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This paper studies the differential quadrature finite element method (DQFEM)13
systematically, as a combination of differential quadrature method (DQM) and standard
finite element method (FEM), and formulates one- to three-dimensional (1-D to 3-D)15
element matrices of DQFEM. It is shown that the mass matrices of C0 finite element in
DQFEM are diagonal, which can reduce the computational cost for dynamic problems.17
The Lagrange polynomials are used as the trial functions for both C0 and C1 differential
quadrature finite elements (DQFE) with regular and/or irregular shapes, this unifies the19
selection of trial functions of FEM. The DQFE matrices are simply computed by alge-
braic operations of the given weighting coefficient matrices of the differential quadrature21
(DQ) rules and Gauss-Lobatto quadrature rules, which greatly simplifies the construc-
tions of higher order finite elements. The inter-element compatibility requirements for23
problems with C1 continuity are implemented through modifying the nodal parameters
using DQ rules. The reformulated DQ rules for curvilinear quadrilateral domain and its25
implementation are also presented due to the requirements of application. Numerical
comparison studies of 2-D and 3-D static and dynamic problems demonstrate the high27
accuracy and rapid convergence of the DQFEM.

Keywords: Differential quadrature method; finite element method; free vibration;29
bending.

1. Introduction31

The finite element method (FEM) is a powerful tool for the numerical solution
of a wide range of engineering problems. In conventional FEM, the low order33

schemes are generally used and the accuracy is improved through mesh refine-
ment, this approach is viewed as the h-version FEM. The p-version FEM employs35

a fixed mesh and convergence is sought by increasing the degrees of element. The
hybrid h-p version FEM effectively marries the previous two concepts, whose con-37

vergence is sought by simultaneously refining the mesh and increasing the element
degrees [Bardell, 1996]. The theory and computational advantages of adaptive p- and39

hp-versions for solving problems of mathematical physics have been well documented
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[Babuska et al., 1981; Oden and Demkowicz, 1991; Shephard et al., 1997]. Many1

studies have focused on the development of optimal p- and hp-adaptive strategies
and their efficient implementations [Campion et al., 1996; Demkowicz et al., 1989;3

Zhong and He, 1998]. Issues associated with element-matrix construction can be
summarized as5

(1) Efficient construction of the shape functions satisfying the C0 and/or C1 conti-
nuity requirements.7

(2) Efficient and effective evaluations of element matrices and vectors.
(3) Accounting for geometric approximations of elements that often cover large9

portions of the domain.

The efficient construction of shape functions satisfying the C0 continuity is pos-11

sible and seems to be simple for both p- and hp-versions [Shephard et al., 1997],
but the construction of shape functions satisfying the C1 continuity is difficult for13

displacement-based finite element formulation [Duan et al., 1999; Rong and Lu,
2003]. The geometry mapping for the p- and hp-version can be achieved through15

both the serendipity family interpolations and the blending function method
[Campion and Jarvis, 1996], thus we focus on the first two issues for efficiently17

constructing FEM formulation satisfying the C0 and/or C1 continuity requirements
in present study.19

Analytical calculation of derivatives in the h-version is possible and usually
straightforward; nevertheless, explicit differentiation is extremely complicated or21

even impossible in the p- and hp-versions. As a result, numerical differentiation
has to be used, but which increases the computational cost [Campion and Jarvis,23

1996]. An alternative method of deriving the FEM matrices is to combine the finite
difference analogue of derivatives with numerical integral methods to discretize the25

energy functional. This idea was originated by Houbolt [1958], and further devel-
oped by Griffin and Varga [1963], Bushnell [1973], and Brush and Almroth [1975].27

As the approach is based on the minimum potential energy principle, it was called
the finite difference energy method (FDEM). Bushnell [1973] reported that FDEM29

tended to exhibit superior performance normally and required less computational
time to form the global matrices than the finite element models. However, during the31

further applications of the FDEM [Atkatsh et al., 1980; Satyamurthy et al., 1980;
Singh and Dey, 1990], it was found that it is difficult to calculate the finite differ-33

ence analogue of derivatives on the solution domain boundary and on an irregular
domain. Although the isoparametric mapping technique of the FEM was incorpo-35

rated into FDEM to cope with irregular geometry [Barve and Dey, 1990; Fielding
et al., 1997], the lack of geometric flexibility of the conventional finite difference37

approximation holds back the further development of the FDEM. Consequently, it
has lain virtually dormant thus far.39

During the last three decades, the differential quadrature method (DQM) gradu-
ally emerges as an efficient and accurate numerical method, and has made noticeable41

success over the last two decades [Bellman and Casti, 1971; Bert et al., 1988; Bert

LiuBo
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and Malik, 1996; Shu, 2000]. The essence of DQM is to approximate the partial1

derivatives of a field variable at a discrete point by a weighted linear sum of the
field variable along the line that passes through that point. Although it is analogous3

to the finite difference method (FDM), it is more flexible in selection of nodes, and
more powerful in acquiring high approximation accuracy as compared to the conven-5

tional FDM. The late significant development of the DQM has motivated an interest
in the combination of the DQM with a variational formulation. Striz et al. [1995]7

took an initiative and developed the hybrid quadrature element method (QEM) for
two-dimensional plane stress and plate bending problems, and plate free vibration9

problems [Striz et al., 1997]. The hybrid QEM essentially consists of a collocation
method in conjunction with a Galerkin finite element technique to combine the high11

accuracy of DQM with the generality of FEM. This results in superior accuracy with
fewer degrees of freedom than conventional FEM and FDM. However, the hybrid13

QEM needs shape functions, and has been implemented for rectangular thin plates
only.15

