (b) Interface profile at the initial moment. (c) Interface profile at the pull-off moment.
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times the relaxed value, thus the size of the cohesive zone is amplified accordingly.

3.2. DMT-like regime

For the DMT-like regime, we also calculated the unloading curves P ∼ A and P ∼ Δ for a system with the Maugis parameter λ = 0.01 
using different initial contact radii. To better illustrate the system responses, we will discuss the results under two scenarios. The first 
scenario involves cases with relatively small initial contact radii, where the entire detachment process is restricted to Stage-I. The 
second scenario involves cases with relatively large initial contact radii, where the detachment process includes both Stage-I and Stage- 
II.

For the first scenario, we calculated the unloading curves P ∼ A and P ∼ Δ for systems with relatively small initial contact radii, i.e. 
A0 = [1,2, 3,4, 5] and plotted them in Fig. 5 (a) and (b). In contrast to the JKR-like regime, the P ∼ A curves in the DMT-like regime 
closely follow the elastic solution, and the enhancement of the pull-off force remains mild when the initial contact radius varies from 1 
to 5. However, because the contact zone still unloads with the instantaneous modulus, the normal load drops rapidly upon retraction of 
the indenter sphere, as shown in Fig. 5 (b).

To better understand the system responses shown in Fig. 5 (a), (b), we took the case of A0 = 4 as an example and plotted the 
variations of A and C during the detachment process. As shown in Fig. 6 (a), the initial outer radius of the cohesive zone C0 is 
significantly larger than the contact radius A0, which is a typical feature of the DMT-like contacts. Upon retraction of the sphere, the 
contact radius A rapidly decreases due to unloading of the contact zone with the instantaneous modulus. However, the outer radius of 
the cohesive zone C and the cohesive zone area π

(
C2 − A2) remain nearly constant, even when A is reduced to zero. This process is 

better visualized when the profiles of the interface at the initial moment and the pull-off moment are plotted in Fig. 6 (b) and (c). The 
insignificant change in the cohesive zone area essentially explains why the P ∼ A curves are close to the elastic solution. For this 
scenario, because C barely changes during the detachment process, the pull-off force can be approximated by |Pmin| ≈ πσ0c2

0, or |
Pmin| ≈

1
2 πλC2

0 in the non-dimensional form. For the DMT-like contacts, the initial outer radius of the cohesive zone can be determined 

as C0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4/(πλ) + 2A2
0

√

(detailed derivations are provided in Appendix C). Therefore, the pull-off force can be estimated as |Pmin| =

2 + πλA2
0. This expression suggests that, as long as the system has a finite initial contact radius, i.e. A0 ≥ 0, the normalized pull-off 

force would be enhanced by an amount of πλA2
0. However, because λ is small for the DMT-like contacts, the enhancement is mini-

mal if the initial contact radius is not too large. Previous literature has demonstrated that, in the limit of long-range adhesion (i.e. the 
DMT-like regime), the unloading rate has little effect on the pull-off force. Our model clarifies the underlying mechanism for this 
phenomenon (Ciavarella, 2022; Violano and Afferrante, 2022a).

If the initial contact radius is sufficiently large, the detachment process in the DMT-like regime can also progress Stage-II. Based our 
calculations, we found that for the system with λ = 0.01 and k = 0.05, the critical initial contact radius is approximately Ac ≈ 50. To 
illustrate the system responses for this second scenario, we plotted the unloading curves P ∼ A and P ∼ Δ with the initial contact radius 
A0 = [60, 70,80] and showed them in Fig. 7 (a) and (b). Because of the large initial contact radius, the magnitude of the normal load has 
a very large range in Fig. 7 (a) and (b). To better illustrate the differences among the curves and the transition behavior, we included 
two zoom-in plots in the insets of Fig. 7 (a) at A ∼ 50 and at A ∼ 0. Similar to the JKR-like regime, once the system enters Stage-II all 
the unloading P ∼ A curves converge to a master curve, which gives a pull-off force of PDMT/k with an amplification factor of (1 /k).

