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A B S T R A C T

Some microscopic samples of zirconia-based shape memory ceramics (SMCs) have shown full martensitic phase
transformation (MPT) over multiple loading cycles without cracking. However, the occurrence of MPT is strongly
influenced by grain orientation. Depending on the specific grain orientation relative to the loading direction,
alternative mechanisms such as plastic slip and fracture may emerge. This study introduces a phase-field (PF)
based framework that integrates a PF-MPT model, a PF fracture model, and a crystal viscoplasticity model to
investigate the effects of grain orientation on MPT, plastic slip, and fracture mechanisms in SMC micropillars.
Single crystal micropillars are created to distinguish the orientations that facilitate each mechanism. A wide
range of grain orientations are found to predominantly exhibit MPT. Micropillars with grain orientations close to
the (100) and (001) directions primarily experience fracture, with minimal plastic slip. Additionally, samples
oriented along the (110) direction show a significant amount of plastic slip. A pole figure is constructed to
elucidate the interplay between MPT, cracking, and plastic slip under compressive loading conditions. This
research provides valuable insights into the intricate behavior of SMCs under different loading scenarios, crucial
for optimizing their performance in practical applications.

1. Introduction

Zirconia-based SMCs are intelligent materials known for their ca-
pacity of demonstrating either superelasticity or shape memory effect as
a result of MPT. MPT arises from phase change mainly between tetrag-
onal (T) and monoclinic (M) phases. The shape change induced by MPT
is large and due to the inherent brittleness of these ceramics, they are
often unable to accommodate such significant transformation expan-
sions. This is the main reason for their low fracture toughness and short
cyclic life. Multiple experimental studies on microscopic samples of
these ceramics have consistently highlighted grain boundaries (GBs) as
critical sites for crack initiation [1–3]. These investigations have
demonstrated that by reducing the number of grains and consequently
minimizing the presence of GBs and even generating single crystal
samples, these ceramics can undergo complete MPT over numbers of
loading cycles before experiencing fracture. For example, Lai et al. [1]
produced micropillars with low number of grains and they observed that
some samples can handle up to 55 cycles before they fractured. In
addition, experimental studies have identified plastic slips as one pri-
mary irreversible mechanism in these ceramics. In a different study, Du

et al. [2] showed that single crystal spherical samples of 16mol%
Ce-ZrO2 are able to handle up to about 110 cycles before they showed
fracture. Zeng et al. [3] observed that depending on the crystal orien-
tation in single crystal micropillars, these ceramics can exhibit MPT,
plastic slip, fracture, or a combination of these three mechanisms.

MPT, plastic slip, and fracture are highly dependent on microstruc-
tural features [3], and comprehensively understanding how these fea-
tures influence the interplay between these mechanisms can be
challenging, if not impossible, solely through experimental methods. In
this case, numerical studies can be a reliable alternative to experiments.
There have been a few atomistic simulation studies which investigated
the crystal orientation [4] and grain boundary [5,6] effects on supere-
lastic and shape memory behaviors [7] in zirconia-based nanopillars.
These studies, although valuable in providing some fundamental un-
derstanding of mechanisms and behaviors in the nanoscale, due to their
time and length scale limits are unbale to compare with the actual ex-
periments. At the microscale, the PF method has emerged as a powerful
approach for modeling both MPT and fracture. The first PF method to
model the transformation from T to M phase observed in zirconia-based
SMCs was developed more than a decade ago [8]. The model could
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successfully capture the crystal alternation between the two phases and
accurately predicted the experimentally observed microstructures.
Similar models were used later on to study transformation toughening
[9] and shape memory behaviors [10] in SMCs. The PF method has also
been utilized to model the interaction between MPT and cracking in
SMCs [11–16]. For instance, Moshkelgosha and Mamivand conducted
studies on fracture propagation in both single crystal [13] and poly-
crystalline [14] zirconia-based SMCs using the PF method. They
employed stress-controlled loading conditions. In a separate investiga-
tion by the same authors [15], they explored phase transformation and
fracture in a three-dimensional single crystal SMC, observing the initi-
ation and propagation of MPT from the crack tip. They predicted crack
deflection due to MPT, consistent with experimental reports. Notably,
none of these studies reported an ultimate stress or final stress drop in
their stress-strain curves, primarily because of applying stress-controlled
loading conditions. Additionally, these studies focused only on shape
memory effect behavior and none studied the superelastic behavior.
Furthermore, these models did not include plasticity, therefore they
were not able to study the interplay between MPT, fracture, and plastic
slip.

