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Functionally graded particle reinforced metal–matrix nanocomposite materials show significant promise
for use in protective structures due to their high strengths, stiffness, failure resistance, and the ability to
mitigate damage during ballistic impact. Further improvement of the performance of these materials
requires fine-tuning of the nanostructure which, in turn, necessitates a clear fundamental understanding
of the deformation and failure mechanisms under conditions of dynamic loading. While the molecular
dynamics simulation technique is an excellent tool for investigation of the mechanisms of plastic defor-
mation and failure of the particle reinforced metal–matrix nanocomposites at the atomic scale, the pre-
dictive power of the technique relies on an accurate description of the interatomic interactions. This
paper provides a brief review of a recently developed class of interatomic potentials capable of the com-
putationally efficient description of multi-component systems composed of metals, Si, Ge, and C. The
potentials are based on reformulation of the Embedded Atom Method (EAM) potential for metals and
two empirical potentials commonly used for covalently bonded materials, Stillinger–Weber (SW) and
Tersoff, in a compatible functional form. The description of the angular dependence of interatomic inter-
actions in the covalent materials is incorporated into the framework of the EAM potential and, therefore,
the new class of potentials is dubbed Angular-dependent EAM (A-EAM) potentials. The A-EAM potentials
retain all the properties of the pure components as predicted by the original SW, Tersoff, and EAM poten-
tials, thus eliminating the need for extensive testing and limiting the scope of the potential parameter-
ization to only the cross-interaction between the components. The performance of the A-EAM
potentials is illustrated for the Au–Si system, with good agreement with experimental data obtained
for the enthalpy of mixing in the Au–Si liquid alloy and the Au–Si phase diagram. The A-EAM potentials
are suitable for large-scale atomistic simulations of metal–Si/Ge/C/SiC systems, such as the ones required
for investigation of the dynamic response of nanocomposite materials to a ballistic/blast impact.

Published by Elsevier Ltd.
1. Introduction

One of the long-standing problems in materials research has
been the development and improvement of materials capable of
withstanding ballistic/blast impact. These materials have often
been referred to as blast and penetration resistant materials
(BPRMs). Better materials lead to better resistance and, in turn,
greater survivability. In addition to overall structural stiffness
and strength, BPRMs require the ability to mitigate damage and
provide ways to dissipate impact/blast energy. Metals have proven
to be cost effective, high performing materials for protective struc-
tures, particularly the ones with high impact strengths. Another
parameter, important to penetration resistance, is ductility. An
Ltd.

aMattina).
emerging class of materials for protective structures is functionally
graded particle reinforced metal–matrix nanocomposites (MMnC)
designed with compositional/structural gradients introduced
through the variation of the concentration of the reinforcing cera-
mic particles (SiC, Al2O3, etc.) in the matrix [1,2]. Apart from their
high strength, stiffness, and wear resistance, these nanocomposites
have the ability to mitigate damage due to the spatial optimization
of their properties. The trade-offs between the strength and ductil-
ity, observed in traditional metallic material systems, may not be
applicable in these nanocomposites, leaving open the possibility
of unprecedented performance improvements. The design and
optimization of BPRM nanocomposite materials can be signifi-
cantly accelerated by improvements in the understanding of the
deformation and failure mechanisms under conditions of ballistic
impact. Defense related loading conditions can result in impact
velocities of a 1–2 km/s and peak strain rates of the order of
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105—106 s�1 [3]. The mechanisms responsible for plastic deforma-
tion and failure of MMnC are complex and are affected by multiple
factors, such as the distribution and location/size of the reinforcing
particles, grain size in the metal–matrix, characteristics of the
interfaces between the particles and matrix grains, as well as the
loading conditions [4].

