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1. Experimental observations of plastic deformation 

In addition to elastic and visco-elastic deformation behavior, materials can undergo 
plastic deformation. The main characteristic of plastic deformation is that is is 
irreversible. Plastic deformation can be virtually instantaneous or time-dependent 
depending on the conditions under which deformation takes place. The main controlling 
variables are temperature and deformation rate. The wide range of possible material 
behavior during deformation is best illustrated in the following deformation map from 
Frost and Ashby: 

 
Fig. 1.1. Typical deformation mechanism map for pure, 

work hardened Ni with 1 µm grain size 

We will be mostly concerned with instantaneous or time-independent, permanent 
deformation or plastic deformation for short. Figure 1.2 is a schematic load-extension 
diagram when a specimen is plastically deformed in a tensile test. Initial yield occurs at a 
with departure from linearity. Range oa is called the elastic region. Only for some very 
high-strength metals is it possible to have nonlinear elastic behavior prior to internal 
yield. If the specimen is deformed beyond a to b and then the load is reduced to zero, the 
permanent deformation oc remains. The slope of cb is to a very good approximation the 
same as that of oa, i.e., proportional to Young's modulus E. The point of maximum load 
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is d. At or near this point localized necking begins and the specimen no longer deforms 
uniformly. At some point past d the specimen fractures. Necking is a material-geometric 
instability in which strain hardening of the material is insufficient to compensate for a 
local reduction in cross-sectional area. If one could obtain tensile data past the necking 
point, one would find that the true stress, ! = P / A, increases monotonically until failure 
starts. Typically, the initial yield strain is between 0.1 and 1% while the strain at necking 
is 10 to 40 times larger. There is virtually no permanent change in volume after the 
specimen has been deformed. Furthermore, the force-elongation curve is essentially 
unchanged when the specimen has hydrostatic pressure superimposed on it. Hydrostatic 
pressure alone induces almost no permanent deformation.  

Plastic deformation of typical structural materials can be considered rate-independent 
at room temperature and at normal strain-rates. For strain rates in the range of 10!6

/ sec.  
to 10 / sec , the behavior is relatively insensitive to the strain-rate at which the test is 
conducted. If the temperature is a significant fraction of the melting temperature (in 
Kelvin), however, the strain-rate sensitivity becomes marked. Tin or lead are examples 
where even at room temperature rate effects play a role. Figure 1.3 shows the result of 
tests conducted at constant strain-rate ˙ ! 

1
< ˙ ! 

2
< ˙ ! 

3
( ) . The strain-rate dependence increases 

with increasing temperature. Rate effects are also more important in BCC than FCC 
materials. In what follows, we will assume that the temperature is low enough that strain-
rate effects can be neglected, and we will consider time-independent plasticity. Typically, 
this means the temperature is below about 0.4 times the melting temperature on an 

 
Fig. 1.2. is a typical load-extension diagram 
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absolute temperature scale (see deformation mechanism map in Figure 1.1). Above 0.4 
times the melting temperature, creep becomes important (see Figure 1.3). 
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Fig 1.3. (a) Tests conducted at different constant strain rates; (b) tests conducted at 
different constant stress σ3 > σ2 > σ3 (creep tests). 
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2. Foundations of plasticity 
In order to determine the stresses and strains in a body subjected to external forces, 

we can use the equations discussed in the previous section. In addition to these equations 
(i.e., definitions of stress and strain, compatibility and equilibrium equations, boundary 
conditions), we also need equations linking stresses and strains. These equations are the 
constitutive equations of the material under consideration and they are obviously material 
dependent. In the following sections, we will describe the plastic response of a material in 
the presence of a stress field. 

2.1. Characterization of deformation under uniaxial stress 

Consider a tensile specimen in a uniaxial stress state σ. Figure 2.1 is a schematic 
representation of the stress-strain curve. Let !y

o  be the initial yield stress in tension and 
!y  be the current yield stress in tension, i.e., !y = max !( ) . From observation, we know 

that at a given stress level σ, the total strain ε comprises both elastic strain ! e and plastic 
strain ! p  (See Fig. 2.1):  

 ! = !
e
+ !

p , (2.1) 

where the elastic strain is given by ! e

= " / E . We then define the tangent modulus as 
follows: 

 E
t
=
d!

d"
 or ˙ ! = E

t
˙ " , (2.2) 

where Et is of course a function of the stress σ. Thus, we find the following expression 
for the plastic strain rate as a function of the tangent modulus 

 ˙ ! 
p

= ˙ ! " ˙ ! 
e

=
1

Et
"

1

E

# 

$ 
% 

& 

' 
( ˙ ) . (2.3) 

We define the secant modulus as follows: 
 E

s
=
!