Recently, Lotfolahpour et al. [16] proposed a PF model to investigate
the interaction between MPT and cracking in the SE regime. They
addressed a common issue of the most PF-MPT models that underesti-
mate the elastic modulus. They successfully established an ultimate
strength for the material under investigation by applying
displacement-controlled loadings. Their work studied the effects of grain
orientation onMPT and crack path and captured reverse MPT behind the
crack tip. In another research, Cisse and Asle Zaeem [17], coupled the
PF-MPT model with a Von Mises based plasticity model to study the
interaction between MPT and plasticity in SMCs under monolithic
loading conditions. They identified GBs as critical sites with the highest
plastic strain. In addition, they observed that plastic deformation im-
pedes MPT and compromises the functionality of SMCs. There are
additional studies that focus on coupling PF-MPT with plasticity, either
general plasticity or crystal plasticity models, to examine the interaction
between MPT and plastic deformation in shape memory materials, with
a primary focus on NiTi [18–21]. However, none of these previous
studies have investigated MPT, plasticity, and fracture simultaneously,
and consequently, they have not been able to establish a comprehensive
understanding of the interaction between these mechanisms. In this
study, for the first time, we integrate MPT, plastic slip, and fracture
models to investigate the interplay between these mechanisms in 3D
micropillars. We utilize the PF method to model both MPT and fracture,
while adopting a crystal viscoplasticity model to accurately represent
plastic slip behavior in SMCs crystals. The aim is to predict the
orientation-dependent deformation and failure of micropillar SMCs. To
better present our findings, we illustrate the results in a pole figure
comparable to those created by micropillar experiments of SMCs.

2. Mathematical formulation

In this section, we first describe the integration of the elasticity, PF-
MPT and PF-fracture models. Then, we add plastic strains from slip
systems to the inelastic strain expression and discuss the calculation of
the plastic strains based on a crystal viscoplasticity model. We start the
formulation by expressing the total energy of the system as:

Ftot(ui, η1, η2, …, ηm) = Fel + Fch + Fgd + Ffr (1)

where Fel is the elastic strain energy, Fch is the chemical free energy, Fgd
is the gradient energy of the tetragonal-monoclinic or monoclinic-
monoclinic interfaces, and Ffr is the fracture energy. These energies
are explained in detail in the following.

• Elastic strain energy (Fel):

Fel can be written as:

Fel(ui) =
∫

V

1
2
g(ϕ)Cijklεelklεelij dV, (2)

where ui is the displacement, Cijkl is the elastic tensor, and g(ϕ) is the
degradation function to account for the effects of fracture on the elastic
energy. It should be noted we use g(ϕ) = (1 − ϕ)2 in this work, which is
one of the widely used degradation functions. In addition, εelij is the
elastic strain which is defined as the difference between the total strain
(εtotij ), transformation strain (εtrij ), and plastic strain (ε

pl
ij ):

εelij = εtotij − εtrij − εplij . (3)

The calculation of plastic strain is explained later in this section.
Considering a linear relation between PF order parameters (ηp) and
strains [16,22–24], εtrij is defined as:

εtrij =
∑m

p=1
ε00ij (p)ηp, (4)

where ε00ij is the stress-free strain tensor which represents the change in
microstructure between parent and product phases [17]. It should be
noted that ηp takes the value of unity in the monoclinic phase and zero in
the tetragonal phase, and m is the number of monoclinic variants.

