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Many engineering devices and natural phenomena involve gels that swell under the constraint of hard

materials. The constraint causes a field of stress in a gel, and often makes the swelling inhomogeneous even

when the gel reaches a state of equilibrium. This paper develops a theory of constrained swelling of

a pH-sensitive hydrogel, a network of polymers bearing acidic groups, in equilibrium with an aqueous

solution and mechanical forces. The condition of equilibrium is expressed as a variational statement of the

inhomogeneous field. A free-energy function accounts for the stretching of the network, mixing of the

network with the solution, and dissociation of the acidic groups. Within a Legendre transformation, the

condition of equilibrium for the pH-sensitive hydrogel is equivalent to that for a hyperelastic solid. The

theory is first used to compare several cases of homogenous swelling: a free gel, a gel attached to a rigid

substrate, and a gel confined in three directions. To analyze inhomogeneous swelling, we implement

a finite element method in the commercial software ABAQUS, and illustrate the method with a layer of

the gel coated on a spherical rigid particle, and a pH-sensitive valve in microfluidics.
1. Introduction

Immersed in an aqueous solution, a network of covalently cross-

linked polymers imbibes the solution and swells, resulting in

a hydrogel. The amount of swelling is affected by mechanical forces,

pH, salt, temperature, light, and electric field.1,2 Gels are being

developed for diverse applications as actuators, converting non-

mechanical stimulations to large displacements and appreciable

forces.3–6 Many applications require that the gels swell against the

constraint of hard materials. For example, a microfluidic valve

involves a gel anchored by a rigid pillar, and the gel swells in

response to a change in the pH, blocking the flow.7 Analogous

mechanisms have been used by plants to regulate microscopic flow,8

and in oilfields to enhance production.9 As another example, an

array of rigid rods embedded in a gel rotate when the humidity in the

environment drops below a critical value.10,11 It has also been

appreciated that, in a spinal disc, the swelling of the nucleus

pulposus is constrained by the annulus fibrosus, and that

understanding this constrained swelling is central to developing

a synthetic hydrogel to replace damaged nucleus pulposus.12

Despite the ubiquity of constrained swelling in practice, the

theory of constrained swelling requires substantial work to be

broadly useful in analyzing engineering devices and natural

phenomena. Developers of methods of analysis face two essential

challenges. First, swelling of a gel is affected by a large number of
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stimuli. It is unrealistic to expect any single material model to

describe the behavior of many gels. Second, when a gel is con-

strained by a hard material, the swelling often induces in the gel an

inhomogeneous field of stress and large deformation. The

magnitude of the stress is of central importance to applications

such as valves and actuators. The large deformation, in addition to

being important to applications, may also lead to cavities, creases,

buckles, and other intriguing patterns that are hard to analyze.13–17

Following a recent trend in the study of inhomogeneous

deformation of complex materials, we have been pursuing

a modular approach, which in effect meets the two challenges

separately. As an example, we have shown that the swelling of

a neutral network in equilibrium is equivalent to the deformation

of a hyperelastic material.18 The latter can be readily analyzed by

adding a material model to commercial finite element software

like ABAQUS. This approach is applicable to a neutral network

characterized by a free-energy function of any form. Commercial

software like ABAQUS is widely used in many fields of engi-

neering, and has been developed to analyze large deformation of

extraordinary complexity. Consequently, this approach has

enabled researchers to use the commercial software to analyze

complex phenomena in gels.19,20

The present paper goes beyond the neutral network, and

develops a theory for a pH-sensitive hydrogel, a network of

polymers bearing acidic groups, in equilibrium with an aqueous

solution and a set of mechanical forces. Following our recent

work on polyelectrolyte gels,21 we express the condition of

equilibrium as a variational statement. For a pH-sensitive gel,

the variational statement includes the following fields: the

displacement of the network, the concentrations of the solvent

and ions, and the degree of acidic dissociation. The variations are

subject to auxiliary conditions of several types, including the

conservation of various species, incompressibility of molecules,

and electroneutrality in the gel and in the external solution.