"
 (2.4) 

where Es is again a function of the stress σ. The total plastic strain can then be written as 
a function of the secant modulus 

 
Fig. 2.1. Definition of secant and tangent moduli 
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In the next few paragraphs, we present a number of simple mathematical models to 
describe experimental uniaxial stress-strain curves of metal alloys. These mathematical 
representations are important for two reasons. First, these “laws” incorporate parameters 
that can be used to compare the resistance of materials to plastic deformation (this is a 
“Material Science” point of view). Second, analytical formulae are necessary in order to 
allow analytical or closed-form analyses of mechanical problems. The following models 
are sometimes used to describe uniaxial deformation behavior: 

1. The Ramberg-Osgood stress strain curve 
The virgin curve of a workhardening solid is frequently approximated by the Ramberg-
Osgood formula 

 ! =
"
E

+ #
"

R

E

"
"

R

$ 

% 
& 

' 

( 
) 

m

, (2.6) 

where α and m are dimensionless constants, and σR is a reference stress. If m is very 
large, then εp remains small until σ approaches σR, and increases rapidly when σ exceeds 
σR, so that σR may be regarded as an approximate yield stress. In the limit when m 
becomes infinite, the plastic strain is zero when σ < σR, and indeterminate when σ = σR, 
while σ > σR would produce an infinite plastic strain and is therefore impossible. This 
limiting case accordingly describes an elastic perfectly plastic solid with yield stress σR. 
The Ramberg-Osgood representation has the advantage not to be piecewise, i.e., it has a 
continuous derivative. It agrees with Hooke’s law only for σ → 0 and should be used for 

 
Fig. 2.2. Schematic representation of the Ramberg-Osgood formula 
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problems involving a significant amount of plastic straining (i.e., εp >> σR/E). Note that 
expressing the stress as a function of strain requires solving a non-linear equation. 
2. Power hardening law 

If the deformation is sufficiently large for the elastic strain to be neglected, then Eq. 
(2.6) can be solved for σ in terms of ε, resulting in the following expression: 

 ! = C"
n , (2.7) 

where n=1/m is often called the work-hardening exponent. Note that the stress-strain 
curve represented by the power low equation has an infinite slope at the origin. In order 
to get around this problem one sometimes uses the piecewise power law. 
3. Piecewise power hardening law 

The piecewise power hardening law is given by: 

 ! =

E" " #
! y

o

E

! y

o E"

! y
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 (2.8) 

A graphical representation of the piecewise power hardening law is shown in Fig. 2.3. 

 
Fig. 2.3. Graphical representation of the piecewise power hardening law 

4. Elastic-perfectly plastic 
In the limit when m becomes infinite in Eq. (2.6) or n becomes zero in Eq. (2.8), we 

have a piecewise linear stress-strain curve representing an elastic-perfectly plastic 
material. This is a material that has a normal elastic range, but does not show any work 
hardening upon yielding. In a further simplification, we can neglect the elastic strains and 
we obtain the stress-strain curve of a rigid-perfectly plastic material (See Fig. 2.4).  
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Fig. 2.4. Stress-strain curves for elastic-perfectly plastic and rigid-perfectly plastic 
materials, respectively. 

2.2. Deformation behavior in multiaxial stress-strain states 

It is relatively straightforward to characterize the deformation behavior of a material 
in a simple uniaxial stress-state. It is important, however, to know the behavior of a 
material in a complex multiaxial stress state as well. In particular, we need to know when 
the deformation behavior changes from elastic to plastic. The aim of this section is to 
build up constitutive theories of plasticity. The other ingredients of a solid mechanics 
theory are unchanged: definition of stress (statics), definition of strain (kinematics), 
compatibility relationships, equilibrium equations, and the boundary conditions 
belonging to each specific problems. A general constitutive theory aims at relating all the 
components of the stress tensor to all the components of the strain tensor through a 
function F, which may depend on several variables: 

 

  

! = F ",A1, ...,An( )  

where the Ai's are all possible variables that affect the mechanical response of a material 
(elastic moduli, indicators of the stress and strain histories, temperature, strain rate, the 
yield stresses for the different slip systems, the hardening coefficient for all slip systems, 
parameters related to recrystallization, crystallographic orientation distribution functions, 
dislocation substructure cell sizes,...). 