Chen and New [1999] used the DQ technique to discretize the derivatives
of variable functions existing in the integral statements for variational methods,17

the Galerkin method, and so on, in deriving the finite element formulation, the
discretizations of the static 3-D linear elasticity problem and the buckling problem19

of a plate by using the principle of minimum potential energy were illustrated. This
method is named as the differential quadrature finite element method (DQFEM).21

Later, Haghighi et al. [2008] developed the coupled DQ-FE methods for two dimen-
sional transient heat transfer analysis of functionally graded material. Nevertheless,23

shape functions are needed in both methods.
Zhong and Yu [2009] presented the weak form QEM for static plane elasticity25

problems by discretizing the energy functional using the DQ rules and the Gauss-
Lobatto integral rules, whereas each sub-domain in the discretization of solution27

domain was called a quadrature element. This weak form QEM differs fundamentally
with that of [Striz et al., 1995; Striz et al., 1997], and the strong form QEM of [Striz29

et al., 1994; Zhong and He, 1998]. The weak form QEM is similar with the Ritz–
Rayleigh method as well as the p-version while it exhibits distinct features of high31

order approximation and flexible geometric modeling capability.
Xing and Liu [2009] presented a differential quadrature finite element method33

(DQFEM) which was motivated by the complexity of imposing boundary condi-
tions in DQM and the unsymmetrical element matrices in DQEM, the name is35

the same as that of [Chen and New, 1999], but the starting points and implemen-
tations are different. Compared with [Zhong and Yu, 2009] and [Chen and New,37

1999], DQFEM [Xing and Liu, 2009] has the following novelties: (1) DQ rules are
reformulated, and in conjunction with the Gauss-Lobatto integral rule are used to39

discretize the energy functional to derive the finite element formulation of thin plate
for both regular and irregular domains. (2) The Lagrange interpolation functions41

are used as trial functions for C1 problems, and the C1 continuity requirements are
accomplished through modifying the nodal parameters using DQ rules, the nodal
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shapes functions as in standard FEM are not necessary. (3) The DQFE element1

matrices are symmetric, well conditioned, and computed efficiently by simple alge-
braic operations of the known weighting coefficient matrices of the reformulated DQ3

rules and Gauss-Lobatto integral rule.
In this paper, the differential quadrature finite element method is studied5

systematically, and the following novel works are included: DQFEM is viewed as
a general method of formulating finite elements from lower order to higher order,7

the difficulty of formulating higher order finite elements are alleviated, especially
for C1 high order elements; the 1-D to 3-D DQFE stiffness and mass matrices and9

load vectors for C0 and C1 problems are given explicitly, which are significant to
static and dynamic applications; it is shown that all C0 DQFE mass matrices are11

diagonal, but they are obtained by using non-orthogonal polynomials and different
from the conventional diagonal lumped mass matrices; the reformulated DQ rules13

for curvilinear quadrilateral domain and its implementation are also presented to
improve its application; furthermore, the free vibration analyses of 2-D and 3-D15

plates with continuous and discontinuous boundaries and bending analyses of thin
and Mindlin plates with arbitrary shapes are carried out.17

The outline of this paper is as follows. The reformulation of DQM and its imple-
mentation are presented in Sec. 2. In Sec. 3, the DQFE stiffness and mass matrices19

and load vectors are given explicitly for rod, beam, plate, 2-D and 3-D elasticity
problems, and the third order Euler beam element matrices of DQFEM are com-21

pared with that of FEM. In Sec. 4, the numerical results are compared with some
available results. Finally the conclusions are outlined.23

2. The Reformulated Differential Quadrature Rule

The survey paper [Bert and Malik, 1996] has presented the details of DQM, only the25

reformulated DQ rules for curvilinear quadrilateral domain and its implementations
are given below. DQM has been applied to irregular domains with the help of the27

natural-to-Cartesian geometric mapping using the serendipity-family interpolation
functions [Bert and Malik, 1996; Xing and Liu, 2009] or the blending functions29

which permit exact mapping [Malik and Bert, 2000].
The mapping using serendipity-family interpolation functions is applicable to

arbitrary domain. For an arbitrary quadrilateral domain as shown in Fig. 1, the
geometric mapping has the form{

x(ξ, η) =
∑

Sk(ξ, η)xk

y(ξ, η) =
∑

Sk(ξ, η)yk

−1 ≤ξ, η ≤ 1 (1)

where xk, yk; k = 1, 2, . . . , Ns are the coordinates of Ns boundary grid points in the31

Cartesian x-y plane, Sk(ξ, η) the serendipity interpolations defined in the natural
ξ-η plane. Since the base function Sk has a unity value at the kth node and zeros33

at the remaining (Ns−1) nodes, the domain mapped by Eq. (1) and the given
quadrilateral domain matches exactly at least at the nodal points.35
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(a) (b)

Fig. 1. (a) A curvilinear quadrilateral region in Cartesian x-y plane; (b) a square parent domain
in natural ξ-η plane.

Subsequently, we should express the derivatives of a function f(x, y) with respect
to x, y coordinates in terms of its derivatives in ξ-η coordinates. Using the chain
rule of differentiation results in

∂f

∂x
=

1
|J |
(

∂y

∂η

∂f

∂ξ
− ∂y

∂ξ

∂f

∂η

)
,

∂f

∂y
=

1
|J |
(

∂x

∂ξ

∂f

∂η
− ∂x

∂η

∂f

∂ξ

)
(2)

where the determinant |J | of the Jacobian J = ∂(x, y)/∂(ξ, η) is

|J | =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
(3)

Then the partial derivatives ∂f/∂x and ∂f/∂y at gird point xij = x(ξi, ηj), yij =
y(ξi, ηj) in the mapped curvilinear quadrilateral domain can be computed using DQ
rules, as(