While there has been significant progress in the understanding
the mechanisms of the plastic deformation in MMnC under quasi-
static loading conditions, the material behavior at high strain rates
is still at a stage of the initial exploration. The lack of detailed infor-
mation on the response of the nanocomposite materials to the fast
dynamic loading is related to the small time scales involved and
the heterogeneous nature of these materials, which make it diffi-
cult to identify and characterize the elementary processes respon-
sible for plastic deformation and failure using experiments alone.
The molecular dynamics (MD) simulation technique has a poten-
tial of providing the atomic level structural information on the
deformation mechanisms at high strain rates [5] and may be
instrumental in physical interpretation of experimental observa-
tions. MD simulations of plastic deformation are typically carried
out at strain rates P 107 s�1. While these strain rates are higher
than conventional strain rates in ballistic impact experiments,
the current state-of-art simulations boast up to 350 billion atoms
of copper corresponding to 1.56 lm size systems [6], as well as
investigations of shock-induced phase transformations in multi-
million atom samples [7]. With the increasing availability of com-
puting resources, it should be possible to model deformation of
systems comprising of many billions of atoms at realistic strain
rates in the near future. Although the capabilities of MD method
for investigations of mechanical behavior and properties of real
materials are very promising, its ability to provide reliable quanti-
tative information is, in a big part, defined by the availability of
accurate and computationally efficient interatomic potentials.

Over the last several decades, a broad variety of empirical and
semi-empirical potentials have been suggested in literature. For
many of the potentials, however, the verification of their predictive
power has been limited to relatively narrow domains of physical
conditions, directly relevant to their applications in the initial stud-
ies. As a result, out of the vast number of potentials developed, only
a relatively small fraction has been thoroughly tested and found to
exhibit a combination of transferability, computational efficiency,
and simplicity of implementation that ensures their broad use by
many research groups. In particular, the Embedded Atom Method
(EAM) [8–11] has provided the framework for a group of potentials
that are used in the majority of current simulations of metals and
metallic alloys. Popular potentials for covalently bonded systems
include Stillinger–Weber (SW) potential [12,13] for Si and Ge, Ters-
off potential [14,15] for Si and C, as well as Brenner potential
[16,17] for hydrocarbon systems. The extension of the empirical
potentials to alloys consisting of components with the same type
of interatomic bonding (and described by the same type of inter-
atomic potential) is relatively straightforward, with several alloy
models (schemes for the description of cross-interactions between
the components) developed for metals [11,18–21] and covalent
systems [22,23]. The design of interatomic potentials capable of
an adequate description of multi-component systems with mixed
types of atomic bonding, however, is a more challenging task that
has to be addressed to enable atomic scale modeling of a range of
practically important systems. Computationally efficient and accu-
rate description of systems with mixed metallic–covalent bonding,
in particular, is highly desirable for investigation of the mechanical
properties of metal–matrix nanocomposites reinforced by ceramic
nanoparticles.

The Modified Embedded Atom Method (MEAM) potential [24]
by Baskes includes parameterization for many cubic metals, as well
as Si, Ge, C, H, N, and O. The potential, therefore, can be adopted for
modeling of systems with mixed type of bonding, such as Mo–Si
[25], Au–Si [26], and Au–Si–O [27]. A many-body angular screening
function, used as a cutoff mechanism in MEAM, however, makes
this potential to be computationally expensive. Moreover, the
properties of both pure components and mixtures predicted by
the MEAM potential have to be verified for each system of interest.
An adjustment of the parameters of the MEAM potential, therefore,
is often required in order to achieve an adequate description of the
pure components [28]. Several potentials have been suggested for
modeling of complex systems such as SiO2 [29,30], SiC [31], and
Alumina [32], with the charge transfer between the components
explicitly incorporated into the models. The applicability of these
potentials to study the pure elements and/or their interfaces with
metallic systems has not been addressed.