Our task in the present paper is greatly simplified by the

assumption of electroneutrality. To appreciate this assumption,
This journal is ª The Royal Society of Chemistry 2010



Fig. 1 A network of polymers imbibes a solution and swells, resulting in

a gel. The polymers are covalently crosslinked and bear acidic groups, some

of which dissociate into hydrogen ions mobile in the solvent, and fixed

charges attached to the network. The external solution is composed of four

mobile species: solvent molecules, hydrogen ions, counterions, and co-ions.
consider a highly charged network immersed in a dilute solution

of ions, so that the concentration of the counterions in the gel

exceeds that in the external solution. At the interface between the

gel and the external solution, the counterions in the gel spill into

the external solution, and the region near the interface is no

longer neutral, leading to an electric double layer of a thickness

scaled by the Debye length. Outside the electric double layer,

electroneutrality is nearly maintained in the gel and in the

external solution. In many applications, the Debye length is

much smaller than other lengths of interest. This paper will not

be concerned with the electric double layer, and will assume that

the gel is electroneutral. This assumption will miss phenomena at

the size scale comparable to the Debye length, but will capture

the overall behavior of the gel.21

As a model material, the gel is characterized by a free-energy

function developed by Flory,22 Recke and Tanaka,23 Brannon-

Peppas and Peppas,24 and others. (Incidentally, these authors

also assumed electroneutrality.) The free-energy function

accounts for the stretching of the network, mixing of the network

and the solution, and dissociation of the acidic groups. The

model is used to compare several cases of homogeneous swelling:

a free gel, a gel attached to a rigid substrate, and a gel confined in

three directions.

Inhomogeneous swelling is then studied by developing a finite

element method. Inhomogeneous swelling of pH-sensitive gels

has been studied in several recent papers,25–27 but the existing

methods have not been demonstrated for the analysis of complex

phenomena of large deformation. In this paper, we represent the

free energy as a functional of the field of deformation by using

a Legendre transformation. Within this representation, the

inhomogeneous field in a pH-sensitive hydrogel in equilibrium is

again equivalent to the field in a hyperelastic solid. We imple-

ment the finite element method by writing a user-supplied

subroutine in the commercial software ABAQUS, and illustrate

the method with a layer of the gel coated on a spherical rigid

particle, and a pH-sensitive valve in microfluidics. We hope that

this work will enable other researchers to study complex

phenomena in pH-sensitive hydrogels. To this end, we have made

our code freely accessible online.28
Fig. 2 A dry network is taken to be the state of reference. In the current

state, the network is immersed in an aqueous solution and subject to a set

of mechanical forces.
2. The condition of equilibrium for inhomogeneous
swelling

Fig. 1 sketches a model system: a network of covalently cross-

linked polymers bearing acidic groups AH. When the network

imbibes the solvent, some of the acidic groups dissociate into

hydrogen ions H+ mobile in the solvent, and conjugate bases A�

attached to the network. Once dissociated, the conjugate base A�

gives rise to a network-attached charge, i.e., a fixed charge. The

reaction is reversible:

AH 4 A� + H+ (2.1)

The three species equilibrate when their concentrations satisfy�
Hþ
� �

A�
�

½AH� ¼ Ka (2.2)

where Ka is the constant of acidic dissociation.
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The external solution is composed of four species: solvent

molecules (i.e., water), hydrogen ions, counterions that bear

charges of the sign opposite to the fixed charges (e.g., sodium

ions), and co-ions that bear charges of the same sign as the fixed

charges (e.g., chloride ions). To describe essentials of the method

of analysis, we neglect the dissociation of water, and assume that

counterions and co-ions are monovalent. Let �nS, �nH+, �n+ and �n�
be the numbers of particles of the four species in the external

solution. When these numbers change by small amounts, the free

energy of the external solution changes by

mSd�nS + mH+d�nH+ + m+d�n+ + m�d�n� (2.3)

where mS, mH+, m+ and m� are the electrochemical potentials of the

four species in the external solution. The external solution is in

a state of equilibrium, so that the electrochemical potential of

each species is homogeneous in the external solution.

Fig. 2 illustrates a gel undergoing inhomogeneous swelling. We

take the stress-free dry network as the state of reference. A small

part of the network is named after the coordinate of the part, X,

when the network is in the state of reference. Let dV(X) be an

element of volume, dA(X) be an element of area, and NK(X) be

the unit vector normal to the element of area.
Soft Matter, 2010, 6, 784–793 | 785



In the current state, the part of the network X moves to a place

with coordinate x. The function

xi ¼ xi(X) (2.4)

describes a field of deformation. The deformation gradient of the

network is

FiK ¼
vxiðXÞ
vXK

(2.5)

In the current state, let Bi(X)dV(X) be the external mechanical

force applied on the element of volume, and Ti(X)dA(X) be the

external mechanical force applied on the element of area. When

the network deforms by a small amount, dxi(X), the field of

mechanical force does workÐ
BidxidV +

Ð
TidxidA (2.6)

Following a common practice in formulating a field theory, we

stipulate that an inhomogeneously swollen gel can be divided

into many small volumes, and each small volume is locally in

a state of homogeneous swelling, characterized by a nominal

density of free energy W as a function of various thermodynamic

variables. Consequently, the Helmholtz free energy of the gel in

the current state is given by

Ð
WdV (2.7)

The gel, the external solution, and the mechanical forces

together constitute a thermodynamic system, held at a fixed

temperature. The Helmholtz free energy of the system is the sum

of the free energy of the gel, the free energy of the external

solution, and the potential energy of the mechanical forces.

