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Polarization switching-induced shielding or anti-shielding of an electrically permeable 

crack in a mono-domain ferroelectric material with the original polarization direction 

perpendicular to the crack is simulated by a phase field model based on the time-dependent 

Ginzburg-Landau equation. The domain wall energy and the long-range mechanical and 

electrical interactions between polarizations are taken into account. The phase field 

simulations exhibit a wing-shape- switched zone backwards the crack tip. The polarization 

switching-induced internal stresses shield the crack tip from applied mechanical loads. A 

local J-integral is numerically calculated and used as a failure criterion to illustrate the 

polarization switching-toughening. The result indicates that an applied uniform electric field 

parallel to the original polarization direction reduces the apparent fracture toughness, while 

an applied uniform electric field anti-parallel to the original polarization direction enhances it.  
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1. Introduction  
 

Ferroelectric ceramics have attracted much attention due to their pronounced dielectric, 

piezoelectric, and pyroelectric properties. However, ferroelectric ceramics are brittle and 

susceptible to cracking at all scales ranging from electric domains to devices. The fracture 

behavior of ferroelectric ceramics is complex under mechanical and/or electric loading. The 

theoretical results based linear piezoelectric fracture mechanics cannot predict the 

experimental observations of the fracture behavior of ferroelectric ceramics under combined 

mechanical and electrical loading [1-4]. It is still debated in the fracture mechanics 

community whether an applied electric field impedes or enhances the propagation of an 

electrically insulting crack in a ferroelectric ceramic material. The complex failure behavior 

of ferroelectric ceramics is attributed to the coherent nonlinear coupling between the 

mechanical and electric fields. Under mechanical and/or electrical loading, the intensified 

stress and electric fields in the vicinity of a crack may cause polarization switching, thereby 

changing the local electrical domain structure. The change in the local domain structure, in 

turn, changes the internal electric field near the crack tip and the internal stress field because 

spontaneous strains are accompanied with polarizations. The switching-induced internal 

stress field may, depending on the nature of the internal stress, shield or anti-shield the crack 

tip from the applied mechanical load, resulting in switching-toughening or switching-

weakening [5]. Switching-toughening may be regarded as a kind of phase-transformation-

toughening. Following the classical phase-transformation-toughening theory [6], theoretical 

studies [7-14] have been conducted to understand and predict the polarization switching-

induced toughening under mechanical and/or electrical loading. In the previous studies, the 

switching was considered at the length scale of electric domains. An electric domain, 

modeled as an inclusion, can switch 90° or 180°, which is normally called the 90°- or 180°-

domain switching. Whether a 90°- or 180°-domain switching of an individual domain will 
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occur is based on a preset switching criterion. The switching criterion is established by 

calculating the change in a thermodynamic energy before and after the switching. If the 

change exceeds a critical value, domain switching occurs. Otherwise, domain switching will 

not occur. For example, the switching criteria proposed by Hwang et al. [8] state that a 180°-

switching, where stresses are irrelevant, is activated if  

csii EPPE 2≥Δ ,      (1) 

where  and  are the electric field strength and the polarization vectors, respectively,  

is the saturated magnitude of polarization,  is the absolute value of the coercive field, and 

the Δ denotes a change of a property before and after the switching. The 90°-switching 

criterion includes the work done by mechanical stresses,   

iE iP sP

cE

csiiijij EPPE 2≥+ ΔΔεσ ,     (2) 

where ijσ  and ijε  denote the stress and the strain tensors, respectively. Note that 90°-

switching may occur without the presence of external electric fields. Eqs. (1) and (2) 

represent typically simplified versions of thermodynamic energy-based switching criteria, 

where the saturated magnitude of polarization is assumed to be constant. In the study of 

domain switching-induced toughening, a switched zone in front of a crack tip under given 

mechanical and/or electric loads is determined based on the switching criterion. Then, a local 

mode I stress intensity or a local energy release rate is calculated at the crack tip. Finally, the 

local stress intensity or the local energy release rate is used as the failure criterion to study the 

shielding or anti-shielding effect and the toughening behavior. Obviously, domain switching 

criteria depend on the used thermodynamic energy, which closely linked to the constitutive 

law. For instance, the domain-switching-induced enhancement of the steady state fracture 

toughness in a polycrystalline ferroelastic ceramic was analyzed with a phenomenological 

constitutive law [9] to account for the strain saturation, asymmetry in tension versus 
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compression, Bauschinger effects, reverse switching and strain reorientation. In the analysis 

[9], the crack growth was assumed to proceed at a critical level of the local mechanical 

energy release rate.  