An attractive alternative to the design of new alloy potentials
with original functional forms can be provided by combination of
well-established and thoroughly tested potentials developed for
pure components within a unified approach. Despite the differences
between the functional forms and underlying physical arguments
used in the description of interatomic bonding in metallic and cova-
lent systems, there has been a number of works suggesting the fea-
sibility of the unified approach. In particular, a description of Pt–C
system with an analytical potential that, for pure components, re-
duces to the bond-order Brenner potential for C and an EAM-like po-
tential for Pt has been discussed by Albe et al. [33]. The connections
between the EAM formalism and the bond-order scheme of the Ters-
off potential have been discussed by Brenner [34], whereas the rela-
tionship between the SW and MEAM potentials has been discussed
by Thijsse [35], who shows that the two potentials can be reformu-
lated into compatible functional forms.

In this paper, we discuss the basic ideas and the functional form
of a newly developed class of Angular-dependent EAM (A-EAM)
potentials [36,37]. The A-EAM potentials incorporate a description
of the angular dependence of interatomic interactions into the gen-
eral framework of the EAM potential, making them compatible
with the SW and Tersoff potentials. The A-EAM potentials retain
all the properties of the pure components as predicted by the ori-
ginal SW, Tersoff, and EAM potentials, thus eliminating the need
for extensive testing and limiting the extent of the parameteriza-
tion needed. The reformulation of the EAM, SW, and Tersoff poten-
tials leading to the development of the unified A-EAM potentials is
described in Section 2. The ability of the A-EAM potentials to pro-
vide an adequate description of binary systems with mixed type of
bonding is illustrated in Section 3, where some of the thermody-
namic properties of the Au–Si alloy represented by an A-EAM po-
tential are discussed.
2. The Angular-dependent Embedded Atom Method

A unified alloy potentials based on a reformulation of the EAM,
SW, and Tersoff potentials in a compatible functional form are dis-
cussed in this section. A reformulation of the conventional EAM po-
tential into a general A-EAM form that includes three-body terms
in the expression for the total electron density function is pre-
sented first, followed by a description of two approaches devel-
oped for incorporation of the angular dependence compatible
with either SW or Tersoff potentials.

2.1. EAM potential with three-body terms in the electron density
function

In the EAM potentials, the energy of an atom is expressed as

Ei ¼
1
2

X
j–i

/ijðrijÞ þ FiðqiÞ; ð1Þ
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where rij is the distance between atoms i and j; /ijðrijÞ is the pair en-
ergy term defined as a function of the interatomic distance, FiðqiÞ is
the embedding energy term defined as a function of the electron
density qi at the position of atom i, and the summation is over all
atoms interacting with atom i. The electron density qi is calculated
as a sum of the partial electron density contributions from the
neighboring atoms,

qi ¼
X
j–i

fjðrijÞ; ð2Þ

where fjðrijÞ is the partial electron density contribution from atom j
at the location of atom i. Since only interatomic distances rij are
needed to calculate the energy and forces in the system, the EAM
calculations are nearly as simple and computationally efficient as
the ones with pair potentials. The lack of explicit three-body terms,
however, makes the conventional EAM to be inappropriate for cova-
lently bonded materials.

To make connections to SW or Tersoff potentials and to allow
for the introduction of an angular dependence of the interatomic
interactions, the linear sum of partial electron density contribu-
tions in Eq. (2) can be expressed through the sum of products of
partial electron densities,

qi ¼
X
j–i

fjðrijÞ
" #2

0
@

1
A

1=2

¼
X
k–i

X
j–i

fjðrijÞfkðrikÞ
 !1=2

: ð3Þ

The sum in the right part of the above equation includes two-body
terms with identical pairs of atoms ðj ¼ kÞ and three-body terms
ðj – kÞ that can be separated from each other [35]. The three-body
terms can be written in the form of a sum over unique triplets of
atoms ði; j; kÞ:

qi ¼
X
j–i

½fjðrijÞ�2 þ 2
X

j;k�Ti

fjðrijÞfkðrikÞ

8<
:

9=
;