To understand the mechanism of the adhesion enhancement in this scenario, we again plotted the variation of A and C during the 
detachment process for the case of A0 = 70 in Fig. 8 (a). One can see that the detachment process indeed goes through two stages. In 
Stage-I (C ≥ A0), C reduces slowly but A decreases rapidly. In Stage-II (C ≤ A0), both C and A noticeably decrease, but the reduction 

Fig. 5. (a) Variation of P with A, and (b) variation of P with Δ for relatively small values of initial contact radius, A0 = [1,2,3,4,5], in the DMT-like 
regime (λ = 0.01). The solid and dashed lines represent the responses in Stage-I and Stage-II, respectively.
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speed of A is still much larger than C. By comparing the interface profiles at the initial moment and the pull-off moment in Fig. 8 (b) and 
(c), one can see that the enlarged cohesive zone area at the moment of pull-off is due to the crater shape of the substrate. The concave 
surface of the substrate increases the effective radius of curvature of the contact, thereby enhancing adhesion. By considering the 
viscoelastic deformation of the substrate at the moment of pull-off, we can calculate the effective radius of curvature between the 
sphere and the substrate, which turns out to be R/k (detailed derivations are provided in Appendix D). The enlarged radius of curvature 
will enhance the pull-off by a factor of (1 /k), which is consistent with our model prediction.

4. Discussions and validations

4.1. Influences of the Maugis parameter and the initial contact state

As revealed in Section 2, the system response during the detachment process depends on both the Maugis parameter and the initial 
contact state. To quantify the effects of these two parameters on the apparent adhesion enhancement, we calculated the pull-off forces 
for a viscoelastic system with k = 0.05 while systematically varying the Maugis parameter (from 0.001 to 100) under different initial 
contact radii. As shown in Fig. 9 (a), if the initial contact radius is sufficiently large (e.g. A0 = 200), the pull-off force will always be 
amplified by a factor of (1 /k) regardless of the Maugis parameter. In other words, the normalized pull-off force will change gradually 
from PJKR/k to PDMT/k as the system transit from the JKR-like regime to the DMT-like regime. However, if the initial contact radius is 
not sufficiently large, then the enhancement of the pull-off force may be limited, with its magnitude determined both by the Maugis 

Fig. 6. (a) Variations of contact radius A, the outer radius of the cohesive zone radius C, and the normalized cohesive zone area with indentation Δ 
in the case of A0 = 4. (b) Interface profile at the initial moment. (c) Interface profile at the pull-off moment.

Fig. 7. (a) Variation of P with A, and (b) variation of P with Δ for different values of the initial contact radius, A0 = [60,70,80], in the DMT-like 
regime (λ = 0.01). The solid and dashed lines represent the responses in Stage-I and Stage-II, respectively, while the dash-dot curve in (a) indicates 
the Stage-II master curve.
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Fig. 8. (a) Variations of contact radius A, outer radius of the cohesive zone radius C, and the normalized cohesive zone area with indentation Δ in 
the case of A0 = 70. (b) Interface profile at the initial moment. (c) Interface profile at the pull-off moment.

Fig. 9. (a) Variation of pull-off force with λ for different A0 (k = 0.05). (b) Variation of pull-off force with A0 for different λ (k = 0.05).
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parameter and the initial contact radius. As can be seen in Fig. 9 (a), for a fixed and finite initial contact radius, the adhesion 
enhancement is generally low when λ is small (i.e. in the DMT-like regime) and it gradually increases to the full amplification level as λ 
becomes larger. Therefore, one is more likely to observe an apparent adhesion enhancement for a JKR-like contact than for a DMT-like 
contact given a same initial contact radius.