 

In the theoretical research on fracture of ferroelectric ceramics, there is a crucial issue 

about the electric boundary condition along the surfaces of an electric insulating crack. Two 

approximate electric boundary conditions are commonly adopted in the theoretical research, 

namely the electrically permeable and impermeable boundary conditions. The experimental 

measurements of electric field distributions in a pre-cracked ferroelectric ceramic sample [15] 

indicate that the electrically permeable boundary condition may be more appropriate. In the 

present study, therefore, we shall investigate an electrically permeable crack.  

 

Phase field simulations are based on fundamental principles of thermodynamics and 

kinetics, which provide a powerful method for predicting the temporal evolution of 

microstructures in materials. In a phase field model, thermodynamic energies are described in 

terms of a set of continuous order parameters. The temporal evolution of a microstructure is 

obtained by solving kinetics equations that govern the time-dependence of the spatially 

inhomogeneous order parameters. A phase field model does not make any prior assumptions 

about transient microstructures, which may appear during a phase transformation path, and 

about transformation criteria. Phase transformation is a direct consequence of the 

minimization process of the total free energy of an entire simulated system. Phase field 

simulations have been conducted to study domain structures in ferroelectric materials and 

polarization switching under electric and/or mechanical loading [16-23]. The object of the 

present study is to investigate the polarization switching-induced toughening of an 

electrically permeable crack by phase field simulations. Compared with the domain switching 
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models mentioned above [7-14], phase field simulations do not need any pre-established 

switching criteria. Polarization switching is a natural process occurring during the 

minimization of the total free energy of the entire simulated ferroelectric with given boundary 

and loading conditions. The polarization gradient energy is usually taken into account in 

phase field simulations of ferroelectric ceramics to represent the domain wall energy so that 

an electric domain structure is formed or changed automatically during the simulations. The 

previous phase field simulations of polarization switching [17] indicate that the macroscopic 

reversal of polarization does not simply imply a microscopic 180°-switching of electric 

domains, while remaining the original domain structure unchanged. Rather, the minimization 

of the free energy of the entire simulated system under external electric and/or mechanical 

loads changes the domain structure completely [17]. The temporal evolution of polarization 

switching shows that the domain switching is a kinetic process of the disappearance of the 

old domain structure and the nucleation and growth of a new domain structure, in which the 

new domain growth is accomplished mainly through domain wall motion. Not only are the 

directions of the domains after switching different from those of the original domains, but the 

domain size and configuration are also different. The domain structure is completely changed 

after the switch.  

 

To simplify numerical calculations, periodic boundary conditions are usually employed in 

phase field simulations of ferroelectrics with the highly efficient Fast Fourier Transform 

technique such that elastic solution for a given polarization distribution can be obtained 

analytically in reciprocal space. However, periodic boundary conditions may be inappropriate 

in simulations of polarization switching-induced toughening because the boundary conditions 

are, in general, not periodic when only a crack is considered. In phase field simulations of 

nanoferroelectric ceramics, we have considered the long-range electrostatic and elastic 
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interactions without using periodic boundary conditions [24]. The numerical methods used in 

the previous work [24] are used here. For readers’ convenience, a brief description of the 

used equations for the phase field simulations is given in Appendix A.  

 

2. Phase field model  

Two-dimensional simulations with plane strain condition along the third direction are 

conducted in the present study. We consider an electrically permeable crack lying inside an 

infinite ferroelectric single crystal under remote electric and/or mechanical loading, as shown 

in Fig.1 (a). Only a small rectangle area near the crack tip is taken as the simulated system, as 

shown in Fig.1 (b). Before applying any electric and mechanical loads, the simulated system 

is assumed to be a single electric domain with its polarization direction perpendicular to the 

crack direction. In the simulated system, spontaneous polarizations associated with 

spontaneous strains are embedded in a background material, i.e., in the paraelectric phase 

material. The spontaneous polarization vector, P=(P1, P2, P3), is used as the order parameter to 