1=2

; ð4Þ

where in the first (two-body) term under the square root the sum-
mation is over all atoms interacting with atom i, and in the second
(three-body) term the summation is over all pairs of atoms j and k
that form unique triplets with atom i. This formulation includes an
explicit dependence on triplets of neighboring atoms and, as shown
in Section 2.2, allows for incorporation of an angular dependence of
the interatomic interactions in a form compatible with Stillinger–
Weber potential. Alternatively, the three-body terms can be written
in a form of the ‘‘bond order” dependence:

qi ¼
X
j–i

½fjðrijÞ�2 þ
X
j–i

fjðrijÞ
X
k–i;j

fkðrikÞ
( )1=2

: ð5Þ

This formulation includes a bond order dependence and, as shown
in Section 2.3, allows for the incorporation of an angular depen-
dence of the interatomic interactions in a form compatible with
Tersoff potential.

2.2. Angular-dependent EAM compatible with SW potential
(metal–Si/Ge systems)

The energy of an atom in a system described by SW potential is
defined as [12]

Ei ¼
1
2

X
j–i

U2ðrijÞ þ
X

j;k�Ti

U3ð~ri;~rj;~rkÞ: ð6Þ

The potential consists of a two-body ðU2Þ and three-body ðU3Þ
terms, with the summation of the three-body terms being over all
atom pairs j and k that form unique triplets with atom i. The two-
body term has a Lennard–Jones form terminated at a distance rc

by a cutoff function:
U2ðrijÞ ¼ A B
rij

r

� ��p
� rij

r

� ��q
� �

exp
r

rij � rc

� �
: ð7Þ

The three-body term is defined as

U3ð~ri;~rj;~rkÞ ¼ ke exp
cr

rij � rc
þ cr

rik � rc

� �
ðcos hjik þ 1=3Þ2

for rij < rc; rik < rc; ð8Þ

were hjik is an angle between vectors ~rij and ~rik originating from
atom i and directed to atoms j and k. The parameters
A; B; p; q; k; r; e; rc , and c are adjustable parameters that are
chosen to reproduce the properties of crystalline, liquid, and amor-
phous phases, as well as surface structures for Si or Ge
[12,13,38,39].

The sum of the three-body terms in Eq. (6) can be rewritten in a
form of embedding energy,

FiðqiÞ ¼
X

j;k�Ti

U3ð~ri;~rj;~rkÞ ¼
ke

2ðfeÞ2
q2

i ; ð9Þ

where the electron density and partial electron density contribu-
tions are defined as

qi ¼ 2
X
j;k�T

fijðrijÞfikðrikÞðcos hjik þ 1=3Þ2
 !1=2

; ð10Þ

fijðrijÞ ¼ fe exp
cr

rij � rc

� �
: ð11Þ

Note that in the expression for the electron density given by Eq.
(10), the partial electron density contributions are defined by the
types of the pairs of atoms forming the bond, fijðrijÞ, rather than
the type of the neighboring atom, fjðrijÞ, as in the original EAM,
Eq. (2). As discussed in Section 3, this gives a greater flexibility
in the parameterization of the metal–covalent cross-interactions.
Using the reformulation of the three-body terms of the SW poten-
tial in the functional form of the EAM embedding function, Eq.
(9), and taking the pair energy term of the EAM potential in
the form of the two-body term of the SW potential,
/ijðrijÞ ¼ U2ðrijÞ, the SW potential can be written in the form of
the EAM potential, Eq. (1). For an alloy system containing both
metal and Si/Ge atoms, a combined potential that reduces to
the conventional SW and EAM potentials for pure components
can be then formulated as

Ei ¼
1
2

X
j–i

/ijðrijÞ þ Fi ð1� diÞ
X
j–i

ðfijðrijÞÞ2
("