The small strain assumption is considered and is defined as:

εtotij =
1
2

(
ui,j+ uj,i

)
. (5)

The difference between elastic constants in tetragonal and mono-
clinic phase is represented by the following linear relation [17]:

Cijkl(η1, η2,…, ηm) = CTijkl+
∑m

p=1
ηp
(
CMijkl − C

T
ijkl

)
, (6)

where CTijkl and C
M
ijkl are elastic constants of the tetragonal and monoclinic

phase, respectively. The elastic energy defined in Eq. (2) is based on the
Hooke’s law, therefore the stress tensor is related to the elastic strain
tensor through the following equation:

σij
(
ui, ηp

)
= Cijkl(η1, η2,…, ηm)εelkl. (7)

• Chemical free energy (Fch):

Fch determines the system’s energy dissipation due to MPT. The
2–3–4 or 2–4–6 Landau polynomials defined in terms of order parame-
ters are the most common types of Fch [25]. However, these chemical
energies can underestimate the elastic response in the beginning of the
stress-strain curve. Lotfolahpour et al. [16] proposed a modification to
the 2–3–4 polynomial to address the elastic modulus underestimation,
which is applied in this work as well:

Fch(η1, η2,…, ηm) =
∫

V

|ΔG|

(

a
∑m

p=1
η2p − b

∑m

p=1
η3p + c

(
∑m

p=1
η2p

)2

+ d
∑m

p=1

⃒
⃒ηp
⃒
⃒n
)

dV

1 < n≪2,

(8)
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where ΔG is the chemical driving force and is the difference in the
specific Fch between the parent (tetragonal) and the product (mono-
clinic). The following equation can be used to calculateΔG for 3Y-STZ at
different temperatures [17,26]:

ΔG(T→M) = − 6159.18+6.98T (9)

where the energy is in Jmol− 1(or Jm− 3) and the temperature (T) is in
Kelvin (K). In addition, a, b, c, d, and n are coefficients that should be
chosen in a way that maintain the value of the interfacial energy within
the physical reasonable range [16] and at ηp = 1 result in Fch =

ΔG(T→M).

• Gradient free energy (Fgd):

Fgd represents the interfacial energy between the tetragonal and
monoclinic phases and ensures a smooth transition of the PF order pa-
rameters between different phases. It is expressed as:

Fgd(η1, η2, …, ηm) =
∫

V

Вij
2
∑m

p=1
∇iηp∇jηpdV, (10)

where ∇ is the gradient operator and Bij is gradient energy tensor. We
assume that the gradient energy coefficient is isotropic (Bij = Bδij) [17].
Therefore the Eq. (10) becomes:

Fgd(η1, η2, …, ηm) =
∫

V

B
2
∑m

p=1
(∇ηp)

2dV. (11)

• Fracture energy (Ffr):

Jmol− 1Jm− 3Tabcdnηp = 1Fch = ΔG(T→M)Ffr presents the fracture
energy in the system and is defined as [27–29]:

Ffr(ϕ) =
∫

V

Gc
(

ϕ2

2k
+
k
2
|∇ϕ|2

)

dV, (12)

where Gc is the fracture surface energy in Griffith’s theory, and k is a
positive regularization parameter with the dimension of length to
regulate the width of the crack PF. ϕ is the PF fracture order parameter
that takes value of unity in cracked regions and zero in intact regions. In
this paper, we use the method proposed by Miehe et al. [30] to ensure
irreversibility of crack (crack healing prevention):

Fel(ui, t) = maxFel(ui, s), s ∈ [0, t]. (13)

2.1. Governing equations of MPT and fracture

The evolution of bothMPT and PF fracture are obtained by Ginzburg-
Landau equation [31]. This equation relates the rate of each order
parameter to the variational derivative of total free energy with respect
to the same order parameter. Using Ginzburg-Landau equation for MPT
yields the following evolution equation for PF order parameters:

∂ηp
∂t = L

(
δFtot
δηp

)

= L
(

δFel
δηp

+
δFch
δηp

+
δFgd
δηp

+
δFfr
δηp

)

, (14)

where L is the kinetic coefficient. The extended equations are presented
in appendix A.