calculate the total free energy of the simulated ferroelectric system. The total free energy 

includes the standard Landau - Devonshire energy, the polarization gradient energy, the 

depolarization energy, and the electrical energy density due to an applied electric field. These 

energies are described in details in the Appendix. Under given applied electric and/or 

mechanical loads, the temporal evolution of the spontaneous polarization field is described by 

the time-dependent Ginzburg-Landau equation,  

),(
),(

tP
FL

t
tP

i

i

r
r

δ
δ

−=
∂

∂      (i=1, 2, 3),                                             (3) 

where L is the kinetic coefficient, F is the total free energy, ),(/ tPF i rδδ  represents the 

thermodynamic driving force of the spatial and temporal evolution of the simulated system, t 

denotes time and ),,( 321 xxx=r  is the spatial vector. In two-dimensional simulations, 
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),( 21 PP=P  and . In each of iterations of Eq. (3), the depolarization field and the 

internal stress field are calculated from the spontaneous polarization field determined in this 

iteration. This approach is called here the thermal-stress-like approach. During the course of 

iterations, the spontaneous polarization field, the depolarization field and the internal stress 

field are changed until a steady state is reached, while the applied electric and/or mechanical 

loads remain unchanged. With the thermal-stress-like approach, there is apparently no 

coupling between applied electric and/or mechanical loads. In this case, a uniform applied 

electric field remains uniform in the simulated system due to the electrically permeable 

approximation of the crack. On the other hand, the crack concentrates an applied mechanical 

field greatly in the crack tip. Thus, applied mechanical loads are given by a crack tip stress 

field in terms of a mode I stress intensity factor, , i.e., 

),( 21 xx=r

appK )(
2

θ
π

σ ij
appa

ij f
r

K
= , where )(θijf  

is also related to elastic constants for an anisotropic material (See Appendix for detail), r and 

θ  denote the distance from the crack tip and the polar angle, respectively, as shown in Fig. 

1(b).  

 

The phase field simulations are conducted with fixed dimensions of the four edges of the 

simulated rectangular region because it represents a middle part of a large ferroelectric single 

crystal. This means that the size of the simulated region is fixed after accommodating the 

displacements induced by applied mechanical loads. For the same reason, the electric 

boundary condition along the four edges is 0/ =dndφ  in solving the depolarization field, 

where  refers to a unit length in the outward normal direction of an edge of the rectangle 

region and 

n

φ  is the electric potential of the depolarization field. Based on the same argument, 

the boundary condition, , is used along the four edges of the simulated region in 0/ =dndP
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solving the spontaneous polarization field of Eq. (3). The boundary conditions along the 

crack surfaces are electrically permeable and mechanically traction-free.  

 

In the simulations including the finite element analysis, we use 241×180 discrete grids for 

the simulated region with a dimensionless cell size of , where one 

dimensionless length number represents one nanometer. The crack size is set to be one-

element in width and 120 elements in length. Since the crack is electrically permeable, there 

are no differences in electric displacement across the crack surfaces. In this sense, the crack 

may be regarded to be electrically perfect but mechanically defect. We set elastic constants of 

the elements in the crack area to be zero to model the mechanical defect in the finite element 

analysis. After external electric and/or mechanical loads are applied to the simulated system, 

a random fluctuation is added to the originally homogeneous spontaneous polarizations to 

initiate the evolution process. The dimensionless time step is 0.04 and the polarization 

distribution reaches a steady state after 1000 step iterations. In the following, most results 

without mentioning the iteration steps imply that the results are obtained after 1000 step 

iterations for the steady state. The domain structure is represented by the spontaneous 

polarization field, in which spontaneous polarizations vary spatially and each spontaneous 

polarization is characterized by an electric dipole. The length and direction of the electric 

dipole denote the magnitude and direction of local polarization, respectively. 