We also plotted the pull-off force as a function of the initial contact radius for systems with different Maugis parameters. As shown 
in Fig. 9 (b), for a given Maugis parameter, the apparent adhesion enhancement is low when A0 is small and the enhancement becomes 
higher as A0 increases. When the initial contact radius exceeds a certain critical value, Ac, the apparent adhesion enhancement will 
reach the aforementioned full amplification level. Similar dependence of adhesion on the initial contact state has been observed in 
biological systems (Jiao et al., 2000), though it was attributed to the hysteresis of the adhesive interactions (Schargott et al., 2006). 
Based on the results shown in Fig. 9 (b), one can see that the critical initial contact radius Ac depends on the Maugis parameter. 
Generally, Ac is larger when λ is smaller, i.e. a larger initial contact radius is needed for more DMT-like contacts. To quantify the 
dependence of Ac on λ, we plotted the variation of the critical initial contact radius Ac with λ in Fig. 10. By fitting the data, we found 
that 

Ac = 3.21 ⋅ λ− 0.59 + 3.11 (42) 

gives a good approximation of Ac when λ is given. From Fig. 10 and Eq. (42), one can see that when λ approaches infinity (the JKR-like 
regime), the critical value Ac converges to a constant, approximately 3.11. However, as λ approaches zero (the DMT-like regime), the 
critical value increases rapidly with a scaling law of λ− 0.59. It should be noted that the fitting expression given in Eq. (43) is based on the 
system with k = 0.05. For systems with different k values, the dependence remains qualitatively similar but with different pre-factor 
and power index. A more detailed discussion on the influence of k can be found in Appendix E.

While a large initial normalized contact radius is required to achieve significant adhesion enhancement in the DMT-like regime, this 
does not necessarily correspond to a large absolute value of the initial contact radius. As the normalized contact radius is defined as A =

a /
(
πwR2/χ

)1/3, if the normalization factor 
(
πwR2/χ

)1/3 is small enough, a relatively small contact radius may also lead to a significant 
normalized contact radius. However, since we have adopted the Hertzian solution as well as the parabolic approximation for the 
contact shape of the spherical indenter in our model, the contact radius should be much smaller than the radius of indenter, i.e. a ≪ R, 
which requires that A ≪ (χR/πw)

1/3.
The results shown in Fig. 11 provide a more comprehensive view of the impacts of the Maugis parameter and the initial contact 

state on the apparent adhesion enhancement. This insight can aid in better interpreting model predictions found in the existing 
literature. For example, the Das-Chasiotis model (Das and Chasiotis, 2021) suggests that the apparent adhesion enhancement is in-
dependent of the Maugis parameter and the pull-off force would be enhanced by a factor of (1 /k) as long as the loading rate is suf-
ficiently high. However, the Ciavarella model (Ciavarella, 2022) reveals that the apparent adhesion enhancement at high speeds only 
occurs in the JKR-like regime but not in the DMT-like regime. Although the predictions from these two models may appear contra-
dicting, they are both conditionally correct, as shown in Fig. 11. Based on our model calculations, if the initial contact radius is 
sufficiently large, then the pull-off force would indeed always be enhanced by a factor of (1 /k), regardless of the Maugis parameter. 
Under this condition, the Das-Chasiotis model is correct. However, as described by Eq. (42), to reach the full adhesion amplification 
level, the initial contact radius of the DMT-like contacts (λ→0) would be very high or even practically impossible. In this context, the 
prediction of the Ciavarella model is also correct when the system has a relatively small initial contact radius. Although the prediction 
of the Ciavarella model is qualitatively consistent with the new model presented here, we noticed that the transition behavior is 
slightly different. As shown in Fig. 11, the full adhesion amplification predicted by the Ciavarella model only occurs at relatively large 
values of λ. In contrast, our new model suggests the full adhesion amplification can occur at much smaller λ values. This discrepancy 

Fig. 10. Variation of the critical initial contact radius Ac with λ (k = 0.05).
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arises from the fact that the Ciavarella model neglects the viscoelasticity of the Hertzian region, whereas our new model includes the 
viscoelastic effect both in the Hertzian part and in the cohesive zone.