∂f

∂x

)
ij

=
1

|J |ij

[(
∂y

∂η

)
ij

(
M∑

m=1

A
(1)
imfmj

)
−
(

∂y

∂ξ

)
ij

(
N∑

n=1

B
(1)
jn fin

)]
(4)

(
∂f

∂y

)
ij

=
1

|J |ij

[(
∂x

∂ξ

)
ij

(
N∑

n=1

B
(1)
jn fin

)
−
(

∂x

∂η

)
ij

(
M∑

m=1

A
(1)
imfmj

)]
(5)

where M and N are the numbers of grid points in x (or ξ)-direction and y-(or η)
direction, respectively. A

(r)
ij and B

(s)
ij are the weighting coefficients associated with

the rth-order and sth-order partial derivative of f with respect to ξ and η at the
discrete point ξi and ηj , respectively. Equations (4) and (5) define the DQ rules of
the first order partial derivatives with respect to the Cartesian x, y coordinates for
irregular domain. Certainly, these rules can also be written in a compact form using
a single index notation for grid points, as

∂f

∂x

∣∣∣∣
k

=
M×N∑
m=1

Ā
(1)
kmf̄m,

∂f

∂y

∣∣∣∣
k

=
M×N∑
m=1

B̄
(1)
kmf̄m (6)
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where k = (j−1)M + i, Ā
(1)
km and B̄

(1)
km are respectively the assemblages of A

(1)
ij and

B
(1)
ij according to f̄m defined as follows

f̄m = fij = f(ξi, ηj), m = (j − 1)M + i (7)

where i = 1, . . . , M ; j = 1, . . . , N , and the elements of Ā
(1) and B

(1)
can be com-

puted from A(1) and B(1) for each (i, j) by

a((j − 1) × M + m) = A(1)(i, m), m = 1, . . . , M

b((n − 1) × M + i) = B(1)(j, n), n = 1, . . . , N
(8)

Ā
(1)(k, :) =

1
|J |ij

[(
∂y

∂η

)
ij

a −
(

∂y

∂ξ

)
ij

b

]

B̄
(1)(k, :) =

1
|J |ij

[(
∂x

∂ξ

)
ij

b −
(

∂x

∂η

)
ij

a

] (9)

The high order DQ rules in the mapped region can written similarly as

∂rf

∂xr

∣∣∣∣
k

=
M×N∑
m=1

Ā
(r)
kmf̄m,

∂sf

∂ys

∣∣∣∣
k

=
M×N∑
m=1

B̄
(s)
kmf̄m,

∂r+sf

∂xr∂ys

∣∣∣∣
k

=
M×N∑
m=1

F̄
(r+s)
km f̄m

(10)
where the weighting coefficients can be obtained using the recurrence relationships

Ā
(r) = Ā

(1)
Ā

(r−1)
, B̄

(s) = B̄
(1)

B̄
(s−1) (r, s ≥ 2),

F̄
(r+s) = Ā

(r)
B̄

(s) (r, s ≥ 1).
(11)

The DQ approximations for the first-order derivatives of function f(x, y, z)
defined over a regular hexahedron are required for the 3-D formulation in present
paper, and can be written as

∂f

∂x

∣∣∣∣
ijk

=
M∑

m=1

A
(1)
imfmjk,

∂f

∂y

∣∣∣∣
ijk

=
N∑

n=1

B
(1)
jn fink,

∂f

∂z

∣∣∣∣
ijk

=
L∑

l=1

C
(1)
kl fijl (12)

where A
(1)
ij , B

(1)
ij and C

(1)
ij are the weighting coefficients associated with the first-1

order partial derivative of f(x, y, z) with respect to x, y, and z at the discrete point
xi, yi, and zi, respectively.3

For 3-D irregular hexahedron, using the corresponding isoparametric mapping
and in the same way as in Eqs. (2)–(10), the first-order derivatives of function
f(x, y, z) in the mapped region can be written as

∂f

∂x

∣∣∣∣
q

=
M×N×L∑

p=1

Ā(1)
qp f̄p,

∂f

∂y

∣∣∣∣
q

=
M×N×L∑

p=1

B̄(1)
qp f̄p,

∂f

∂z

∣∣∣∣
q

=
M×N×L∑

p=1

C̄(1)
qp f̄p

(13)

LiuBo
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where

f̄p = fijk = f(ξi, ηj , ζk), for i = 1, 2, . . . , M ; j = 1, 2, . . . , N ; k = 1, 2, . . . , L.

(14)

p, q = (k − 1) × L × N + (j − 1) × N + i. (15)

The weighting coefficients of Eq. (13) can be obtained through assembling those of1

Eq. (12) according to the similar method for 2-D case as above.

3. The Differential Quadrature Finite Element Method3

The differential quadrature finite element method was developed in reference [Xing
and Liu, 2009] where the DQ and Gauss-Lobatto quadrature rules were used to5

discretize the energy functional, by which the free vibrations of thin plates were
investigated extensively.7

Here we extend the DQFEM to rod, beam, thick plate, plane and three dimen-
sional problems. For linear elastic bodies, the total potential energy Π involves the
strain energy and work potential, and is given by

Π =
1
2

∫∫∫
V

εTDεdV −
∫∫

S

uTqdS (16)

where ε and D are the strain field vector and the material matrix, respectively, u

is the displacement field vector. The kinetic energy functional is given by

T =
1
2

∫∫∫
V

ρu̇Tu̇dV (17)

where u̇ is the velocity field vector, q the distributed surface force vector, ρ the
volume density. Then the element matrices of different kinds of structures can be9

obtained from the discrete quadratic forms of Π and T .