When the system is in equilibrium, associated with small varia-

tions of the fields, the variation of the Helmholtz free energy

vanishes. Consequently, the condition of equilibrium is

Ð
dWdV + mSd�nS + mH+d�nH+ + m+d�n+ + m�d�n�

�
Ð

BidxidV �
Ð

TidxidA ¼ 0 (2.8)

Note that W is a function of various thermodynamic variables,

so that the variational statement (2.8) includes variations of

the following inhomogeneous fields: the displacement of the

network, the concentrations of the solvent and ions, and the

degree of acidic dissociation. The variations are subject to

auxiliary conditions of several types, including the conservation

of various species, incompressibility of molecules, and electro-

neutrality in the gel and in the external solution. These auxiliary

conditions are discussed below.

Denote the nominal concentration of species a by Ca(X). That

is, Ca(X)dV(X) is the number of particles of species a in the

element of the network when the gel is in the current state. Of the

four mobile species, the solvent molecules, the counterions, and

the co-ions are each conserved. The gel gains these particles at the

expense of the external solution:

Ð
dCS(X)dV + d�nS ¼ 0 (2.9)

Ð
dC+(X)dV + d�n+ ¼ 0 (2.10)

Ð
dC�(X)dV + d�n� ¼ 0 (2.11)
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The mobile hydrogen ions, however, are not conserved, but are

produced as the acidic groups dissociate. The change in the total

number of the hydrogen ions in the system equals the change in

the number of the fixed charges:

Ð
dCH+(X)dV + d�nH+ ¼

Ð
dCA�(X)dV (2.12)

The sum of the number of the associated acidic groups AH and

that of the fixed charges A� equal the total number of the acidic

groups:

CAH(X) + CA�(X) ¼ f/v (2.13)

where f is the number of acidic groups attached to the network

divided by the total number of monomers in the network, and v is

the volume per monomer.

As discussed in Introduction, we assume that electroneutrality

prevails both in the gel and in the external solution, so that

CH+(X) + C+(X) ¼ CA�(X) + C�(X) (2.14)

�nH+ + �n+ ¼ �n� (2.15)

Because typically the stress in a gel is small and the amount of

swelling is large, we assume that individual polymers and solvent

molecules are incompressible. Furthermore, the concentrations

of ions are assumed to be low, so that their contributions to the

volume of the gel are negligible. Under these simplifications,

when the dry network of unit volume imbibes CS number of

solvent molecules and swells to a gel of volume detF, these

volumes satisfy the condition

1 + vSCS ¼ detF (2.16)

where vS is the volume per solvent molecule. This molecular

incompressibility is assumed in all theoretical papers cited above.

Subject to the auxiliary conditions (2.9)–(2.16), the state of the

inhomogeneously swollen gel is specified by the following inde-

pendent fields: xi(X), C+(X), C�(X), and CH+(X). We stipulate

that the nominal density of free energy is a function:

W ¼ W(F,C+,C�,CH+). (2.17)

Using the auxiliary conditions (2.9)–(2.16), we rewrite the

condition of equilibrium (2.8) in terms of variations of the

independent fields, namely,

�
ð�

v

vXK

�
vW

vFiK

� mS

vS

HiK detF

�
þ Bi

�
dxidV

þ
ð��

vW

vFiK

� mS

vS

HiK detF

�
NK � Ti

�
dxidA

þ
ð�

vW

vCþ
� ðmþ � mHþÞ

�
dCþdV

þ
ð�

vW

vC�
� ðm� þ mHþÞ

�
dC�dV

þ
ð

vW

vCHþ
dCHþdV ¼ 0

(2.18)

In writing (2.18), we have used the divergence theorem, as well

as an identity vdetF/vFiK ¼ HiKdetF, where HiK is the transpose
This journal is ª The Royal Society of Chemistry 2010



of the inverse of the deformation gradient, namely, HiKFiL ¼ dKL

and HiKFjK ¼ dij.

Inspecting (2.18), we write

siK ¼
vW ðF;Cþ;C�;CHþÞ

vFiK

� mS

vS

HiK det F (2.19)

The quantity siK is known as the tensor of nominal stress. The

term containing ms is due to the assumed molecular incompres-

sibility.