1*
2

*
1 == xx ΔΔ

 

3. Simulation results and discussion 

We consider an original mono-domain ferroelectric with original polarization 

perpendicular to the crack by assigning  and  to the original dimensionless 

polarizations. When a purely mechanical load is applied to the simulated ferroelectric, a 

polarization-switched zone is formed if the applied dimensionless stress intensity factor is 

0*
1 =P 1*

2 −=P
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exceeds a critical value. Figures 2(a), 2(b) and 2(c) show the polarization distribution without 

any applied electric field under purely applied stress intensity factors of , 

 and , respectively, where the solid line indicates the crack. Under 

, some spontaneous polarizations near the crack tip are changed, to some extent, 

in magnitude and orientation, as shown in the zoom-in Fig. 3, but no distinct switched zone is 

formed, as illustrated in Fig. 2(a). A switched zone is formed under a high applied 

mechanical load, as shown in Figs. 2(b) and Fig. 2(c) for  and , 

respectively. Obviously, the larger the applied mechanical load is, the larger the switched 

zone will be. The shape of switched zone with two wings backwards is almost symmetric 

with respect to the crack, but the switching direction is asymmetric, as illustrated in detail in 

Fig. 4. The polarizations in the wing above the crack switch 90

* 440appK =

* 500appK = * 560appK =

* 440appK =

* 500appK = * 560appK =

o clockwise, while the 

polarizations in the wing below the crack switch 90o anticlockwise. Fig. 4 also shows that the 

polarizations form head-to-tail arrangements after switching, which may be attributed to the 

long range electrostatic interaction. To reduce the polarization gradient energy, the 

polarization orientations change gradually from the un-switched region to the switched region, 

thereby resulting in domain walls between the two regions, as shown in Fig. 4.  

 

Figures 5(a) – 5(f) illustrate the temporal evolution of polarization switching at iteration 

steps of n=50, 100, 200, 300, 500 and 1000 under a purely mechanical load of . To 

clearly show the detailed polarization structure, the scale in each figure may be different, as 

indicated by the grid numbers on the horizontal and vertical axes. The polarization switching 

is nucleated at the crack tip, as indicated in Fig. 5(a) for n=50. After 50 step evolutions, 

polarizations at the vicinity of the crack tip switch their orientations. The four or five 

polarizations near the crack tip adjacent to the upper or lower crack surface switch the 

* 560appK =
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maximum degree and the degree of switching becomes smaller if the polarizations are away 

from the crack tip. Figures 5(b) and 5(c) show the polarization structure after 100 and 200 

step evolutions, respectively. Obviously, the switched zone grows up in both the wing length 

direction and the wing width direction. Furthermore, the switched degree of the polarization 

inside the wing is larger after 200 evolutions than that after 50 step evolutions. It is 

interesting to note that after 300 step evolutions, the switched zone moves 2 or 3 grids 

backward the crack direction. There is a residual switched region, 2 or 3 grids back of the 

crack tip, adjacent or close to the upper or lower crack surface, as shown in Fig. 5(d). This 

phenomenon becomes more distinct after 500 step evolutions. The switched zone moves 

backward the crack direction by 7 or 8 grids, as illustrated in Fig. 5(e). Finally, the switched 

zone grows to its steady state after 1000 step evolutions. The switched zone looks like a pair 

of wings with a nose, as shown by Fig. 5(f).     

 

Under combined mechanical and electric loading, the switched zone is different from that 

under purely mechanical loading. In the simulations, electric and mechanical loads are 

applied simultaneously. Figures 6(a), 6(b) and 6(c) show the polarization patterns under 

uniform electric fields of , ,*
2 0.5aE = − ,*

2 0aE =  and , respectively, where 

. The size of the switched zone increases if the applied electric field is = 0.5, 

whereas applying  reduces the size of the switched zone. As mentioned above, 

polarization switching generates an internal stress field and the total stresses include the 

applied stresses and the induced stresses. Figures 7(a) and 7(b) show the distributions of the 

total stresses,  and , in front of crack tip along the  axis, respectively, where the 

applied stresses are plotted as references. The total stress field equals the applied stress field 

before polarization switching because there are no induced internal stresses in the original 

,*
2 0.5aE =

* 560appK = ,*
2
aE

,*
2 0.5aE = −

*
22σ *

12σ 1x

simulated system due to homogeneous distributed polarizations. Figure 7(a) shows that the 
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*
22σ  stresses become smaller after the switching. Combining Fig. 6 with Fig. 7 indicates that 

arger the switched zone is, the smaller the stress of *
22σ  will be. The reduction of the total 

*
22σ  stress means that the switching-induced internal ss shields the crack tip from the 

ied mechanical load, which will result in polarization switching-toughening. The 

polarization switching induces a shear stress, *
12σ , in front of the crack, as shown by Fig. 7(b). 