3.1. Rod element11

Consider a uniform rod element of length l, cross section area S. Assuming that the
longitudinal displacement function is

u(x) =
M∑
i=1

li(x)ui (18)

where li are the Lagrange polynomials, ui = u(xi) the displacements of the Gauss
Lobatto quadrature points or the nodal displacements of the DQ finite rod element,
xj the Gauss-Lobatto node coordinates, M the total node number. Using DQ and
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Gauss-Lobatto quadrature rules, Eqs. (16) and (17) can be written as

Π =
1
2

∫ l

0

ES

(
∂u

∂x

)2

dx −
∫ l

0

qudx =
1
2
uTA(1)TESCA(1)u − uT(Cq) (19)

T =
1
2

∫ l

0

ρSu̇2dx =
1
2
u̇T(ρSC)u̇ (20)

where E is the Young’s modulus, uT = [u1 u2 · · · uM ] the nodal displacement
vector, qT = [q(x1) q(x2) · · · q(xM )] the nodal load vector, A(1)T = (A(1)T)
where A(1) indicates the weighting coefficient matrix of DQ rules for the first-order
derivatives [Bert and Malik, 1996; Xing and Liu, 2009] with respect to the Gauss-
Lobatto nodes, and

C = diag(C1 C2 · · · CM ) (21)

where Cj are the weighting coefficients of Gauss-Lobbato integration. Therefore,
the stiffness matrix K, mass matrix M and load vector R are

K = ESA(1)TCA(1), M = ρSC, R = Cq (22)

It is noticeable that the finite element matrices in DQFEM can be obtained by
simple algebraic operations of the weighting coefficient matrices of DQ rule and
Gauss-Lobatto integral rule, and that the mass matrix M of rod element is diagonal.
For the 3-degree-of-freedom element where the nodes of DQFEM and FEM are the
same, the element stiffness matrices and load vectors of both methods must be
identical, but the mass element matrices are different, hence only the element mass
matrix of DQFEM is given below, as

M =
ρSl

6


1 0 0

0 4 0
0 0 1


 (23)

It is noteworthy that the diagonal element ratios of mass matrices of both methods1

are the same. Although the mass matrix in Eq. (22) is diagonal, it is not the same
as the lumped mass matrix of FEM, and the summation of all diagonal elements3

equals to the total mass of the rod, see Eq. (23).

3.2. Euler beam element5

Consider a uniform Euler beam element with length l and cross section area S.
Assuming that the deflection function is

w(x) =
M∑
i=1

li(x)wi (24)

where wi = w(xi) are the deflections of the Gauss Lobatto quadrature nodes of
the DQ finite beam element. Similarly as in Sec. 3.1, using DQ and Gauss-Lobatto
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quadrature rules, Eqs. (16) and (17) can be written as

Π =
1
2

∫ l

0

EI

(
∂2w

∂x2

)
dx −

∫ l

0

qwdx =
1
2
w̄TA(2)TEICA(2)w̄ − w̄TCq

T =
1
2

∫ l

0

ρSẇ2dx =
1
2

˙̄wT(ρSC) ˙̄w

(25)

where I is the moment of inertia, and

w̄T = [w1 w2 · · · wM ] (26)

In order to construct element satisfying C1 inter-element continuity requirements,
the element displacement vector should be

wT = [w1 w′
1 w3 · · · wM−2 wM w′

M ] (27)

Using DQ rules one can find the relation between w and w̄ as

w = Qw̄ (28)

where

Q =




1 0 0 · · · 0 0

A
(1)
1,1 A

(1)
1,2 A

(1)
1,3 · · · A

(1)
1,M−1 A

(1)
1,M

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

A
(1)
M,1 A

(1)
M,2 A

(1)
M,3 · · · A

(1)
M,M−1 A

(1)
M,M




(29)

Substituting Eq. (28) into Eq. (25), the stiffness matrix, mass matrix and load
vector of the DQ finite Euler beam element are obtained as

K = EIQ−T A(2)TCA(2)Q−1, M = Q−T (ρSC)Q−1, R = Q−T Cq (30)

It is readily shown that the transformation matrix Q in Eq. (29) is well conditioned
in general. In the same way as in Eq. (30), the construction of element with Cn

continuity is possible. Similarly as in rod case discussed above, for a beam subjected
to uniformly distributed load q0, the element stiffness matrices and load vectors of
FEM and DQFEM are the same, but the Lagrange polynomials are used in Eq. (24)
while the Hermite interpolation functions are used in FEM. The 4-degree-of-freedom
element mass matrix in DQFEM is

M =
ρSl

420




156.8 22.4l 53.2 −12.6l

22.4l 4.2l2 12.6l −2.8l2

53.2 12.6l 156.8 −22.4l

−12.6l −2.8l2 −22.4l 4.2l2


 (31)

Apparently, the mass matrix of DQFEM has small difference from that of FEM.1
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3.3. Plane element1

Consider a curvilinear quadrilateral domain with uniform thickness h, as shown in
Fig. 1, the displacement fields have the forms

[u(x, y), v(x, y)] =
M∑
i=1

N∑
j=1

li(x)lj(y)[uij , vij ] (32)

The strain-displacement relations of plane problems are
 εx

εy

γxy


 =


∂/∂x 0

0 ∂/∂y

∂/∂y ∂/∂x


[u

v

]
(33)

Define the following element displacement vectors

uT = [u11 · · · uM1 u12 · · · uM2 · · · u1N · · · uMN ] (34a)

vT = [v11 · · · vM1 v12 · · · vM2 · · · v1N · · · vMN ] (34b)

then by inserting Eq. (6) into Eq. (33), one can obtain the corresponding nodal
strain vector


 εx

εy

γxy


 =


Ā

(1) 0
0 B̄

(1)

B̄
(1)

Ā
(1)