The statement (2.18) holds for arbitrary variations of the

independent fields, xi(X), C + (X), C�(X), and CH+ (X). Conse-

quently, each line of (2.18) leads to the condition of a partial

equilibrium with respect to the variation of a single independent

field. The first line of (2.18) leads to

vsiK

vXK

þ Bi ¼ 0 (2.20)

for elements in the interior of the gel. The second line of (2.18)

leads to

siKNK ¼ Ti (2.21)

for elements on the surface of the gel. These two equations

constitute the familiar conditions of mechanical equilibrium with

respect to the variation dxi.

The next two lines of (2.18) lead to

vW ðF;Cþ;C�;CHþÞ
vCþ

¼ mþ � mHþ (2.22)

vW ðF;Cþ;C�;CHþÞ
vC�

¼ m� þ mHþ (2.23)

These equations are the conditions of ionic equilibrium with

respect to the variations in the concentrations of the counterions

and co-ions in the gel. The combinations m+ � mH+ and m� + mH+

are due to the assumed electroneutrality.

The last line of (2.18) leads to

vWðF;Cþ;C�;CHþÞ
vCHþ

¼ 0 (2.24)

This equations is the condition of chemical equilibrium with

respect to the dissociation of the acidic groups, a condition that

reproduces (2.2), as shown in the next section.
3. A specific material model

The conditions of equilibrium described in the previous section

are independent of models of the external solution and gel. This

section applies the conditions of equilibrium to a commonly used

material model.
External solution

Let �c+, �c� and �cH+ be the true concentration of the three species of

ions in the external solution. We assume that the external solu-

tion is dilute, so that the electrochemical potentials of the ions

relate to the concentrations as21
This journal is ª The Royal Society of Chemistry 2010
mþ � mHþ ¼ kT log

 
�cþc

ref

Hþ

c
ref
þ �cHþ

!
(3.1)

m� þ mHþ ¼ kT log

 
�c��cHþ

cref
� c

ref

Hþ

!
(3.2)

where kT is the temperature in the unit of energy, and cref
a is

a reference value of the concentration of a species.

Imagine that the solution is separated from a reservoir of pure

solvent by a membrane, which allows solvent molecules to pass

through, but not the ions. The solvent molecules will permeate

from the reservoir into the solution, until the solution is under

a pressure, the osmotic pressure, kT(�cH+ + �c+ + �c�. Consequently,

relative to the pure solvent, the solvent molecules in the ionic

solution has the chemical potential

mS ¼ �kTvS(�cH+ + �c+ + �c�). (3.3)

Eqn (3.1)–(3.3) express the electrochemical potential in terms

of the concentrations of the four mobile species.

pH-sensitive gel

Following Flory,22 Ricke and Tanaka,23 Brannon-Peppas and

Peppas,24 and many others, we adopt an idealized model,

assuming that the free-energy density of the gel is a sum of several

contributions:

W ¼ Wnet + Wsol + Wion + Wdis (3.4)

where Wnet is due to stretching the network, Wsol mixing the

solvent with the network, Wion mixing ions with the solvent, and

Wdis dissociating the acidic groups.

The free energy of stretching the network is taken to be

Wnet ¼ ½NkT[FiKFiK � 3 � 2log(detF)] (3.5)

where N is the number of polymer chains divided by the volume

of the dry network.

The free energy of mixing the polymers and the solvent takes

the form:

Wsol ¼
kT

vS

�
ðdet F� 1Þlog

�
1� 1

det F

�
� c

det F

�
(3.6)

This contribution consists of the entropy of mixing of the

polymers and the solvent molecules, as well as the enthalpy of

mixing, characterized by a dimensionless parameter c.

The concentrations of the mobile ions are taken to be low, so

that their contribution to the free energy is due to the entropy of

mixing, namely,

Wion ¼ kT

"
CHþ

 
log

CHþ

c
ref

Hþ
det F

� 1

!
þ Cþ

 
log

Cþ

c
ref
þ det F

� 1

!

þ C�

 
log

C�

cref
� det F

� 1

!#

(3.7)

The contribution due to the dissociation of the acidic groups is

taken to be
Soft Matter, 2010, 6, 784–793 | 787



Wdis ¼ kT

"
CA� log

�
CA�

CA� þ CAH

�
þ CAH log

�
CAH

CA� þ CAH

�#

þ gCA�

(3.8)

The expression consists of the entropy of dissociation and the

enthalpy of dissociation, where g is the increase in the enthalpy

when an acidic group dissociates. Note that CA� and CAH are the

nominal concentration of the fixed charges and of associated

acidic groups, respectively. They are not among the independent

variables chosen to represent the free-energy function, (2.17).

Using (2.13) and (2.14), however, we can express them in terms of

the chosen independent variables, CA� ¼ CH+ + C+ � C�, CAH ¼
f/v � (CH+ + C+ � C�).