Regarding the mechanisms for the adhesion amplification, two sources have been identified in Section 3: One from the viscoelastic 
effect around the cohesive zone, and the other from the viscoelastic effect within the Hertzian contact zone. Our findings are quali-
tatively consistent with the recent work by Mandriota and coworkers (Mandriota et al., 2024). Here, it is also worth pointing out that, 
although these two mechanisms seem different, they both originate from the viscoelastic stiffening effect of the substrate material. In 
the more general transition region, both of them would contribute to the enlargement of the cohesive zone area. During the propa-
gation process of the interfacial crack, the substrate material initially within the Hertzian contact zone has to enter the cohesive zone, 
making it physically challenging to separate one mechanism from the other.

4.2. Validation by boundary element method (BEM) simulations

To validate our theoretical model, we conducted boundary element method (BEM) simulations for similar viscoelastic contact 
problem and compared the calculated pull-off force for systems with different Maugis parameters and initial contact radii. As shown in 
Fig. 12, a rigid sphere is first brought into contact with a viscoelastic substrate quasi-statically and then pulled away from the substrate 
under a speed v. To mimic the high speed behavior, we gradually increased the retraction speed until the simulation results converged 
to the "infinite speed" limit. Numerically, we found that v = vτ0/h0 = 10 × 212 is large enough to approximate the "infinite speed" limit 
behavior, where τ0 is the characteristic time of the viscoelastic substrate. Further increase in the retraction rate did not affect the results 
within the limits of numeric accuracy. In this way, the simulations can be regarded as fast loading, consistent with the assumption of 
our upper bound theoretical model. The interaction between the sphere and the substrate is assumed to be governed by the Lennard- 
Jones traction-separation law (Greenwood, 1997) 

σ(h) = 8w
3h0

[(
h0

h

)3

−

(
h0

h

)9
]

, (43) 

where σ is the interfacial stress (positive represents tensile), h is the local gap, h0is the equilibrium distance, and w is the work of 
adhesion. The implementation of the BEM simulations was based on a numerical scheme proposed in the literature (Papangelo and 
Ciavarella, 2020, 2023). Because the Lennard-Jones law used in BEM model is different from the Dugdale cohesive zone law used in the 
theoretical model, to rationally compare their results, we adopted the following correlation λ = 0.6628μ as proposed by Zheng and Yu 
(2007). Here, λ is the Maugis parameter from the theoretical model as defined in Eq. (35); while μ is the Tabor parameter from the BEM 

model, defined as μ =
[
Rw2/

(
E∗2

R h3
0

)]1/3
.

Fig. 13 shows the variations of the normalized pull-off force as a function of the initial contact radius A0 for different Tabor pa-
rameters μ = [0.1, 0.57,3.24] and k = 0.05 calculated by the BEM model. To best compare the results, the contact radius used in Fig. 13
is determined by taking the radial coordinate where the tensile stress reaches its peak (Greenwood, 1997). Similar to the results shown 
in Fig. 9 (b), one can see that, for any fixed Tabor parameters, as long as the initial contact radius is larger than the critical value, the 
pull-off force will be enhanced by a factor of (1 /k). Considering the shape difference of the two cohesive zone models, the reasonable 
agreement between the theory and the BEM simulations offers a good validation of the new theoretical model.