[
u

v

]
(35)

where the DQ rule and Gauss-Lobatto rule have been involved, Ā
(1), B̄

(1) are given
in Eq. (9), and the three nodal strain vectors have the same form as in Eq. (34).
Thus, we can obtain the matrices of the DQ finite curvilinear quadrilateral plane
element, for plane stress problem, they are

K = c

[
Ā

(1)T
CĀ

(1) + υ1B̄
(1)T

CB̄
(1)

υĀ
(1)T

CB̄
(1) + υ1B̄

(1)T
CĀ

(1)

υB̄
(1)T

CĀ
(1) + υ1Ā

(1)T
CB̄

(1)
B̄

(1)T
CB̄

(1) + υ1Ā
(1)T

CĀ
(1)

]
(36)

M = ρh

[
C 0
0 C

]
, R =

[
Cqu

Cqv

]
(37)

where the corresponding nodal displacement vector is [uT vT], c=Eh/(1−υ2), υ1 =
(1 − υ)/2, C=diag(JkCk), Jk = |J |ij is the determinant of the Jacobian J , Ck =3

Cξ
i Cη

j , k = (j − 1)M + i; Cξ
i and Cη

j the Gauss-Lobatto weights with respect to ξ

and η, respectively; qu and qv are the nodal load vectors whose elements are the5

nodal function values of the distributed force and arranged similarly as in Eq. (34).
To replace E and υ in Eq. (36) with E/(1−υ2) and υ/(1−υ) will yield the stiffness7

matrix of plane strain element.
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3.4. Kirchhoff plate element1

The thin curvilinear quadrilateral plate element of DQFEM, as shown in Fig. 2, has
been well established [Xing and Liu, 2009], for completeness of present paper, the
main results are given below. The deflection function is defined in terms of Lagrange
polynomials as follows

w(x, y) =
M∑
i=1

N∑
j=1

li(x)lj(y)wij (38)

In order to satisfy the C1 inter-element compatibility conditions, the displacement
vector is assumed to be

w = [wmwmxwmywmxy(i = 1, M ; j = 1, N),
wmwmx(i = 3, . . . , M − 2; j = 1, N),
wmwmy(i = 1, M ; j = 3, . . . , N − 2),
wm(i = 3, . . . , M − 2; j = 3, . . . , N − 2)]

(39)

where the scale m = (j − 1)M + i, wmx = (∂w/∂x)m, wmy = (∂w/∂y)m, and
wmxy = (∂2w/∂x∂y)m. The element matrices are given by

K = DQ−T [Ā(2)T
CĀ + B̄

(2)T
CB̄

(2) + υ(Ā(2)T
CB̄

(2) + B̄
(2)T

CĀ
(2))

+ 2(1 − υ)F̄ (2)T
CF̄

(2)]Q−1 (40)

M = Q−T (ρhC)Q−1

R = Q−T (Cq)
(41)

where Ā
(2), B̄

(2)and F̄
(2) = Ā

(1)
B̄

(1) are the weighting coefficient matrices defined
by Eq. (11), D=Eh3/12(1−υ2) is bending rigidity of plate, h is the thickness, C is3
identical to that of in-plane case.

3.5. Mindlin plate element5

In Mindlin plate theory, one can choose the deflection w and two rotations θx

and θy of the normal line with respect to the middle surface as the generalized

Fig. 2. A sectorial region.
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displacements which can be expressed as

[w, θx, θy] =
M∑
i=1

N∑
j=1

li(x)lj(y)[wij , θxij , θyij ] (42)

Define the nodal displacement vector as [θT
x θT

y wT] whose elements are arranged
as in Eq. (34), one can determine the DQ Mindlin plate element matrices as

K = D


K11 sym

K21 K22

K31 K32 K33


 , M = ρ


JC sym

0 JC

0 0 hC


 , R =


Cmx

Cmy

Cqw



(43a)

K11

K22

K33


 =


 1 υ1 υs

υ1 1 υs

υs υs 0




Ā

(1)T
CĀ

(1)

B̄
(1)T

CB̄
(1)

C


 ,

K21 = υB̄
(1)T

CĀ
(1) + υ1Ā

(1)T
CB̄

(1)

K31 = −υsĀ
(1)T

C

K32 = −υsB̄
(1)T

C
(43b)

where υ1 = (1 − υ)/2, υs = 6κ(1 − υ)/h2, J = h3/12; mx and my are the nodal1

bending moment vectors with respect to x and y directions, qw is the nodal force
vector with respect to z direction, they have the same form as that of Eq. (34). C is3

identical to that of in-plane case, the shear rigidity of Mindlin plate is C = κGh =
υsD where κ is the shear correction factor, G the shear modulus.5

3.6. Three dimensional element

For 3-D problems, the translational displacements in DQFEM are given by

[u, v, w] =
M∑
i=1

N∑
j=1

L∑
k=1

li(x)lj(y)lk(z)[uijk, vijk , wijk] (44)

Define the nodal displacement vector as [uTvTwT] whose elements are arranged as
in Eqs. (14) and (15), in the same way as in-plane and Mindlin plate cases, one can
determine the 3-D element matrices of DQFEM as

K =
G

υ2


K11 sym
K21 K22

K31 K32 K33


 , M = ρ


C sym

0 C

0 0 C


 , R =


Cqu

Cqv

Cqw


 (45a)


K11

K22

K33


 =


υ1 υ2 υ2

υ2 υ1 υ2

υ2 υ2 υ1




Ā

(1)T
CĀ

(1)

B̄
(1)T

CB̄
(1)

C̄
(1)T

CC̄
(1)


 ,

K21 = υB̄
(1)T

CĀ
(1) + υ2Ā

(1)T
CB̄

(1)

K31 = υC̄
(1)T

CĀ
(1) + υ2Ā

(1)T
CC̄

(1)

K32 = υC̄
(1)T

CB̄
(1) + υ2B̄

(1)T
CC̄

(1)

(45b)
where Ā

(1), B̄
(1) and C̄

(1) are the weighting coefficient matrices whose element are7

used in Eq. (13), υ1 = 1−υ, υ2 = 0.5−υ, C = diag(JpCp) where Jp = |J |ijk is the
determinant of the Jacobian J of 3-D isoparametric transformation, Cp = Cξ

i Cη
j Cζ

k ,9
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the scale p is calculated from Eq. (15), Cξ
i , Cη

j and Cζ
k are the Gauss-Lobatto weights1

with respect to ξ, η and ζ, respectively.