Equilibrium between the gel, external solution, and mechanical

forces

Recall that the number of particles of species a in the gel in the

current state divided by the volume of the dry network defines the

nominal concentration of the species, Ca. The same number

divided by the volume of the gel in the current state defines the

true concentration of the species, ca. The two definitions are

related as Ca ¼ cadetF. Recall that when the number of particles

is counted in units of the Avogadro number, NA ¼ 6.023 � 1023,

the molar concentration of the species a is designated by [a]; for

example, cH+ ¼ NA[H+].

Recall a relation in continuum mechanics connecting the true

stress sij and the nominal stress: sij ¼ siKFjK/detF, so that (2.19)

can be written as

sij ¼
FjK

det F

vW

vFiK

� mS

vS

dij (3.9)

Using the function W(F,C+,C�,CH+) specified above, (3.9)

becomes that

sij ¼
NkT

det F

�
FiK FjK � dij

	
� ðPsol þPionÞdij (3.10)

where

Pion ¼ kT(cH+ + c+ + c� � �cH+ � �c+ � �c�) (3.11)

Psol ¼ �
kT

vS

(
log

�
1� 1

det F

�
þ 1

det F
þ c

ðdet FÞ2

)
(3.12)

Here Pion is the osmotic pressure due to the imbalance of the

number of ions in the gel and in the external solution, and Psol is

the osmotic pressure due to mixing the network and the solvent.

Condition (3.9) is readily interpreted: in equilibrium, the applied

stress sij equals the contractile stress of the network minus the

osmotic pressure.

The conditions of ionic equilibrium (2.22) and (2.23) become

c+/�c+ ¼ cH+/�cH+ (3.13)

c�/�c� ¼ (cH+/�cH+)�1 (3.14)

These conditions are known as the Donnan equations. The

condition of chemical equilibrium with respect to acidic disso-

ciation (2.24) becomes that
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cHþðcHþ þ cþ � c�Þ
ðf =vÞðdet FÞ�1�ðcHþ þ cþ � c�Þ

¼ NAKa (3.15)

This condition reproduces (1.2), with the identification

NAKa ¼ c
ref

Hþ
exp


� g

kT

�
(3.16)

Parameters used in numerical calculations

In numerical calculations, we assume that the volume per

monomer equals the volume per solvent molecule, v ¼ vS. Elec-

troneutrality in the external solution requires that �c� ¼ �c+ + �cH+

Consequently, the composition of the external solution is speci-

fied by two independent numbers, say, the concentration of the

counterions �c+ and the concentration of the hydrogen ions �cH+.

The later relates to the pH of the external solution,

�cHþ ¼ NA10�pH.

The polymers are specified by several parameters. Recall that

N is the number of polymer chains per unit volume of the dry

network, so that 1/Nv is the number of monomers per polymer

chain. The dimensionless parameter c measures the enthalpy of

mixing the polymers and the solvent. The number f is the number

of acidic groups on a polymer chain divided by the total number

of monomers on the chain. For applications that prefer gels with

large swelling ratios, materials with low values of Nv and c and

high value of f are used. In numerical calculations, we set Nv ¼
10�3, c ¼ 0.1, and f ¼ 0.05. The constant of acidic dissociation,

Ka, has the same dimension as the concentration (in the unit mol

L�1). We set pKa ¼ �log10Ka ¼ 4.3, a commonly accepted value

for the dissociation of carboxylic acids.

We will normalize the chemical potential by kT, and normalize

the stresses by kT/v. A representative value of the volume per

molecule is v ¼ 10�28 m3. At room temperature, kT ¼ 4 � 10�21 J

and kT/v ¼ 4 � 107 Pa. The elastic modulus of the dry network is

NkT. For Nv ¼ 10�3, the elastic modulus is NkT ¼ 4 � 104 Pa.
4. Several cases of homogenous swelling

The material model described above is now applied to several

cases of homogeneous swelling (Fig. 3). In each case, the

conditions of equilibrium (3.10)–(3.15) form a set of simulta-

neous nonlinear algebraic equations. Their solutions illustrate

the basic behavior of a gel with or without constraint. These cases

of homogeneous swelling also provide tests for the finite element

program to be developed in the following section.

In the case of a free gel, Fig. 3a, all components of stress

vanish, and the swelling is isotropic: F ¼ ldiK. Fig. 4a plots the

swelling ratio of the gel, l3, as a function of the composition of

external solution. The latter is specified by pH, and the molar

concentration of the counterions, �c+/NA. The gel swells more

when the external solution has low concentrations of both the

hydrogen ions and the counterions, but swells less when the

external solution is concentrated with either species. These trends

are considered in some detail below.