In the macroscopic theory of plasticity presented in this section, only macroscopic 
variables are considered: elastic moduli, indicators of the stress and strain histories, 
current stress and strain state, temperature, strain rate, macroscopic yield stress (or yield 
stresses for anisotropic theories), macroscopic hardening coefficient (or coefficients for 
anisotropic theories). Physically, stresses and strains in such a theory have a meaning at a 
level where non-uniformity in the microstructure (inclusions, second phases, grain 
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boundaries, grain interactions, texture effects, ...) are averaged. For typical metals, a 
representative volume element, i.e. the smallest volume element, which contains all 
information about the material1, must have a large number of grains (>100), depending on 
the texture. Representative volume elements for polycrystals will range from smaller than 
10*10*10 µm3 in fine-grained metals with sharp textures (a "sharp texture" means that 
almost all grains are oriented identically and thus a smaller number of grains is necessary 
to get good averaging) to larger than 1*1*1 mm3 for large-grained materials. 

Here we will discuss the incremental theory of plasticity. Plasticity is intrinsically 
path-dependent and the incremental theory accounts for loading history. The natural way 
to build a mathematical theory involving history effects is to relate stress increments to 
strain increments and not the total stress to the total strain. We will show the general 
features of the incremental theory of plasticity and then study to the simplest theory, J2-
incremental theory, which involves the variable J2, a criterion on whether plastic loading 
or elastic loading or unloading occurs, and the current state of stress. 

In the most general case, the initial transition from elastic to plastic deformation of an 
initially isotropic material depends on the complete state of stress at the point under 
consideration. In order to make it easier to describe this, we introduce a six-dimensional 
Cartesian stress (or strain) space, where every point represents a particular stress (strain) 
state determined by the six independent element of the stress (or strain) tensor. If we use 
the principal stresses (σ1, σ2, σ3) as coordinates, we speak of the Haigh-Westergaard 
stress space. A stress-history is then defined as a locus of stress-states in stress space. A 
radial loading path or radial stress history is a straight line in stress space passing 
through the origin. This is also called a proportional loading path.  

The region in stress space where the material behaves elastically is separated from the 
region where the material deforms plastically by a surface. This surface is called the yield 
surface of the material and can be represented mathematically by 

 F ! ij( ) = 0 . (2.9) 

Equation (2.9) represents a hypersurface in the six-dimensional stress space and any point 
on this surface represents a point where yielding can begin. 

                                                
1 this also means that if the size of the representative volume element is doubled, the same relationship 
between the stresses and strains will be found. 
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If the stress is on the current yield surface and if the stress increment is such that the 
stress leaves the yield surface then elastic unloading, unloading for short, is said to have 
occurred. If a plastic strain increment occurs due to the stress increment "pushing into" 
the yield surface then loading occurs. If the stress increment is tangent to the yield 
surface then the plastic strain increment is zero and neutral loading is said to have 
occurred, as will be discussed in more detail below. 

We mentioned in the introduction that to a very good approximation plastic 
deformation does not change the volume of the material and that the hydrostatic pressure 

 p = !
1

3
" kk  (2.10) 

has no effect on the plastic strains. Thus, the plastic strains, ! ij
p , depend only on the 

history of the stress deviator 

 sij = ! ij "
1

3
! kk# ij . (2.11) 

Since plastic deformation conserves volume, we also have 

 !kk
p
= 0 . (2.12) 

Let's now consider an initially isotropic material, at least as far as plastic properties 
are concerned. Rotating the coordinate axes should not affect the yield behavior and we 
can choose the principal axes for the coordinates. For an isotropic material the order of 
the stresses is unimportant. The expression for the yield surface, Eq. (2.9), can then be 
written as  

 F
1
!
1
,!

2
,!