In addition, using the Ginzburg-Landau equation for PF fracture
leads to:

∂ϕ
∂t = M

(
δFtot
δϕ

)

= M
(

δFel
δϕ

+
δFch
δϕ

+
δFgd
δϕ

+
δFfr
δϕ

)

, (15)

where M is called the fracture mobility coefficient. More details are

provided in appendix A.
In addition, by neglecting the body forces, the equilibrium equations

become:

divσ(ui,ϕ) = 0. (16)

2.2. Crystal viscoplasticity

Atomistic simulations [4] and experimental observations [3] have
established plastic slip as the predominant irreversible deformation
mechanism in single crystal zirconia-based SMCs oriented in particular
directions. To incorporate plastic slip in our formulation, we employ
crystal viscoplasticity. Slip systems are defined by two vectors: normal

vector of the slip plane ( p→) and the slip direction vector ( d
→
). Plastic

strain tensor of the nth slip system is expressed as [32]:

εplij =
∑N

n=1
γ̇nPnij (17)

whereN is the total number of slip systems, γ̇n is the plastic slip evolution
rate, and Pij are the components of the orientation tensor (Pn), also
knowns as symmetrized Schmid tensor, of the nth slip system and is
calculated as:

Pn =
1
2
(pn→⊗ dn

→
+ dn
→

⊗ pn→) (18)

In addition, the accumulated plastic slip and the magnitude of plastic
slip at time t are defined by [32] following equations respectively:

γ̇ =
∑N

n=1
|γ̇n| (19)

|γ| =
∫t

0

γ̇dt (20)

A slip system becomes active when the resolved shear stress on the
slip plane and in the slip direction reaches a critical or yield stress
threshold (τcr). The resolved shear stress in the slip direction, a scalar
quantity, is computed as follows [33]:

τn = σ(ui,ϕ)⋅Pn (21)

There are various flow rules to calculate the γ̇n. In this study, we use
the following relation which is based on the Chaboche-type potential
[32]:

γ̇n = ϑ sgn(τn)
〈
|τn| − τcrn

τDn

〉mn

+

(22)

where ϑ is the viscosity coefficient, m and τD are model constants, and
the Macaulay brackets is defined as 〈*〉+ =max(0,*). In addition, τcrn is
a function of |γ| and is defined to take the following form:
{

τcrn = σyon + Hn|γ|ξn if τcrn > σyominn
τcrn = σyominn if τcrn ≤ σyominn

(23)

where σyon is the initial yield, Hn is the hardening modulus, and σyominn is
the lowest possible yield stress of nth slip system.

2.3. Solution scheme and boundary conditions

The governing equations presented in the previous section are solved
in a finite element framework using the solid mechanics and mathe-
matics modulus of COMSOL Multiphysics. All simulations are under
load-controlled loading conditions unless otherwise stated. The bound-
ary conditions and sample dimensions are shown in Fig. 1. For all
models, quadrilateral 3D elements are generated by the swept mesh
algorithm feature in COMSOL. A mesh study was conducted where we
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found that a mesh size of 0.07 μm (or 18200 quadrilateral elements in
the domain) were sufficient to resolve the interface of different phases
and PF fracture profile, and a smaller mech size does not provide a
noticeably different result. The displacements are solved using the Solid
Mechanics module. The crack PF and Martensite PF are solved using the
General Form PDEmodule of COMSOL. In addition, the crystal plasticity
strains are calculated using the Domain ODEs module. The staggered
scheme [34] is used to solve the governing equations and the time step
of 0.05s is used for all simulations. In the staggered method, the gov-
erning equations are solved sequentially rather than simultaneously.
During each iteration, one equation is solved while the others remain
fixed. The system alternates between equations, updating each field in
turn. This iterative process continues until convergence is achieved,
with the error in each equation minimized to an acceptable level. By
updating one physical field at a time, the staggered method simplifies
the solution of complex multiphysics problems, making the process
more efficient and manageable, especially when direct coupling is
computationally demanding.