Fig. 4b plots the swelling ratio as a function of pH at a fix-

ed concentration of the counterions. The trend can be under-

stood in terms of the two limits: fully-associated limit and

fully-dissociated limit. When pH\\pKa, the abundance of
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 Several cases of homogeneous swelling. (a) Free swelling. (b)

Swelling subject to biaxial constraint. (c) Swelling under triaxial

constraint.

Fig. 4 Numerical results for a free swelling gel. (a) The swelling ratio is

plotted as a function of the two variables that specify the composition of

the external solution: the pH and the salt concentration (i.e., molar

concentration of the counterions). (b) The swelling ratio is plotted as

a function of pH for a fixed salt concentration. (c) The swelling ratio is

plotted as a function of the salt concentration at several values of pH.

This journal is ª The Royal Society of Chemistry 2010
hydrogen ions causes all the acidic groups to be associated,

namely,

CAH ¼ f/v, CA� ¼ 0. (4.1)

Consequently, the network is neutral, and ions of every species

are equally distributed in the gel and the external solution:

cH+ ¼ �cH+, c+ ¼ �c+, c� ¼ �c�. (4.2)

The balanced ions do not contribute to osmosis, Pion ¼ 0.

When pH..pKa, the scarcity of hydrogen ions causes all the

acidic groups to be dissociated, namely,

CAH ¼ 0, CA� ¼ f/v (4.3)

Consequently, the network bears a known number of fixed

charges. These fixed charges must be neutralized by counterions,

as dictated by electroneutrality. Consequently, mobile ions will

be more concentrated in the gel than in the external solution.

These unbalanced ions contribute to osmosis, Pion > 0, so that

the network in the fully-dissociated limit will imbibe more

solvent than the network in the fully-associated limit.

Fig. 4c plots the swelling ratio as a function of the molar

concentration of the counterions in the external solution, �c+ /NA,

at several values of pH. When pH ¼ 2, the hydrogen ions are

abundant, and the gel approaches the fully-associated limit.

When pH ¼ 9, the hydrogen ions are scarce, and the gel

approaches the fully-dissociated limit. These two limits have

been discussed above. The external solution with an intermediate

value, pH ¼ 5, deserves additional comments.20 The Donnan

equation, c+/�c+¼ cH+/�cH+, requires that the two species of positive

ions in the gel and in the external solution be distributed pro-

portionally. When �c+ < �cH+ in the external solution, c+ < cH+ in

the gel. The abundance of hydrogen ions in the gel causes the

acidic groups to be mostly associated, so that the network is

nearly neutral. As �c+ increases while �cH+ is fixed, more counter-

ions will be available in the gel, and more acidic group will

dissociate. This process of ion exchange causes the swelling ratio

to increase with the concentration of the counterions in the

external solution. When the external solution has a very high

concentration of the counterions, however, the gel behaves like

a neutral gel, and the swelling ratio drops.

Fig. 3b illustrates a layer of a gel attached to a rigid substrate.

The substrate is flat, and the thickness of the gel is much smaller

than the length and the width of the gel, so that the deformation

of the gel is homogeneous. The two stretches in the plane of the

layer is prescribed to be l0. When the gel is brought into contact

with the external solution, the two in-plane stretches remain

fixed, but the gel swells in the direction normal to the layer, with

stretch l. The swelling ratio of the substrate-attached gel varies

with the composition of the external solution, with the trends

similar to that of the unconstrained gel. However, the amount of

swelling of the free gel is significantly larger than that of the

substrate-attached gel (Fig. 5). Consequently, the amount of

swelling cannot be specified as a material property, but must be

solved as a part of the boundary-value problem.

Fig. 3c illustrates a layer of a gel attached to a rigid substrate,

with equal stretches prescribed in the plane, lT. The layer is also

constrained in the normal direction, but with a different level of
Soft Matter, 2010, 6, 784–793 | 789



Fig. 6 The blocking stress as a function of the pH of the external

solution at several values of the lateral stretch.
stretch lN. The gel develops a state of triaxial stress, sT and sN.

As mentioned in the Introduction, in many applications of the

pH-sensitive hydrogels, the gel has to exert a pressure on the

constraining hard material. In such applications, various ways to

change the blocking stress sN are important. Fig. 6 plots the

blocking stress as a function of the pH of the external solution at

several values of the lateral stretch. The blocking stress also

exhibits two limits. When the pH value in the external solution is

low, the abundant hydrogen ions cause the acidic groups on the

network approach the fully associated limit, and the magnitude

of the blocking stress is small. When the pH value in the external

solution is high, the scarce hydrogen ions cause the acidic groups

on the network approach the fully dissociated limit, and the

magnitude of the blocking stress is large. The magnitude of the

blocking stress can be changed by prescribing a different value of

the in-plane stretch. As expected, the magnitude of the blocking

stress increases when the lateral stretch decreases.