3
( ) = 0 . (2.13) 

Since the hydrostatic pressure does not influence yielding, only the deviatoric 
components of the stress tensor enter into the equation for the yield surface and we can 
write 

 F
2
s
1
,s
2
, s
3

( ) = 0 , (2.14) 

where s1, s2, and s3 are the principal stresses of the stress deviator. Since there is a one to 
one correspondence between principal stresses and stress invariants  

 

  

J1 = s1 + s2 + s3,

J2 = ! s1s2 + s2s3 + s3s1( ),
J3 = s1s2s3,

 (2.15) 
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and keeping in mind that the first invariant of the deviator is zero, we can replace 
Eq. (2.14) with 

 f J
2
, J

3
( ) = C , (2.16) 

where C is a constant. Note that invariants used in Eq. (2.16), are the invariants of the 
stress deviator defined in Eq. (2.11), not those of the stress tensor [σij]. With the 
additional assumption that both σij and ! " ij  are on the yield surface, we find 

 

  

f J2,J3
2( ) = C . (2.17) 

Exercise: Show all of the following equalities: 

J
2
=
1

2
sijsij =

1

2
s
1

2 + s
2

2 + s
3

2( ) =
1

3
!
1

2 + !
2

2 +!
3

2
"!

1
!
2
"!

2
!
3
" !

3
!
1( ),

J
3
=
1

3
sijs jksik =

1

3
s
1

3
+ s

2

3
+ s

3

3( ) = s1s2s3.
 

Shape of yield surfaces for isotropic materials 
Consider a line L in the Haigh-Westergaard space that has equal angles with each of 

the coordinate axes (see Fig. 2.7). For every point on this line, the stress state is one for 
which: 
 !

1
= !

2
= !

3
. (2.19) 

Every point on this line corresponds to a hydrostatic stress state. The plane perpendicular 
to this line and passing through the origin is called the π-plane and has equation 
 !

1
+ !

2
+ !

3
= 0 . (2.20) 

Every point in the π-plane corresponds to a deviatoric stress state. Now consider an 

 

Fig. 2.7. Hydrostatic and deviatoric components in stress space. 
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arbitrary stress state σ  represented by a vector in Haigh-Westergaard space. This vector 
can always be decomposed in a vector lying along L (the hydrostatic component) and one 
parallel to the π-plane (the deviatoric component). Clearly, any stress state on a line L' 
through σ   and parallel to L has the same deviatoric component as σ  and will differ only 
in the hydrostatic component. Since yielding is determined by the deviatoric component 
only, it follows that if one of the points on L' lies on the yield surface, they must all lie on 
the yield surface. The yield surface is therefore composed of lines parallel to L', or in 
other words, it is a cylinder with generators parallel to L. The only assumption we have 
made to come to this conclusion is that plastic deformation is independent of the 
hydrostatic stress. 

Examples of initial yield surfaces 
We now look in more detail at some commonly used yield surfaces. 

1. The Von Mises yield criterion 
According to the Von Mises criterion, the yield surface depends only on J2. and is 

given by the following equation: 
 J

2
= C , (2.21) 

where C is a constant to be determined from the uniaxial deformation behavior. In simple 
tension, J2 takes on a simple form: 

 

Fig. 2.8. The Tresca and Von Mises yield criteria. 
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where σy
o is the initial yield stress. The Von Mises yield criterion then becomes: 

 

  

J
2

=
1

3
! y

o( )
2

 (2.22) 

or 
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1
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2
( )
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( )
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+ !
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( )

2

= 2 !y

o( )
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 (2.23) 

The Von Mises criterion results in an ellipse in the (σ1, σ2) plane and a schematic 
depiction is shown in Fig. 2.8.  
2. The Tresca yield criterion 

The Tresca yield criterion is probably the oldest criterion for plastic deformation, first 
proposed by Tresca in 1864. According to the Tresca criterion, yield occurs if the 
maximum shear stress reaches a critical value. This is so when 

 !
1
" !

3
= 2# y = ! y

o , (2.24) 

where τy is the yield stress in pure shear and it is assumed that σ1 > σ2 > σ3. The Tresca 
criterion can be written in the form 

 4J
2

3
! 27J

3

2
! 36" y

2
J
2

2
+ 96" y

4
J
2
! 64" y

6
= 0 . (2.25) 

This form of the criterion has absolutely no practical interest except to show that the 
Tresca criterion fits within the logical framework we have built up thus far. Figure 2.8 
shows the Tresca yield criterion in the (σ1, σ2) plane. 