2.4. Material properties and model parameters

3Y-STZ (3 mol% yttria-stabilized tetragonal zirconia), which is a
SMC [35,36], is the material of study in this work. The equilibrium
temperature of 3Y-STZ is reported to be ~883 K [17]. We consider the
temperature of the system is constant and equal to 820 K and we use this
temperature to calculate ΔG in Eq. (9) which yields ΔG = − 433 Jmol− 1

( − 20× 106 Jm− 3). It is worth noting that the considered temperature
is lower than the equilibrium temperature, therefore, the system is in
SME regime (full strain recovery does not occur after unloading). Eq.
(24) and Eq. (25) show the stiffness tensor of tetragonal and monoclinic
phases, respectively [37,38]. In addition, 3Y-STZ has 12 different M
variants, and the stress-free strain tensor of each variant is expressed in
appendix A [15].

CTijkl =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

361

100

62
0

0

0

100

361

62
0

0

0

62

62

264
0

0

0

0

0

0
59

0

0

0

0

0
0

59

0

0

0

0
0

0

64

⎤

⎥
⎥
⎥
⎥
⎥
⎦

GPa, (24)

CMijkl =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

327

142

55
0

0

− 21

142

408

196
0

0

31

55

196

258
0

0

− 18

0

0

0
100

− 23

0

0

0

0
− 23

81

0

− 21

31

− 18
0

0

126

⎤

⎥
⎥
⎥
⎥
⎥
⎦

GPa. (25)

Table 1 shows the model parameters used in the simulations.
a, b, c, d, and n are calculated in a way that the Fch plot is a double-well
[17] and the value of Fch is equal to − 20× 106 Jm− 3 at ηp = 1. Plastic
slip, similar to MPT, forms localized small bands. Incorporating stress
softening into the yield stress is crucial for accurately modeling this
phenomenon, which necessitates selecting a negative value for the
hardening coefficient Hn [40]. The chosen value is notably large and
negative, a decision informed by molecular dynamics (MD) findings that
report a sharp decline in the stress-strain curve upon slip initiation [41].
In addition, it is important to note that the yield stress never reaches zero
or becomes negative, after slip initiation. Consequently, we must
establish a minimum yield stress (σyominn ) to account for this behavior.
Based on the observed trend in MD simulations, we set σyominn to be 50 %
of the initial slip yield stress [41]. Also, the approach to find σy0n value is
discussed in later sections. We chose B = 1× 10− 6 J

m which gives a
reasonable interface thickness between different phases and choosing a
smaller value does not affect the results noticeably. We considered the
family of {110}<110> as the slip systems of the tetragonal phase [42].
This system encompasses four distinct slip systems, therefore N in Eq.
(17) and Eq. (19) is 4. In addition, the Euler angles of the studied
micropillars are given in Table 2. It is important to highlight that the
orientation of (100) indicates alignment of the a-axis, b-axis, and c-axis
of the tetragonal phase with the z-axis, y-axis, and x-axis of the global
coordinate system, respectively (Fig. 1), while an orientation of (001)
denotes alignment of the a-axis, b-axis, and c-axis of the tetragonal phase
with the x-axis, y-axis, and z-axis of the global coordinate system,
respectively.

Fig. 1. Micropillar dimensions and boundary conditions.

Table 1
Model parameters.

Parameters Values

a,b,c,d, and n 2.15, 11.95, 7.5, 1.25, and 1.1 [17]
σy0n, σyominn , Hn , ξn , τDn, and mn 0.550 GPa, 0.275 GPa, − 150 GPa, 1, 1, and 1
B 1× 10− 6 Jm− 1

L 1× 10− 9 Pa− 1s− 1 [16]
M

1
m3

Js
[16]

ϑ 1× 104 Pa− 1s− 1

Gc, k 200 Nm− 1[39], 0.15μm

Table 2
Pillar IDs and orientations.