The theory outlined in this paper describes many of the

qualitative trends observed experimentally. However, a quanti-

tative comparison between the theory and experiments is difficult

for several reasons. First, to highlight the essential ideas of the

theory, we have used relatively simple models of solutions. Most

experiments are carried out using more complex systems, such as

copolymers and solutions of multiple species. Second, the exist-

ing experiments often report insufficient details, leaving many

parameters to fit. With these difficulties in mind, we leave more

extensive comparison to future work, and restrict ourselves here

to a comparison between the theory and one set of experiments,

as follows.

Eichenbaum et al.28 have done a series of experiments to study

the effect of crosslink density on the swelling behavior of pH-

sensitive hydrogels. Ref. 28 provided all material parameters

except f in our model. The comparison is plotted in Fig. 7. The

theoretical predictions fit well with Eichenbaum’s experimental

data for poly(methacrylic acid-co-acrylic acid) gels with four

different crosslink density with one fitting parameter f ¼ 0.35.

Both the theoretical predictions and experimental results show

swelling ratio induced by the change of the pH value in outer

solution is reduced as the crosslink density increases.
Fig. 5 The swelling ratio of a free gel and a substrate-attached gel as

a function of the pH of the external solution.
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5. Finite element method

The condition of equilibrium of a pH-sensitive hydrogel is

expressed as the variational statement (2.8), which governs the

following independent inhomogeneous fields: xi(X), C+(X),

C�(X), and CH+(X). This variational statement has a form

different from that used in commonly available commercial finite

element software. In this section, we transform this variational

statement into a different form, which can be readily imple-

mented in commercial finite element software.

Following a commonly used approach in thermodynamics, we

introduce another free-energy function Ŵ by a Legendre trans-

formation:

Ŵ ¼ W � (m+ � mH+)C+ � (m� + mH+)C� � mSCS (5.1)
Fig. 7 Comparison between theoretical predictions and experimental

results. The scattered dots are experimental data and different lines are

the calculation results. Material parameters are given in ref. 28: salt

concentration is 0.03M, c¼ 0.45 + 0.4894, Ka¼ 10�4.7. The mole fraction

of pH sensitive monomers f ¼ 0.35 is used by fitting the calculation with

experimental data.
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We can solve the nonlinear algebraic eqn (3.13)–(3.15), and

express CH+, C+ and C� in terms of �cH+, �c+ and detF; see part A in

the ESI.‡ Consequently, Ŵ can be expressed as a function of the

following independent variables:
Fig. 8 Swelling of a gel coated on a rigid spherical particle. (a) Distri-

bution of the concentration of water in the gel. (b) Distribution of the

radial stress and hoop stress in the gel.
Ŵ ¼ Ŵ (F,�cH+,c _I+). (5.2)

The physical significance of this change of variables is under-

stood as follows. When a network is immersed in a solution, so

long as the amount of the gel is small compared to the amount of

the external solution, the composition of the external solution

remains unchanged as the gel swells. Consequently, concentra-

tions of the hydrogen ions and counterions in the external

solution, c _IH+ and c _I+, remain fixed, and so do the electro-

chemical potentials of all the species. Inserting (5.1) into (2.18),

the condition of equilibrium (2.18) becomes that

Ð
dŴdV ¼

Ð
BidxidV +

Ð
TidxidA (5.3)

The variational statement (5.3) takes the same form as that of

a hyperelastic solid. That is, the work done by the mechanical

forces equals the variation in the free energy. Because the

composition of the external solution, �cH+ and �c+, remain fixed

when the mechanical forces do work, the variation in the free

energy Ŵ ¼ Ŵ (F,�cH+,�c+) is entirely due to the variation of the

deformation gradient. Consequently, the variational statement

(5.3) can be readily implemented in commercial finite element

software.

We have implemented the above theory in the commercial

finite element software, ABAQUS, by coding the function Ŵ ¼
Ŵ (F,�cH+,�c+) into a user-defined subroutine for a hyperelastic

material. Details in implementing the finite element method may

be found in our paper on neutral gels,18 and part A of the ESI‡ of

the present paper. The subroutine is given in the part C of the

ESI‡ and posted online.29

We first test our finite element program against the cases of

homogeneous swelling. For example, Fig. 5 plots the swelling

ratios of a free gel and a substrate-attached gel. We have also

tested other cases of homogeneous swelling. In all cases, the

results obtained by the finite element method agree well with

those of the analytical solutions.