It can be shown that if the yield locus is assumed to be convex and one circumscribes 
the Von Mises circle in the π-plane by a regular hexagon, then all possible yield loci must 
lie between the two regular hexagons inscribed in, and circumscribing the Von Mises 
circle. Note that the inner hexagon corresponds to the Tresca criterion. Later on, we will 
show that the yield surface must indeed be convex and these hexagons are real bounds to 
the actual yield surface. If the Von Mises criterion is taken as a reference, then the 
maximum deviation of any admissible yield surface is approximately 15.5%. 
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2.3. Incremental or flow theories of plasticity 
As mentioned in the previous section, plasticity is a stress-history dependent phenomenon 
and it is necessary analyze plasticity problems with an incremental approach to take the 
stress history into account. Before discussing the incremental or flow theory of plasticity, 
we need to make a few observations on the yield surface of a stable or work hardening 
solid.  
2.3.1. Drucker's postulates 
Drucker defined a stable material as a material that always dissipates energy under any 
closed cycle of stress. It is possible to derive mathematical equations to describe this type 
of behavior, but that is outside the scope of this course. We do note, however, that for 
stable materials 

   
!!

ij

p
!"

ij
# 0 , 

for any plastic strain increment. This inequality has some interesting consequences 
regarding the plastic properties of a stable material: 

1) If the yield surface is smooth at ! ij

o , then ˙ ! ij
p  is perpendicular to the yield surface. 

2) If there is a corner at ! ij

o , then ˙ ! ij
p  lies in the forward cone of normals.  

3) The yield surface is convex. 
These properties are important in the formulation of any incremental plasticity theory. 
2.3.2. Incremental or flow theories for materials with smooth yield surfaces 
Since for plastic deformation, the stress in the final state depends on the path of 
deformation, the equations describing plastic strain cannot in principle be finite relations 
connecting the components of stress and strain. They must be non-integrable differential 

 
 a. b. c. d. 

Fig. 2.13. Stress-strain curves for various materials with closed strain cycles. 
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relations. In this section we will discuss theories that relate the plastic strain increment to 
the deviatoric stress state in a solid. Unlike deformation theories, these so-called 
incremental or flow theories do take the stress history of a solid into account. The theory 
is based on the following three postulates: 

(1) There exists a yield surface, which in general depends on the entire previous 
stress history. The yield surface is taken to be smooth without corners. 

(2) The material is stable. This implies that the plastic strain increment is parallel to 
the outward normal on the yield surface. 

(3) The relationship between strain increment and stress increment is linear, i.e., 
˙ ! ij

p
= Hijkl

˙ " kl , where Hijkl does not depend on the stress increment. This is an 
assumption that has been tested experimentally (see Drucker 1950). 

2.3.3. Relations for J2 flow theory  
In J2 flow theory, we assume that the plastic deformation behavior is a function of the 
second stress invariant only. Initial yield occurs when the von Mises criterion is satisfied: 

 F J
2

( ) = J
2
=
1

3
!y

o2

= " y

o2 , (2.73) 

where σy
o and τy

o are the yield stress in uniaxial tension and pure shear, respectively. 
Subsequent yield is governed by the following equation: 

 J
2
= J

2

max . (2.74) 

In this equation J2
max is the maximum value of J2 over the entire prior stress history. J2 

flow theory implies isotropic strain hardening (See Fig. 2.16). From tensile data alone, it 
is clear that this characterization is inadequate for reversed loading histories, since it 
ignores entirely the Bauschinger effect. For large amounts of reversed straining, however, 
J2 flow theory may give an accurate enough description.  
Let's now formulate the relations for J2 flow theory. The normal to the yield surface is 
given by 

 
 

µ
ij
=

!F

!"
ij

= s
ij
. (2.75) 

What are the conditions for loading and unloading? Well, when we are loading, we're 
pushing out the yield surface, so that 

 Loading: 
    
J

2
= C and !J

2
= µ

ij
!!

ij
> 0 . 
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We find similar conditions for neutral loading and unloading: 

 Neutral loading: 
    
J

2
= C and !J

2
= µ

ij
!!

ij
= 0 , 

 Unloading: 
    
J

2
= C and !J

2
= µ

ij
!!

ij
< 0 .  