4. Numerical Comparisons3

The results presented in this section aims at demonstrating the high accuracy and
rapid convergence of the DQFEM. This is done through 2-D and 3-D free vibra-5
tion analyses of plates (Tables 1–3) and static plate bending analyses (Table 4),
the free vibration analyses of rectangular plates with discontinuous boundaries7
(Table 5).

Table 1. Convergence validation of the natural frequencies Ω = ωa
p

ρ(1 − µ2)/E
for in-plane free vibrations of isotropic rectangular plates.

a/b Grid points M×N Mode sequence number

1 2 3 4 5 6

Completely free plates
1.0 5 × 5 2.332 2.464 2.464 2.630 2.991 3.457

6 × 6 2.321 2.473 2.473 2.628 2.988 3.453
7 × 7 2.321 2.472 2.472 2.628 2.987 3.452
8 × 8 2.321 2.472 2.472 2.628 2.987 3.452
Ref. a 2.321 2.472 2.472 2.628 2.987 3.452

2.0 8 × 5 1.954 2.961 3.267 4.731 4.795 5.201
9 × 6 1.954 2.961 3.267 4.728 4.784 5.206
10 × 7 1.954 2.961 3.267 4.726 4.784 5.205
11 × 8 1.954 2.961 3.267 4.726 4.784 5.205
Ref. a 1.954 2.961 3.267 4.726 4.784 5.205

Clamped plates
1.0 7 × 7 3.555 3.555 4.236 5.191 5.863 5.863

8 × 8 3.555 3.555 4.235 5.186 5.859 5.901
9 × 9 3.555 3.555 4.235 5.186 5.859 5.894

10 × 10 3.555 3.555 4.235 5.186 5.859 5.895
Ref. a 3.555 3.555 4.235 5.186 5.859 5.895

2.0 9 × 6 4.789 6.379 6.711 7.049 7.609 8.116
10 × 7 4.789 6.379 6.712 7.049 7.609 8.142
11 × 8 4.789 6.379 6.712 7.049 7.608 8.140
12 × 9 4.789 6.379 6.712 7.049 7.608 8.140
Ref. a 4.789 6.379 6.712 7.049 7.608 8.140

Simply supported plates
1.0 6 × 6 1.859 1.859 2.628 3.699 3.699 4.157

7 × 7 1.859 1.859 2.628 3.718 3.718 4.157
8 × 8 1.859 1.859 2.628 3.717 3.717 4.156
9 × 9 1.859 1.859 2.628 3.717 3.717 4.156
Ref. a 1.859 1.859 2.628 3.717 3.717 4.156

2.0 8 × 5 1.859 3.716 3.717 4.156 5.258 5.587
9 × 6 1.859 3.717 3.717 4.156 5.257 5.574
10 × 7 1.859 3.717 3.717 4.156 5.257 5.576
11 × 8 1.859 3.717 3.717 4.156 5.257 5.576
Ref. a 1.859 3.717 3.717 4.156 5.257 5.576

Ref. a: [Bardell et al., 1996].
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Table 2. The first four flexural free vibration frequencies Ω = ω(a2/π2)
p

ρh/D of
triangular thin plates.

Mξ = Nη Mode sequences

1 2 3 4 1 2 3 4

CCC Plate (b/a = 1) CCC Plate (b/a = 2)
The Rayleigh-Ritz method based on Mindlin plate theory (h/a = 0.001)

[Karunasena and Kitipornchai, 1997]
9.503 15.988 19.741 24.655 5.415 8.355 11.518 12.357

The superposition method [Gorman, 1986]
9.510 15.978 19.737 24.601 5.416 8.351 11.500 12.351

The differential quadrature finite element method
10 9.489 15.978 19.751 24.589 5.407 8.332 11.519 12.347
12 9.496 15.984 19.742 24.595 5.411 8.342 11.508 12.346
14 9.500 15.986 19.738 24.598 5.413 8.347 11.504 12.346
16 9.501 15.987 19.736 24.600 5.414 8.349 11.501 12.345
18 9.502 15.987 19.735 24.600 5.414 8.350 11.500 12.345
20 9.502 15.987 19.735 24.600 5.415 8.351 11.500 12.345

SSS Plate (b/a=1) SSS Plate (b/a = 2)
The Rayleigh-Ritz method based on Mindlin plate theory (h/a = 0.001)

[Karunasena and Kitipornchai, 1997]
5.000 9.999 13.000 17.005 2.813 5.054 7.569 8.241

The superposition method [Gorman, 1983]
5.000 10.000 13.000 17.002 2.813 5.054 7.566 8.239

DQFEM based on thin plate theory
10 4.988 9.999 12.999 16.975 2.806 5.047 7.560 8.237
12 4.994 10.000 13.000 16.988 2.809 5.051 7.563 8.238
14 4.997 10.000 13.000 16.994 2.811 5.052 7.565 8.239
16 4.998 10.000 13.000 16.996 2.812 5.053 7.565 8.239
18 4.999 10.000 13.000 16.998 2.812 5.054 7.565 8.239
20 4.999 10.000 13.000 16.999 2.812 5.054 7.566 8.239