5. Conclusion

In this work, we revisit the viscoelastic adhesive contact problem, where an indenter initially adhered to a fully relaxed viscoelastic 

Fig. 11. Variations of the pull-off force with the Maugis parameter λ predicted by different models.
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substrate is retracted at an infinitely high speed. Based on Barthel’s framework and the Dugdale-type cohesive model, a set of gov-
erning equations have been derived to describe the full detachment behavior. Our theoretical model confirms that the apparent 
adhesion enhancement is generally affected by both the Maugis parameter and the initial contact state. More specifically, the pull-off 
force will be enhanced by a constant factor of (1 /k) regardless of the Maugis parameter if the initial contact radius exceeds a critical 
value Ac. However, if the initial contact radius is smaller than Ac, the apparent adhesion enhancement will be limited, showing 
dependence on the Maugis parameter and the preload condition. Our model calculations also provide an empirical expression of this 
critical initial contact radius Ac, whose value converges to a constant in the JKR-like regime but diverges rapidly with an inverse power 
law as the Maugis parameter approaches zero. This mathematical feature of Ac resolves the seemingly contradicting results in the 
literature and explains why the apparent adhesion enhancement is less observed in the DMT-like regime than in the JKR-like regime. In 
addition, this work identifies two mechanisms for the adhesion amplification. In the JKR-like regime, the pull-off force is enhanced at 
high speeds due to the viscoelastic stiffening effect of the substrate material around the cohesive zone. In the DMT-like regime, the 
adhesion enhancement is caused by the retarded deformation within the Hertzian contact zone due to the viscoelastic effect. Although 
these two mechanisms seem somewhat different, both of them lead to the same result, i.e. enlargement of the cohesive zone area. In the 
more general transition regime, both of these two mechanisms will naturally get involved during the detachment process. Physically, it 
is hard to separate one mechanism from the other, because the substrate material originally residing within the Hertzian contact zone 
has to enter the cohesive zone during propagation of the interfacial crack.
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Appendix A. Derivation of Eq. (29)

The integral of Eq. (25) can be further divided into two parts, i.e. from a to a0 and from a0 to c. Therefore, it can be rewritten as 

h(c) =
2

πR

[
a
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − a2

√
+

(
c2

2
− a2

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√ ]

−
2
π

(

δ −
a2

R

)

arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m2 − 1

√

+
2
π

∫ a0

a
ds ⋅

θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − s2

√ +
2
π

∫ c

a0

ds ⋅
θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − s2

√

. (A.1) 

In the region a to a0, following Eq. (28), we have 

θ(s) =
k

KR
g(s) + (1 − k)θ0(s)

= −
k

KR
σ0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c2 − s2

√
+ (1 − k)

(

δ0 −
s2

R

)

.

(A.2) 

In the region a0 to c, following Eq. (27), we have 

θ(s) =
k

KR
g(s) +

1 − k
KR

g0(s)

= −
k

KR
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c2
0 − s2
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(A.3) 

Substituting Eqs. (A.2) and (A.3) into Eq. (A.1), we obtain 

h(c) =
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(A.4) 

where EllipticE(α, p) =
∫ α

0 dx ⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − psin2x
√

is the elliptic integral of the second kind.

Appendix B. Computational procedure to solve the governing equations

1. Input the initial contact radius, A0, the Maugis parameter, λ, the ratio of relaxed to instantaneous moduli k, and the indentation 
increment dΔ. Firstly, we calculate the corresponding initial indentation Δ0, normal force P0 and cohesive zone radius C0 using the 
Maugis-Dugdale model with relaxed modulus.
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2. Update the indentation Δi = Δi− 1 − dΔ and substitute it into Stage-I governing equations Eqs. (36), (37) and (38).
3. If the governing equations have real solutions, update the contact radius, Ai, the cohesive zone radius, Ci, and the normal force Pi. If 

the governing equation do not have real solutions, end the process.
4. If Ci ≥ A0, return to step 2. If Ci < A0, update the indentation, Δi = Δi− 1 − dΔ and substitute it into Stage-II governing equations 

Eqs. (36), (37) and (39) and return to step 3.