þ2
X

j;k�Ti

fijðrijÞfikðrikÞðcos hjik þ 1=3Þci

)1=2#
: ð12Þ

Two parameters, di and ci, are added to ensure that the combined
potential given by Eq. (12) reduces to the conventional EAM poten-
tial for pure metals and to the original SW potential for pure silicon/
germanium. For metals, di ¼ ci ¼ 0 excludes the angular depen-
dence and retains only the radial contributions to the electron den-
sity, thus, reducing to the original EAM potential, Eqs. (1) and (4).
For Si/Ge, di ¼ 1 and ci ¼ 2 reduces the electron density function
into the three-body function of the SW potential, Eq. (10), that re-
tains the angular dependence. The functional form and parameters
of the embedding energy functions, FiðqiÞ, as well as the pair energy
and partial electron density functions for the interactions between
atoms of the same type are directly defined by the original EAM
and SW potentials and do not need to be adjusted in the alloy po-
tential. The adjustable parameter fe in Eqs. (9) and (11) is chosen
based on the characteristics of the EAM potential for the metal com-
ponent [37]. This parameter, once fixed, is not used in further fitting
of the cross-interactions in the potential. The fitting of the alloy
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potential, therefore, is limited to finding the optimum parameters
for the pair energy term, /ijðrijÞ, and the partial electron density
contributions, fijðrijÞ, for cross-interactions between atoms of differ-
ent type. Parameterization of the potential for Au–Si and Au–Ge
systems, based on the results of Density Functional Theory (DFT)
calculations performed for several representative Au–Si/Ge bulk
structures and small clusters, is reported in Ref. [37]. The ability
of the potential for Au–Si to reproduce some of the thermodynamic
properties of the Au–Si alloy is briefly reviewed in Section 3.

The angular dependence of interatomic interactions is incorpo-
rated into the alloy potential given by Eq. (12) in a form that is
compatible with SW potential. This potential is therefore referred
to as the SW formulation of the A-EAM potential, or A-EAM
(SW). An alternative approach for incorporation of the angular
dependence, compatible with Tersoff potential, is discussed below.
2.3. Angular-dependent EAM compatible with Tersoff potential
(metal–Si/Ge/C/SiC systems)

The Tersoff potential is based on the concept of bond order
which implies that the strength of a bond between two atoms is
not constant, but depends on the local environment [14]. The en-
ergy of an atom in a system described by Tersoff potential
[14,23] is defined as half of the sum of bond energies Vij,

Ei ¼ 1=2
X
j–i

V ij; where Vij ¼ fCðrijÞ½fRðrijÞ � bijfAðrijÞ�: ð13Þ

Here, fRðrijÞ and fAðrijÞ correspond to the repulsive and attractive
parts of the potential, fCðrijÞ is the cutoff function that limits the
range of the interatomic interactions, and bij is the bond order term
which depends on the local environment of atoms i and j. The func-
tional form of these terms is given as

fRðrijÞ ¼ A expð�k1rijÞ; ð14Þ
fAðrijÞ ¼ B expð�k2rijÞ; ð15Þ

fCðrijÞ ¼

1 for 0 < rij < RC

1=2þ 1=2 cos p rij�RC

SC�RC

� �h i
for RC < rij < SC

0 for rij > SC

8>>><
>>>:

; ð16Þ

bij ¼ 1þ bn
X
k–i;j

fCðrikÞgðhjikÞ
 !n" #�1=2n

; ð17Þ

where the function defining the angular dependence of the bond or-
der term is given as

gðhjikÞ ¼ 1þ c2

d2 �
c2

½d2 þ ðh� cos hjikÞ2�
: ð18Þ

The expression for the bond energy in Eq. (13) can be rear-
ranged [40] to have explicit two-body and three-body terms,
Vij ¼ V2 þ V3, where

V2 ¼ fCðrijÞ½fRðrijÞ � fAðrijÞ�; ð19Þ
V3 ¼ fAðrijÞfCðrijÞ½1� bij�: ð20Þ

To rewrite the Tersoff potential in the form compatible with the
EAM potential given by Eq. (1), the pair energy term, the embedding
function, and the electron density function can be formulated as
follows:

/ijðrijÞ ¼ V2 ¼ fCðrijÞ½fRðrijÞ � fAðrijÞ�; ð21Þ

Fi½qi� ¼
1

2f e
ðqiÞ

2
; ð22Þ
qi ¼
X
j–i

V3

 !1=2

¼
X
j–i

fijðrijÞ 1� 1þ bn
X
k–i;j

fCðrikÞgðhjikÞ
 !n" #�1=2n

8<
:

9=
;

8<
:

9=
;

1=2

;

ð23Þ

where the partial electron density function is defined as

fijðrijÞ ¼ fefAðrijÞfCðrijÞ: ð24Þ

Using the similarity between the electron density function given by
Eq. (23) and the one of a conventional EAM written in the bond or-
der form in Eq. (5), the EAM and Tersoff potentials can be written in
a single functional form given by Eq. (1), with the electron density
function defined as

qi¼ ð1�d3Þ
X
j–i

fijðrijÞ
� 	2

(

þ
X
j–i

fijðrijÞ d1þd2 1þ tb

X
k–i;j

ðfikðrikÞÞd4 ½fCðrikÞgðhjikÞ�d5

 !x" #y
8<
:

9=
;
9=
;

1=2

:

ð25Þ

The eight parameters/switches of the alloy potential
(d1; d2; d3; d4; d5; x; y, and tb) are chosen based on the type of
atom i, so that the electron density function reduces to Eq. (5) for
a metal atom ðd1 ¼ �1; d2 ¼ 1; d3 ¼ 0; d4 ¼ 1; d5 ¼ 0; x ¼ 1;
y ¼ 1; tb ¼ 1Þ and to Eq. (23) for Si, Ge or C represented by Tersoff
potential ðd1 ¼ 1; d2 ¼ �1; d3 ¼ 1; d4 ¼ 0; d5 ¼ 1; x ¼ n; y ¼
�1=2n; tb ¼ bnÞ.

The angular dependence of interatomic interactions is incor-
porated into the alloy potential given by Eqs. (1) and (25) in a
form that is compatible with Tersoff potential. Thus, this poten-
tial is referred to as the Tersoff formulation of the A-EAM poten-
tial, or A-EAM (T). Similarly to the A-EAM (SW) potential
discussed above, in A-EAM (T) the embedding energy functions
as well as the pair energy and partial electron density functions
for the interactions between atoms of the same type are defined
by the original EAM and Tersoff potentials. The adjustable
parameter fe in Eqs. (22) and (24) is chosen based on the charac-
teristics of the EAM potential for the metal component. The pair
energy term and the partial electron density contributions for
cross-interactions between atoms of different type can be chosen
by fitting the energies, structural characteristics, and/or thermo-
dynamic parameters of various systems composed of atoms of
different type to experimental data and/or results of ab initio
calculations.

3. Thermodynamics of Au–Si alloy represented by the A-EAM
(SW) potential

To illustrate the ability of the A-EAM potentials to reproduce
the properties of materials with mixed metallic–covalent bonding,
the results of the calculations of the phase diagram and the enthal-
py of mixing in the liquid phase are briefly discussed in this Section
for the A-EAM (SW) potential parameterized for Au–Si system. A
detailed discussion of the functional form and parameters of the
pair energy and partial electron density functions chosen for
cross-interactions between atoms of different type, as well as the
results of DFT calculations used in the parameterization of the po-
tential, are given in Ref. [37]. Briefly, the combined A-EAM (SW)
potential is based on the SW potential for Si [12] and Johnson’s
EAM potential for Au, taken in the form suggested in Ref. [20].
The advantage of this formulation of the EAM potential is in the



Fig. 1. Plots of (a) the embedding functions for EAM Au (green line) and SW Si (red
line), (b) the pair potentials, and (c) the partial electron density contributions for
the A-EAM (SW) potential for Au–Si system [37]. The red line corresponds to the Si–
Si interaction, the green line corresponds to the Au–Au interaction. The dashed blue
line in (b) corresponds to the cross Au–Si pair interaction. The dashed green curve
and the dashed red curve in (c) represent the partial electron density contribution
from Si to Au and Au to Si, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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simplicity of the functional form and the availability of parameter-
izations for many metals, allowing for an easy implementation for
a broad range of alloy systems.