SCF Plate (b/a = 0.5) SCF Plate (b/a = 2)
The Rayleigh-Ritz method based on Mindlin plate theory (h/a = 0.001)

[Karunasena and Kitipornchai, 1997]
9.214 18.156 26.491 29.184 1.465 3.009 4.989 5.435

The superposition method [Gorman, 1989]
9.139 18.108 26.319 29.083 1.450 2.984 4.955 5.408

DQFEM based on thin plate theory
10 9.186 18.070 26.291 29.150 1.466 3.009 4.989 5.424
12 9.205 18.122 26.425 29.163 1.465 3.009 4.989 5.429
14 9.211 18.141 26.466 29.164 1.465 3.009 4.989 5.432
16 9.213 18.149 26.479 29.163 1.465 3.009 4.989 5.433
18 9.214 18.153 26.485 29.162 1.465 3.009 4.989 5.434
20 9.214 18.155 26.487 29.161 1.465 3.009 4.989 5.434

For free vibration analyses, the frequencies are given in dimensionless form1

denoted by Ω which is included in the tables where the results for various bound-
ary conditions are given for a range of the sampling points to show clearly the3

convergence behavior of the solution method. In all cases, Poisson’s ratio is 0.3.
In Table 1, comparison and convergence studies are carried out for in-plane5

free vibration of six types of rectangular plate, i.e., two completely free plates, two
clamped plates, two simply supported plates, with aspect ratio a/b = 1 and 2,7
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Table 3. Frequencies Ω = ωR
p

ρ/G for 3-D free vibrations of clamped and free
circular plates.

h/R Grid points Mode sequence number
Mξ × Nη × Lz

1 2 3 4 5 6

Completely free circular plates
0.1 9 × 9 × 4 0.2576 0.4329 0.5896 0.9655 1.017 1.544

11 × 11 × 5 0.2576 0.4329 0.5891 0.9631 1.016 1.530
13 × 13 × 6 0.2576 0.4329 0.5891 0.9631 1.016 1.529
14 × 14 × 7 0.2576 0.4329 0.5891 0.9631 1.016 1.529

Ref. b 0.2576 0.4329 0.5892 0.9633 1.017 1.529
Ref. c 0.2576 0.4329 0.5891 0.9631 1.016 1.529

0.2 9 × 9 × 4 0.4996 0.8315 1.1069 1.765 1.844 2.689
11 × 11 × 5 0.4995 0.8314 1.106 1.762 1.843 2.674
13 × 13 × 6 0.4995 0.8314 1.106 1.762 1.843 2.673
14 × 14 × 7 0.4995 0.8314 1.106 1.762 1.843 2.673

Ref. b 0.4997 0.8316 1.107 1.763 1.844 2.677
Ref. c 0.4995 0.8314 1.106 1.762 1.843 2.673

Clamped circular plates
0.01 11 × 11 × 3 0.05003 0.1041 0.1707 0.1948 0.2510 0.3038

13 × 13 × 4 0.04997 0.1040 0.1703 0.1944 0.2495 0.2979
15 × 15 × 5 0.04993 0.1039 0.1703 0.1943 0.2492 0.2970
17 × 17 × 6 0.04991 0.1038 0.1702 0.1942 0.2491 0.2969

Ref. d 0.04990 0.1038 0.1703 0.1941 0.2490 0.2968
Ref. e 0.04985 0.1037 0.1702 0.1941 0.2490 0.2968

Ref. b: [Liu and Lee, 2000]; Ref. c: [So and Leissa, 1998]; Ref. d: [Zhou et al.,
2003]; Ref. e: [Leissa, 1969].

respectively. The DQFEM solutions are compared with the Rayleigh-Ritz solutions1

[Bardell et al., 1996]. For the rectangular plates with aspect ratio a/b = 1, the
results of the completely free, simply supported, and clamped plates converge when3

grid size equals 7×7, 8×8, and 9×9, respectively. Thus, one can say that completely
free plate converges fastest, while clamped plate converges slowest. It can be seen5

that all of the frequencies of DQFEM are exactly the same as those of Rayleigh-Ritz
method.7

Table 2 presents comparison studies of flexural free vibration of six triangular
thin plates (see Fig. 3) with three combinations of simply supported, clamped and9

free edges, namely CCC, SSS and SCF. SCF implies the side (1), side (2) and side
(3) of a triangle are simply supported, clamped and free, respectively. The triangular11

plates are divided into three sub quadrilateral elements in calculation. It can be seen
that DQFEM is capable of producing accurate results when the grid size of each13

subelement is 10×10. The DQFEM solutions agree with the Rayleigh-Ritz solutions
[Karunasena and Kitipornchai, 1997], at least to three significant digits, and with15

the superposition solutions [Gorman, 1983; Gorman, 1986; Gorman, 1989], to two
to three significant digits.17

In Table 3, a comparison study has been given for 3-D free vibration of circu-
lar plates with clamped and free boundary conditions. The DQFEM solutions are19
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Table 4. Bending moments in an elliptical plate with built in and simply supported edges
subjected to uniformly distributed loads.