Pillar ID Euler Angles (in degrees)

E1 E2 E3

p1 0 0 0
p2 190 45 230
p3 285 45 320
p5 300 60 350
p6 30 75 340
p7 0 90 45
p8 0 90 0
p9 68 104 305
p10 245 35 200
p11 265 63 16
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3. Results and discussion

We investigated 11 grain orientations, as detailed in Table 2. To
visually represent our findings, we constructed a pole figure with three
vertices corresponding to orientations of (100), (110), and (001) as
shown in Fig. 2. To differentiate between MPT, slip, and crack, we fol-
lowed a systematic approach. Initially, a load ranging between 1.5mN to
2mN was applied, and simulations were run for one cycle. If MPT
occurred, we classified the pillar as a transforming pillar. It is worth
noting that there are no initial monoclinic seeds to trigger MPT, and the
occurrence of MPT depends on grain orientation, which will be dis-
cussed later. In cases where MPT did not occur, we increased the load to
approximately 3mN and observed the results after one cycle. If plastic
slip was observed, we designated the pillar accordingly. And, if plastic
slip was not observed, we further increased the load to approximately
5mN or higher until cracking was observed. This step-by-step process
allowed us to categorize the behavior of each pillar accurately.

Fig. 2 illustrates that a broad range of tested pillars exhibit full MPT.
However, pillar p8 displays fracture with minimal amount of MPT or
slipping. In pillar p1, a combination of MPT and fracture is observed
with a minor plastic slip. In this pillar, MPT initiates at a higher load,
explaining the extended plateau before complete fracture development.

Furthermore, pillar p7 demonstrates a considerable amount of
plastic slip and a very small amount of MPT. Our findings highlight that
the slip systems characterized by these normal vectors of the slip plane

( p→) and the slip direction vectors ( d
→
) p→=<110> and d

→
=<110> and

p→=<110> and d
→

=<110> exhibit the highest accumulation of plastic
slip among all the considered slip systems. The plastic slip is particularly
pronounced at the bottom edge of the pillar. This can be attributed to the
fully fixed boundary conditions, which induce high stress concentra-
tions, consequently leading to significant plastic deformation at this
region. However, it is worth noting that plastic slip also occurs within
the middle section of the pillar, as depicted in Fig. 2. It is worth
mentioning that in an experimental report, pillars with similar grain
orientations were also observed to exhibit only plastic slip [3]. The pole

figure presented in Fig. 2, agrees well with a similar experimental test
conducted on zirconia-based SMCs [3]. The discrepancy in MPT start
load and residual displacement between p7 in this study and the
experimental data could be due to the variations in the mechanical
properties of the materials under examination. While we utilized prop-
erties of 3-YSZ, the material in [3] was 2Y2O3-5TiO2-ZrO2 (mol%).

In addition, similar to experimental observations [3], our simula-
tions revealed that in pillars exhibiting MPT, only two monoclinic var-
iants out of the 12 possible variants from; specifically, variant 2 (η2) and
variant 6 (η6), with a predominant occurrence of η2. This observation
can be explained based on the deformation conditions described by its
stress-free strain, ε00ij (2). A deformation exerting contraction along the
c-axis and expansion along the a-axis and b-axis of the tetragonal crystal
structure favors the formation of η2. This deformation pattern aligns
with the effects induced by a compressive load applied along the z-axis.
Formation of a monoclinic variant depends on different factors such as
grain orientation, loading direction, and boundary conditions, making it
a complex and unpredictable phenomenon.

Fig. 3 depicts the load-displacement plots of selected pillars with full
MPT. From this figure, it can be deduced that grain orientation

Fig. 2. Pole figure presenting the effects of grain orientation on the interplay between MPT, cracking, and slip in micropillars.

Fig. 3. Load-displacement curve for selected pillars with full MPT.
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significantly impacts the elastic modulus in both loading and unloading
paths, the critical stress for MPT initiation, and the duration of the
plateau. Based on Fig. 3, the critical MPT load (MPT start load) ranges
from 0.9 mN (790 MPa) to 1.3 mN (1150 MPa). In addition, the residual
displacement is also highly dependent on the grain orientation and
ranges from 105 nm (3 % strain) to 190 nm (5.4 % strain).

It is important to note that simulations featuring fracture do not
exhibit a final drop and diverge once the crack is fully developed, and this
is due to the applied force-controlled loading condition. To observe the
ultimate strength and achieve a final drop in the stress-strain curve, a
displacement-controlled loading must be applied [16]. To obtain a final
drop and establish an ultimate strength, displacement-controlled loading
was applied to pillar p1, and the outcomes are presented in Fig. 4.