Appendix C. Estimation of C0 in the DMT-like regime

At the initial moment, the substrate is in fully relaxed state. The initial contact radius A0 and outer radius of cohesive zone C0 satisfy 
the elastic Maugis-Dugdale model as 

λA2
0

2

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m2
0 − 1

√
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(
m2
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− m2
0 + 1

)

= 1 , (C.1) 

Where m0 = C0 /A0. Considering that λ→0 and m0→∞ for the DMT-like contacts, the second term on the left side of the equation is a 
higher-order small quantity compared with the first term, thus the Eq. (C.1) can be reduced to 

λA2
0

2
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Noticing that 
(
m2

0 − 2
)

≫
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0 − 1
√

and arctan
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→π /2, Eq. (C.2) can be simplified to 

πλ
4
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)
= 1. (C.3) 

From Eq. (C.3), one can get C0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4/(πλ) + 2A2
0

√

.

Appendix D. Effective contact radius at the pull-off moment in the DMT-like regime

At the initial moment, the viscoelastic substrate surface aligns with the spherical sphere. The surface displacement is 

u0(r) = δ0 −
r2

2R
, (D.1) 

where δ0 is the initial indentation, R is the radius of rigid sphere. And θ0 can be obtained as θ0(s) = δ0 − r2 /R from Eq. (6). As the rigid 
sphere is rapidly pulled away from the substrate, θ function can be obtained from Eq. (28) as 

θ(s) = (1 − k)θ0(s). (D.2) 

Thus, the displacement of the substrate surface can be determined by 

u(r) =
2
π

∫ r

0
ds ⋅

θ(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − s2

√ . (D.3) 

Substituting Eq. (D.2). into Eq. (D.3), we obtain the surface displacement at the pull-off moment 

u(r) = (1 − k)
(

δ0 −
r2

2R

)

. (D.4) 

The radius of curvature of the substrate at r = 0 can be determined as 

Rs =

⃒
⃒
⃒
⃒
⃒

(1 + uʹ2)
3/2

uʹ́

⃒
⃒
⃒
⃒
⃒
=

1
1 − k

R. (D.5) 

Hence, the effective radius of curvature of the sphere-substrate system is 

Reff =
1

1
R −

1
Rs

=
R
k
. (D.6) 

Appendix E. Influence of k on the critical initial contact radius under different Maugis parameters
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Fig. E1. Variation of the critical initial contact radius Ac with λ for k = [0.005, 0.05, 0.5,0.9,0.99].

We systematically varied the k value (k = [0.005,0.05,0.5,0.9,0.99]) and calculated the critical initial contact radius as a function 
of the Maugis parameter. The results are plotted in Fig. E1. By fitting the data for each value of k, we obtained the following empirical 
expressions: 

Ac =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

11.31 ⋅ λ− 0.57 + 6.69, k = 0.005

3.21 ⋅ λ− 0.59 + 3.11, k = 0.05

0.81 ⋅ λ− 0.63 + 1.44, k = 0.5

0.54 ⋅ λ− 0.66 + 1.19, k = 0.9

0.46 ⋅ λ− 0.67 + 1.15, k = 0.99

(E.1) 

As indicated by Eq. (E.1), the absolute value of the power index increases with increasing k, while the pre-factor and the constant 
term decrease as k increases. Based on the definition of k, its value lies within the range of 0 < k < 1. When k→0, the critical 
normalized initial contact radius Ac will tend to infinity in both the JKR-like and DMT-like regimes. When k→1, the system behaves as 
purely elastic. In such cases, the pull-off force is independent of the preload in the DMT-like regime, and thus the critical normalized 
initial contact radius will also approach infinity. In contrast, in the JKR-like regime, the pull-off force will be less than PJKR = 1.5πwR if 
the normalized initial contact radius is less than A =

̅̅̅̅̅̅̅̅
3/23

√
. Therefore, the critical normalized initial contact radius will equal Ac =

̅̅̅̅̅̅̅̅
3/23

√
in the JKR-like regime when k→1.
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Data will be made available on request.
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