According to Drucker's postulates, the plastic strain increment must be perpendicular to 
the yield surface, i.e., it must scale with 

 
µ

ij
= s

ij
. This condition is satisfied if the plastic 

strain increment is given by 

 ˙ ! ij
p
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1

h J
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sij
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2
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= J
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 (2.76) 

where h is a function of just J2. Why include 
   
!J
2
 in this expression? Well including it, 

ensures that we satisfy the Drucker inequality: 
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2

> 0 , (2.77) 

as long as h > 0. Taking into account Hooke's law for isotropic material, we find the total 
strain increments  

 ˙ ! ij =
1+ "

E
˙ # ij $

"

E
˙ # pp% ij + &h

$1

sij
˙ J 

2
, (2.78) 

where α satisfies the following conditions: 

 
! = 1 ˙ J 

2
" 0,

! = 0  ˙ J 
2
# 0.

 (2.79) 

Equation (2.78) can be inverted to yield the stress increments as a function of strain 
increments 

 

Fig. 2.16. Subsequent yield surface in J2 flow theory. 
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where 
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The factor 
  
h J

2( )  can be determined from any monotonic proportional loading history. 
Using simple tension, for example, we find that 
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so that 
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From the experimental stress-strain curve we can determine the plastic strain 
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Comparing both equations, then yields 
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which can be substituted into Eq. (2.78). It is often convenient to use the concept of 
equivalent stress 
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e
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Note that in simple tension !
e
= ! . Thus, Eq. (2.85) can be written more explicitly in 

terms of equivalent stress: 

 h
!1
J
2

( ) =
9

4

1

"
e

2

1

E
t
"
e( )

!
1

E

# 

$ 
% 
% 

& 

' 
( 
( 
. (2.87) 



 18 

3. An example: Combined torsion and tension of a thin-walled tube 
As an example that illustrates the properties of the plasticity equations introduced so far, 
we now consider the symmetric deformation of a circular thin-walled tube under the 
action of a twisting moment and an axial tension. We assume that the material is isotropic 
and that it is incompressible, i.e., Poisson's ratio is one half. The stress components 
different from zero are !

11
 and !

13
, where the x1-axis is taken parallel to the center axis 

of the tube, and the x3-axis parallel to the hoop direction. The other stress components 
can be neglected. The strain components ε12 and ε23 can be neglected in comparison to ε13.  
The von Mises yield criterion can be written in the (!

11
,!

13
) plane as follows 
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2

= 1, (2.99) 

where σy and τy are the yield stresses in uniaxial tension and shear, respectively. We 
introduce the following dimensionless variables: 

 

q =
!
11

! y

" =
!
13

" y

# =
$
11

$y
% =

$
13

% y

 (2.100) 

where !y = E" y and !y = 2G" y . Introducing the dimensionless variables into the yield 
criterion leads to the following expression 

 
  
! = 1" q

2 . (2.101) 

Let's now turn our attention to J2-flow theory. We use the incremental relation 

 ˙ ! ij =
1+ "

E
˙ # ij $

"

E
˙ # pp% ij + &h

$1

sij
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2
, (2.102) 

to show that 
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 (2.103) 

After introducing the dimensionless variables, we find 
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˙ ! = ˙ q + "h#1 ˙ J 

2

2

3
Eq,

˙ $ = ˙ % + "h
#1 ˙ J 

2

2

3
E%.

 (2.104) 

After eliminating !h
"1 ˙ J 

2
 from these equations, we find 

 
˙ ! " ˙ q 

˙ # " ˙ $ 
=

q

$
. (2.105) 

Eliminating τ from Eqs. (2.104) and (2.105), leads to the following non-linear differential 
equation in q: 

 
˙ q 

˙ ! 
= 1" q

2

" q 1" q
2

˙ # 

˙ ! 
. (2.106) 

It must be emphasized that in order to determine q from this equation, it is necessary to 
prescribe the deformation path γ = γ(η). Some solutions for various strain paths are 
shown in Fig. 2.17. 
Exercises:  

Calculate q for the following two deformation paths; 

  a. A linear deformation path γ(η) = Α + Β η 

 b. A step-like deformation path consisting respectively of two segments 
η =  constant and γ =  constant. 