Mξ = Nη 100(w0) 100(Mx)0 100(My)0 100(Mx)a 100(My)b 100(w0) 100(Mx)0 100(My)0

Clamped boundary Simply supported
conditions boundary conditions

Exact solution [Timoshenko and Krieger, 1959]
−0.3759 −0.9227 −1.4048 1.1016 2.4791 −1.5549 −2.4662 −3.5660

p-type FEM solution based Mindlin plate theory
[Muhammad and Singh, 2004]

−0.3776 −0.9238 −1.4064 1.1012 2.5005 −1.5546 −2.4100 −3.5065

DQFEM solution based Mindlin plate theory
7 −0.3765 −0.9210 −1.4014 1.0936 2.4575 −1.5604 −2.4332 −3.5919
9 −0.3773 −0.9231 −1.4047 1.1029 2.4772 −1.5510 −2.4239 −3.5698

11 −0.3773 −0.9231 −1.4048 1.1030 2.4781 −1.5481 −2.4213 −3.5625
13 −0.3773 −0.9232 −1.4048 1.1034 2.4781 −1.5470 −2.4203 −3.5598
15 −0.3773 −0.9232 −1.4048 1.1031 2.4780 −1.5465 −2.4197 −3.5587
17 −0.3773 −0.9232 −1.4048 1.1034 2.4779 −1.5462 −2.4195 −3.5583

DQFEM solution based thin plate theory
7 −0.3753 −0.9207 −1.4016 1.0919 2.4575 −1.5437 −2.4189 −3.5552
9 −0.3760 −0.9226 −1.4048 1.1010 2.4774 −1.5446 −2.4195 −3.5576

11 −0.3760 −0.9227 −1.4048 1.1013 2.4792 −1.5447 −2.4192 −3.5572
13 −0.3760 −0.9227 −1.4049 1.1012 2.4784 −1.5447 −2.4187 −3.5564
15 −0.3760 −0.9228 −1.4049 1.1013 2.4788 −1.5446 −2.4180 −3.5554

Table 5. Convergence study of frequency parameters Ω = ωb2
p

ρh/D for rectangular plates
with mixed edge supports (a1/a = 0.375).

Case Nξ = Nη Mode sequence

1 2 3 4 5 6

1 13 23.25 50.73 57.31 82.84 99.15 110.4
14 23.24 50.71 57.28 82.79 99.14 110.3
15 23.23 50.70 57.26 82.75 99.13 110.3
16 23.23 50.69 57.24 82.71 99.12 110.2

Ref. f 23.23 50.69 57.25 82.73 99.12 110.3

2 13 27.82 52.34 66.10 87.03 99.63 123.1
14 27.80 52.31 66.01 86.87 99.61 123.1
15 27.77 52.27 65.97 86.81 99.58 122.9
16 27.76 52.25 65.91 86.71 99.57 122.9

Ref. f 27.77 52.26 65.93 86.75 99.57 122.9

3 13 13.13 17.15 37.27 44.79 48.34 74.05
14 13.11 17.13 37.26 44.76 48.31 74.05
15 13.10 17.12 37.26 44.73 48.28 74.05
16 13.09 17.11 37.26 44.71 48.26 74.05

Ref. f 13.10 17.12 37.26 44.73 48.28 74.06

Ref. f: [Su and Xiang, 2002].

given for two free circular plates with relative thickness h/R = 0.1 and 0.2, and a1

clamped plate with relative thickness h/R = 0.01. Convergent DQFEM solutions
are obtained when the grid size equals 13 × 13 × 6 and 15 × 15 × 5 for free and3

clamped circular plates, respectively. The DQFEM results are in agreement with
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Fig. 3. A triangular plate.

all the results used for comparisons [Liu and Lee, 2000 and So and Leissa, 1998 for1

free circular plates; Zhou et al., 2003 and Leissa, 1969 for clamped circular plate],
to at least three significant digits.3

Table 4 presents comparison studies of bending moments in an elliptical plate
(see Fig. 4) with built in and simply supported edges subjected to uniformly dis-5
tributed loads. The geometric and material parameters used in the calculation are:
a = 0.50 (m), b = 0.33333 (m), h = 0.01 (m), E = 1 (MPa), q = 1.0 (Pa). Results7
at points O, A and B as shown in Fig. 4 are presented for which both results
[Timoshenko and Krieger, 1959] and p-type FEM results [Muhammad and Singh,9
2004] are available. The DQFEM solutions based on both the thin plate theory and

x

y
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D
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2b

Fig. 4. An elliptic plate.

Case1: SSS-SC-SSS plate Case2: SSS-CC-SSS plate Case3: FSS-SC-FSS plate 
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Fig. 5. Rectangular plates with discontinuous boundaries.
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the Mindlin plate theory are given. Excellent agreements among the three sets of1

results are found for both clamped and simply supported conditions.
For a thin plate with mixed support conditions or discontinuous boundaries, as3

shown in Fig. 5, the first six frequencies of DQFEM using three elements coincide
well, as shown in Table 5, with those of [Su and Xiang, 2002] using a novel domain5

decomposition method. It follows that DQFEM can be used conveniently to cope
with complex problems as FEM.7

5. Conclusion

A differential quadrature finite element method (DQFEM) was studied systemat-9

ically and applied successfully to 1-D to 3-D static and dynamic structural prob-
lems, and the free vibrations of plane problem, the static problems of Kirchhoff and11

Mindlin plates, the 3-D elasticity problems were investigated for the first time using
DQFEM which can be viewed as a new methodology of formulating finite element13

method. DQFEM has incorporated the high accuracy and efficiency of DQM, espe-
cially for formulating high order elements, and the simplicity of imposing boundary15

conditions, the symmetry of element matrices of FEM.
The DQ rules were reformulated and its efficient implementation presented here17

is significant to the practical application of DQFEM, from whose explicit formula-
tions of different elements one can concluded that DQFEM can be used simply in19

the same way as FEM. Moreover, the DQFE matrices are compact and well condi-
tioned, and the mass matrices for C0 continuity problems are diagonal, which can21

reduce the computational cost of dynamic problems. Numerical comparison studies
with results available in literature were carried out for free vibration of 2-D and 3-D23

plates and bending of thin and Mindlin plates with arbitrary shapes, which validate
the high accuracy and rapid convergence of DQFEM.25
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