We then test the finite element program using a case of inho-

mogeneous swelling: a layer of a gel coated on a rigid spherical

particle (Fig. 8). The core–shell structure is immersed in a solu-

tion. When the pH of the external solution changes, the gel swells

or deswells, but the rigid particle remains inert. In this particular

calculation, when pH ¼ 2, the gel is taken to be stress-free, and

the ratio of the outer radius of the gel to the radius of the rigid

particle is set to be B/A ¼ 1.5. When pH ¼ 6, the gel swells

subject to the constraint of the rigid particle. Consequently,

a field of stress develops in the gel and the amount of swelling is

inhomogeneous, even when the gel reaches a state of equilibrium.

To compare with the finite element solution, Part B of the ESI‡

lists the differential equations for this spherical symmetric

boundary-value problem. These equations are solved by using

a finite difference method. The results are compared with those

obtained by using the finite element method.

Fig. 8a plots the distribution of the swelling ratio in the gel.

Due to the constraint of the rigid particle, the gel swells
This journal is ª The Royal Society of Chemistry 2010
inhomogeneously. Near the outer surface, the gel is nearly

unconstrained, and the swelling ratio approaches that of a free

gel. Near the interface between the gel and the core, however, the

gel is constrained, and the swelling ratio is much below of that of

the free gel.

The constraint of the rigid particle also causes in the gel a field

of stress. Fig. 8b plots the distribution of the stress in the gel.

Near the outer surface of the gel, the radial stress vanishes

because of the boundary condition, and the magnitude of the

hoop stress is small because the gel is nearly free. Near the

interface between the gel and the rigid core, the radial stress is

tensile and the hoop stress is compressive. These trends can be

readily understood. If the rigid particle were removed, the gel

would swell homogeneously and stress-free, and both the inner

radius and outer radius would increase. In the presence of the

rigid particle, however, the inner radius is constrained to be of

the original size, leading to the tensile radial stress and
Soft Matter, 2010, 6, 784–793 | 791



compressive hoop stress. As shown in Fig. 8b, the results

obtained by using finite element method agree well with those

obtained by solving the ordinary differential equations.

As another illustration of the finite element method, consider

the microfluidic valve7 mentioned in the Introduction. Fig. 9

illustrates a gel coated on a rigid pillar in a microfluidic channel.

The gel is taken to deform under the plane strain conditions.

When pH ¼ 2, the gel is in a stress-free state, and the channel is

open. When pH ¼ 6, the gel swells to push against the walls of

the channel, and the channel is closed. In the open state, the outer

radius of the gel should be small to ease the flow. In the closed

state, the size of the contact between the gel and a wall, as well as

the pressure in the contact, should be large to block the flow. In

this case, the calculation needs to deal with the inhomogeneous

deformation of the gel, as well as the contact between the gel and

the walls. An analytical solution too this problem is unavailable.

However, by implementing our subroutine in ABAQUS, we can

use almost all the functions already embedded in this commercial

software.

Fig. 9 plots the deformed configuration of the valve, as well as

the size of the contact and the distribution of the pressure. We fix

the radius of the pillar, A/D ¼ 0.1. As the outer radius of the gel

increases, both the size of the contact and the pressure in the

contact increase. The size of the contact and the pressure may be

crucial for such a design for valves. In the original design of the

valve, several pillars were placed across the width of the channel.7

In such a design, the pillars form a periodic array, and the above

analysis remains valid. The finite element program may be used
Fig. 9 In a microfluidic channel, a gel is anchored by a rigid pillar. When

pH ¼ 2, the gel shrinks, and the channel is open. When pH ¼ 6, the gel

swells, and the channel is closed. As the outer radius of the gel increases,

both the size of the contact and the pressure in the contact increase.
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to explore other patterns of pillars, or other designs of pH-

sensitive valves.
6. Concluding remarks

This paper develops a theory of a network of covalently cross-

linked polymers bearing acidic groups, in equilibrium with an

aqueous solution and a set of mechanical forces. The inhomo-

geneous swelling is affected by the pH and salinity of the external

solution, as well as by the geometry of the constraint. The

condition of equilibrium is expressed as a variational statement

that governs the following independent fields: the displacement

of the network, and the concentrations of the hydrogen ions,

counterions and co-ions. By using the Legendre transformation,

the variational statement is cast into a form such that a swollen

gel in equilibrium is governed by the same equations as those for

an equivalent hyperelastic material. The theory is implemented

as a finite element method in the commercial software ABAQUS,

and is illustrated with cases of homogeneous and inhomogeneous

swelling. It is hoped that this work will enable other researchers

to study complex phenomena in pH-sensitive hydrogels. To this

end, we have made our code freely accessible online.29
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