The parameters for Si–Si and Au–Au interactions are defined by
the original EAM and SW potentials, with corresponding plots of
the embedding energy functions, the pair energy functions, and
the partial electron density functions for Au and Si shown in Fig. 1
by the solid lines. The functional form and parameters of the pair en-
ergy functions and the electron density functions for cross-interac-
tions between Si and Au atoms are selected based on the results of
DFT calculations performed for several Au–Si bulk structures and
small clusters. The plots of the pair energy function and the partial
electron density function for cross-interactions are shown in Fig. 1
by the dashed lines for the set of parameters that provides a good
representation of the results of the DFT calculations.

As apparent from Fig. 1c, the partial electron density contribu-
tion from Si to Au is larger than the one from Au to Si. Our initial
attempt to use the same partial electron density contributions,
fijðrijÞ ¼ fjiðrijÞ, resulted in unsatisfactory representation of some
of the material properties, particularly the experimental depen-
dence of the enthalpy of mixing of the liquid alloy on the compo-
sition. The large difference in the partial electron density
contributions from Au to Si and from Si to Au (Fig. 1c), can be re-
lated to the partial charge transfer from Si to Au predicted in DFT
calculations [37,41]. This charge transfer can be attributed to high-
er electronegativity of Au as compared to Si, 2.54 vs. 1.90 in Pauling
units. From the point of view of the performance of the A-EAM
(SW) potential given by Eq. (12), the reduction in the electron den-
sity for a Si atom due to the presence of Au atoms in its neighbor-
hood corresponds to the weakening of the strength of the angular
interactions. On the other hand, the higher values of the partial
electron density contribution from Si to Au, as compared to Au–
Au interactions, imply that a Au atom has an increased electron
density and, therefore, more repulsive interactions with the neigh-
boring atoms, when it has Si atoms as its neighbors.

To test the thermodynamic properties of the Au–Si system as
predicted by the A-EAM potential at finite temperatures, the values
of the enthalpy of mixing of the liquid alloy and the equilibrium
lines on the Au–Si phase diagram are calculated and compared
with experimental data. The calculated and experimental depen-
dences of the enthalpy of mixing on the composition of the liquid
alloy are show for 1500 K in Fig. 2. Similar to the experimental data
[42], the dependence predicted by the A-EAM (SW) potential [37]
has an asymmetric shape, with minimum shifted toward the Au-
rich alloys. The calculated dependence has a minimum of
�9.88 kJ/mol at a concentration of 33 at.% Si, compared to the
experimental dependence exhibiting a minimum of �8.23 kJ/mol
at a composition of 24 at.% Si.

The equilibrium phase diagram predicted by the A-EAM (SW)
potential for Au–Si system is shown in Fig. 3a. The calculation of
the phase diagram is based on the values of the excess chemical
potential difference between Au and Si, evaluated in a series of
semi-grand canonical ensemble Monte Carlo simulations [43,44]
performed for different temperatures and alloy compositions. The
liquidus lines on the phase diagram are obtained by computing
the Gibbs free energy of mixing for the liquid phase and the Gibbs
free energies of solid phases at different temperatures, and then
using the common tangent construction [37]. The Au–Si phase dia-
gram predicted by the A-EAM (SW) potential is of the simple eu-
tectic type, and matches relatively well the experimental phase
diagram shown in Fig. 3b. The A-EAM (SW) potential predicts a eu-
tectic temperature of 590 K, which is comparable to the experi-
mental eutectic temperature of 636 K. The eutectic composition
of 31 at.% Si, predicted by the A-EAM (SW) potential, however,
exhibits a substantial deviation from the experimental value of
18.6 at.% Si. The deviation in the eutectic composition and the eu-
tectic temperature can be attributed to the lower melting point of
the EAM Au material (963 K [45] as compared to the experimental
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Fig. 3. Phase diagrams of the Au–Si alloy predicted by the A-EAM (SW) potential
[37] (a) and obtained experimentally [42] (b). The eutectic temperatures and
compositions are 590 K and 31 at.% Si in (a) and 636 K and 18.6 at.% Si in (b).