In Fig. 4, after the first drop in load, another plateau is observed. This
is due to the MPT occurrence after crack initiation. This observation
explains transformation toughening [9]. In other words, when crack
initiates, since stress becomes very high in front of the crack tip(s), MPT
triggers and becomes a source of energy dissipation in addition to
cracking. The energy dissipation due to MPT slows down the crack
propagation. This phenomenon reflects as a plateau or strain hardening
in the load-displacement plot. This result is also consistent with MD
observations on single crystal 3-YSZ [41]. Furthermore, the distinction
in the nature of these two boundary conditions leads to differences in the
crack path. While load-controlled simulations exhibit the occurrence of
η7 in displacement-controlled conditions, η11 emerges as the only
monoclinic phase. This observation can be explained by recognizing that
cracks significantly affect the stress distribution within the domain, ul-
timately affecting the occurrence of different monoclinic variants.
Therefore, variations in stress distribution resulting from different crack
paths can lead to the occurrence of different monoclinic variants in the
material.

3.1. Identification of σy0n in the crystal viscoplasticity model

The grain orientation of (110) (or Euler angles of (0◦,90◦,45◦)) yields
the highest resolved shear in the slip system of {110}<110>, as the slip
direction is closely aligned with the loading direction. To determine the
critical resolved shear stress (σy0n), we first selected the average plastic
yield stress to be 3 GPa [17]. To generate this average stress, a load of
3.4 mNwas applied to the micropillar with the radius of 1.2μm. The load
was applied to the micropillar p7, and the values for σy0n was decreased
from 3000 MPa until a slip band was observed. Throughout this process,
the objective was to identify the maximum values of σy0n that induce the
plastic slip, therefore the MPT function is turned off. The critical value of
σy0n was determined to be around 550 MPa. Fig. 5 depicts the slip band
and the load-displacement curve obtained during the identification of

σy0n. This figure shows that plastic slip localizes to a small band similar
to the experimental observations. Furthermore, once slip band forms,
the viscosity coefficient (ϑ) influences the deformation and the residual
displacement. In Fig. 5, the residual displacement falls within a
reasonable and acceptable range, indicating that the value selected for ϑ
is suitable.

4. Conclusion

We presented a 3D numerical framework integrating PF-MPT, PF-
fracture, and crystal viscoplasticity models to investigate the effects of
grain orientation on the interplay of mechanisms of MPT, fracture, and
plastic slip in deformation of SMCs under compressive loading
conditions.

Our findings revealed that single crystal 3-YSZ micropillars exhibit
complete MPT for a wide range of crystal orientations without experi-
encing irreversible mechanisms of fracture or plastic slip. We observed
that the initiation load for MPT ranges between 0.9 mN (790 MPa) to 1.3
mN (1150 MPa) which is in good agreement with experimental data.
Moreover, when the pillar’s a-axis aligns with the loading direction (z-
axis of the global coordinate), fracture emerged as the predominant
mechanism, while both MPT and slip occurred minimally.

For the micropillar with the (001) orientation, we observe a com-
bination of both MPT and fracture mechanisms. In the simulation per-
formed under displacement-controlled loading condition, we observed
that fracture initiated first in this pillar, followed by the occurrence of
MPT. The MPT induced a transformation toughening effect before the
pillar experienced complete cracking. Such complex phenomena are
challenging, if not impossible, to fully capture through experiments
alone. Additionally, this outcome shows the necessity of employing
displacement-controlled loading for simulating fracture, capturing the
complete process of crack propagation, and establishing the ultimate
strength of materials. Unlike load-controlled loading, displacement-
controlled loading enables a more comprehensive understanding of
fracture mechanisms and facilitates the observation of the entire crack
propagation process, which could involve other mechanisms, such as
transformation toughening in the case of superplastic or shape memory
materials.

For micropillars oriented along the (110) direction, we observed a
significant amount of plastic slip and a small amount of MPT. Our model
predicted that the plastic slip accumulates predominantly on the slip
systems with a normal vector p→=<110> and along the slip direction of

d
→

= <110> as well as p→= <110> and along d
→

= <110>. While other
slip systems may also be activated, the amount of plastic slip observed in
those slip systems is minimal.