 

Fig. 2.17. Solutions for a thin-walled circular tube for various stress histories. 
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4. Application: The thick-walled hollow sphere (Adapted from Lubliner) 
Like the problem of a tube under torsion, that of an axisymmetrically loaded shell of 

revolution is statically determinate when the shell is thin walled, but ceases to be so when 
the shell is thick-walled. 
4.1. Elastic Hollow Sphere under Internal and External Pressure 
Basic Equations 

In a hollow sphere of inner radius a and outer radius b, subject to normal pressures on 
its inner and outer surfaces, and made of an isotropic materials, the displacement and 
stress fields must be spherically symmetric. The only non-vanishing displacement 
component is the radial displacement, u, a function of the radial coordinate r only. The 
only non-vanishing strains are the radial and circumferential strains: 

 

  

!
r

=
du

dr
 and 

  

!" = !# =
u

r
. 

The strains obviously satisfy the compatibility condition 

 !
r
=
d

dr
r!

"
( ).  (4.3.1) 

The only non-vanishing stress components are the radial stress !
r
 and the circumferential 

stresses 

  

!" = !# , which satisfy the equilibrium equation 

 d!
r

dr
+ 2

!
r
" !

#

r
= 0.  (4.3.2.) 

Elastic solution 
The strain-stress relations for an isotropic linearly elastic solid reduce in the present 

case to 
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The compatibility equation Eq.(4.3.1) may now be rewritten in terms of the stresses to 
read 

 

  

d
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r
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r
( ) = 0, 

which with the help of Eq. (4.3.2) reduces to 
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( ) = 0. 

The quantity !
r
+ 2!

"
 is accordingly equal to a constant, say 3A. Furthermore, we find 

that 
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so that  

 

  

2

3

d !
"
#!

r( )
dr

= #
d!

r

dr
. 

Equation (4.3.2) may then be rewritten as 
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leading to the solution 
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r
3
,  

where B is another constant. The stress field is therefore given by 
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r
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r
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#
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. 

With the boundary conditions 

 !r r =a
= "pi ,  ! r r= b

= " pe , 

where pi  and  pe  are the interior and exterior pressures, respectively, the constant A and 
B can be solved for, and the stress components 

  

!
r
 and 

  

!
"

can be expressed as 
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that is, the stress field is the superposition of a uniform stress field equal to the negative 
of the average of the external and internal pressures and a variable stress field 
proportional to the pressure difference. 
Sphere Under Internal Pressure Only 

The preceding solution is due to Lamé. It becomes somewhat simpler if the spheres is 
subject to an internal pressure only with pi = p  and  pe = 0 . The stresses are then 



 22 

 

  

!r = "
p

b / a( )
3 "1

b
3

r
3 "1

# 

$ 
% 

& 

' 
( ,

!) =
p

b / a( )
3 "1

b3

2r3
+1

# 

$ 
% 

& 

' 
( ,

 

If the sphere material is elastic-plastic, then the largest pressure for which the preceding 
solution is valid is that at which the stresses at some r first satisfy the yield criterion; this 
limiting pressure will be denoted pE . Since two of the principal stresses are equal, the 
stress state is equibiaxial, and both the Tresca and Von Mises yield criteria reduce to 
 !

"
# !

r
= !

Y
 (4.3.3) 

where !
Y

 is the tensile yield stress, since !
"
> !

r
 everywhere. The value of !

"
# !

r
 is 

maximum at r = a, where it attains 

  

3p 2 1! (a /b)
3[ ] . The largest pressure at which the 

sphere is wholly elastic is therefore 
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! y 1 "
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4.2. Elastic-Plastic Hollow Sphere Under Internal Pressure 
Stress Field 

When the pressure in the hollow sphere exceeds pE , a spherical domain of inner 
radius a and outer radius c becomes plastic. The elastic domain c < r < b behaves like an 
elastic shell of inner radius c that is just yielding at r = c, so that !

r
 and !

"
 are given by 
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where pc = !"r c( )  is such that the yield criterion is met at r = c, that is, it is given by the 
right-hand side of Eq. (4.3.4) with a replaced by c: 
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Therefore, 
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In particular, !
"
(b) = !

Y
c / b( )

3
.  

In the plastic domain, the yield criterion Eq. (4.3.3) holds everywhere, so that the 
equilibrium equation Eq. (4.3.2) may be integrated for !

r
, subject to continuity with the 

elastic solution at r = c, to yield, 
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assuming the solid is ideally plastic. We immediately obtain !
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The radius c marking the extent of the plastic domain is obtained, at a given pressure p, 
from the condition that !r (a) = " p,  or 
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When c = b, the shell is completely plastic. The corresponding pressure is the ultimate 
pressure, given by  

 pU = 2!Y ln
b

a
. 