Fig. 2. Enthalpy of mixing of the liquid Au–Si alloy at 1500 K. The values predicted
by the A-EAM (SW) potential are shown by red dots [37] and the experimental data
[42] is shown by the green dots. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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melting temperature of 1336 K [46]), as well as to the shift of the
location of the minimum of the composition dependence of the
enthalpy of mixing to higher values of Si concentration compared
to the experimental data (Fig. 2). Thus, a more accurate fitting of
the Au–Si cross-interaction to the enthalpy of mixing of the liquid
alloy, along with improved melting properties of the EAM Au can
be expected to result in a more accurate representation of the
experimental Au–Si phase diagram by the A-EAM (SW) potential.

The application of the A-EAM potential to simulations of plastic
deformation and fracture of particle reinforced metal–matrix nano-
composite materials requires additional testing of a range of proper-
ties relevant to the mechanical behavior of the model material (such
as characteristics of crystal defects and solid-state crystalline and
disordered phases). The advantage of the multi-component A-EAM
potentials discussed in this work, however, is that they inherit all
the properties of pure components predicted by the corresponding
potentials. The potentials for pure components (Stillinger–Weber,
Tersoff, and EAM) have been extensively used and thoroughly
tested, including for the properties relevant to the dynamic plastic
deformation and fracture. The properties of the interfaces and
mixed regions in the nanocomposite materials are defined by
cross-parameterization of the combined potential, discussed in this
work. While in this paper we did not test the cohesive strength of the
interfaces directly, the negative values of the enthalpy of mixing and
the eutectic type of the phase diagram indicate that the interfacial
(mixed) part of the system have a weaker average cohesive strength
as compared to the pure components. Moreover, a reasonable quan-
titative agreement in the calculated and experimental values of the
enthalpy of mixing and the eutectic temperature suggests that the
potential is appropriate for a semi-quantitative description of the
interfaces in the nanocomposite materials.

4. Summary

A new class of interatomic potentials capable of a computation-
ally efficient description of metal–covalent systems is reviewed in
the context of the prospective applications for investigation of the
dynamic response of metal–matrix ceramic particle reinforced
nanocomposite materials to a ballistic impact. The proposed A-
EAM framework is based on the combination of well-established
and thoroughly tested potentials developed for pure components
and, therefore, provides an attractive alternative to the design of
new alloy potentials with original functional forms. The design of
A-EAM potentials involves the reformulation of the electron den-
sity function of the conventional EAM potential to include three-
body angular dependent interactions. The angular dependence is
included through either an explicit dependence on triplets of
neighboring atoms or a bond-order type of dependence, making
it possible to combine the EAM potential for metals with Stillin-
ger–Weber or Tersoff potentials used for covalently bonded mate-
rials. The complex effects related to the charge transfer in the
mixed interactions can be accounted for in the potential by defin-
ing the partial electron density contributions based on the type of
the pair of atoms forming a bond, rather than the types of individ-
ual atoms. The initial implementation of the A-EAM approach for
Au–Si system demonstrates the ability of the potential to provide
an adequate description of the structural and thermodynamic
properties of the alloy at different temperatures and in the whole
range of compositions. Thus, the A-EAM potentials show consider-
able promise for investigations of multi-component materials with
mixed metallic–covalent bonding.
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