The results of this investigation demonstrate the predictability and
accuracy of the proposed 3D numerical framework in studying the
deformation and failure of micropillars made of transformable mate-
rials. Our results illustrate that the proposed numerical approach yields

Fig. 4. The crack path, MPT, and mechanical response of p1 under load-
controlled and displacement-controlled loading conditions.

Fig. 5. Slip band formation and load-displacement curve for the micropillar p7
with σy0n = 550 MPa and no MPT.
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predictions in good agreement with experimental findings with respect
to both mechanisms and quantitative mechanical responses. Moreover,
it enables the capture of phenomena that are challenging, if not
impossible, to observe solely through experimental studies. The insights
provided by this work is crucial for optimizing the performance SMCs in
practical applications.
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Appendix A

Eqs. A1 through A4 show the derivatives of each energy term in Eq. (14) with respect to OP ηp:

δFel
δηp

=
1
2
g(ϕ)εelij

(
CMijkl − C

T
ijkl

)
εelkl −

1
2
g(ϕ)Cijkl(η1, η2,…, ηm)ε00kl (p)εelij −

1
2
g(ϕ)Cijkl(η1, η2,…, ηm)ε00ij (p)εelkl, (A1)

δFch
δηp

= |ΔG|(2aηp − 3bη2p + 4cηp
∑m

p=1
η2p + nd

⃒
⃒ηp
⃒
⃒n− 1sign(ηp)) 1 < n≪2, (A2)

δFgd
δηp

= − B∇2ηp, (A3)

δFfr
δηp

= 0. (A4)

Eqs. A5 through A8 show the derivatives of each energy term in Eq. (15) with respect to OP ϕ:

δFel
δϕ

= − (1 − ϕ)Cijkl(η1, η2,…, ηm)εelklε
el
ij , (A5)

δFch
δϕ

= 0, (A6)

δFgd
δϕ

= 0, (A7)

δFfr
δϕ

= Gc
(

ϕ
k
− k∇2ϕ

)

. (A8)

The following tensors are the stress-free strain tensors of 12 M variants:

ε00ij (1) =

⎡

⎣
0.0418
− 0.0769

0

− 0.0769
0.0048

0

0
0

− 0.0114

⎤

⎦ε00ij (2) =

⎡

⎣
0.0418
0.0769

0

0.0769
0.0048

0

0
0

− 0.0114

⎤

⎦

ε00ij (3) =

⎡

⎣
0.0049

0
− 0.0769

0
0.0117

0

− 0.0769
0

0.0180

⎤

⎦ε00ij (4) =

⎡

⎣
0.0049

0
0.0769

0
0.0117

0

0.0769
0

0.0180

⎤

⎦

ε00ij (5) =

⎡

⎣
0.0117

0
0

0
0.0049
− 0.0760

0
− 0.0760
0.0180

⎤

⎦ε00ij (6) =

⎡

⎣
0.0117

0
0

0
0.0049
0.0760

0
0.0760
0.0180

⎤

⎦

ε00ij (7) =

⎡

⎣
0.0048
− 0.0769

0

− 0.0769
0.0418

0

0
0

− 0.0114

⎤

⎦ε00ij (8) =

⎡

⎣
0.0048
0.0769

0

0.0769
0.0418

0

0
0

− 0.0114

⎤

⎦

ε00ij (9) =

⎡

⎣
0.0117

0
0

0
0.0419
− 0.0760

0
− 0.0760
− 0.0180

⎤

⎦ε00ij (10) =

⎡

⎣
0.0117

0
0

0
0.0419
− 0.0760

0
− 0.0760
− 0.0180

⎤

⎦

ε00ij (11) =

⎡

⎣
0.0419

0
− 0.0769

0
0.0117

0

− 0.0769
0

− 0.0181

⎤

⎦ε00ij (12) =

⎡

⎣
0.0419

0
0.0769

0
0.0117

0

0.0769
0

− 0.0181

⎤

⎦
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