Comparing the magnitude of *
12σ  to the magnitude of *

22σ  illustrates that at a given distance 

from the crack tip, the tensile ss is at least one orde gher in magnitude than that of the 

shear stress, thereby indicating that the crack tip is still predominantly under mode I loading 

after the polarization switching. Nevertheless, the generation of the shear stress changes the 

original mode I crack to a mixed mode I+II crack. In this case, it may be more appropriate to 

take the local J-integral as the fracture criterion.   

 

the l

stre

appl

stre r hi

Following the thermal-stress-like ap the mechanical J-integral is calculated 

from

proach, only 

  

2
1

( / 2) i
ij ij is

uJ dx T ds
x

σ ε ∂
= −

∂∫ ,     (4) 

where jiji nT σ= , and iu jn denotes the traction vector, ijσ  and ijε are total stresses, total 

u  no astains, total displacements and cosines of unit o tward rm l vector, respectively. Without 

the polarization-switched zone, the J-integral is path-independent. We have numerically 

checked the path-independent behavior along a global integral contour, gΓ , and a local 

integral contour, lΓ , which are shown in Fig. 8 (a). As expected, the J-integral along gΓ  is 

231.18 and along  is 224.46 under the purely mechanical load of * 560appK =  before he 

polarization switching. Both the J-integrals along g

 lΓ  t

Γ  and along lΓ  are a same as the 

analytic value of J=222.93. The difference betw en them is attributed to the numerical 

lmost the 

e
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calculation error. After the polarization switching, the J-integral is also path-independent as 

long as the integral contour does not pass through the switched zone. To calculate the local J-

integral, we use narrow contours enclosing the crack tip and excluding the switched zone 

with only five elements in the contour width and many elements in the contour length, as 

shown in Fig. 8 (b). The contour n+1 is two-element longer than the contour n and the 

contour 1 has only two elements in length in front of the crack tip. The global J-integral is 

also calculated along contour gΓ , which encloses the crack tip and the whole switched zone, 

after the polarization switching. Figure 9 shows the J-integrals calculated along the local 

integral contours before and after polarization switching under purely mechanical load of 

* 560appK = . Excluding the switched zone, the local J-integrals are almost the same for all 

ntours except slight deviations calculated along the first two contours. The slight 

deviation is due to the great variation of the tip stress field near the crack tip, which causes a 

relatively large error in the numerical calculations. The mean local J-integral is 223.36 before 

the polarization switching, the same as the applied, while the mean local J-integral is reduced 

to 108.18 after the switching. Furthermore, the global J-integral calculated along contour g

integral co

Γ  

after the polarization switching is 198.73. The difference of the global J-integrals betwe  

before and after polarization switching is attributed to the small simulation area. 

Theoretically, if the unswitched zone is sufficiently large, the global J-integrals should be 

equal before and after polarization switching.  

 

en

Figure 10 shows that the local J-integrals after switching increase monotonically with the 

applied J-integral under purely mechanical loading. This behavior indicates that a purely 

mechanical load can eventually fracture a ferroelectric sample with the use of local J-integral 

as the failure criterion even polarization switching occurs at the crack tip. Although 

polarization switching may be treated as a kind of plastic deformation, its behavior differs 
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from the nominal plastic deformation. Based on the classical Dugdale model [25], the local J-

integral is zero, independent of the level of applied load, as long as a plastic zone is formed 

near the crack tip.   

 

As mentioned above, an applied electric field plays an important role in the fracture 

beh

empha

pplying the Griffith theory to the crack tip gives a failure criterion based on the local J-

inte

avior of ferroelectric ceramics. In the present study, an applied electric field does not 

change the applied J-integral because the crack is electrically permeable. However, an 

applied electric field changes the size of the polarization-switched zone and then varies the 

local J-integral. Figure 11 illustrates the local J-integral under a uniform applied electric field 

parallel or anti-parallel to the original polarization direction and a mechanical load of 

*
beforeJ =223.36, in which the local J-integral is normalized by the applied J-integral to 

size the electric effect. Without any applied electric field, the polarization switching 

reduces about half of the local J-integral under the purely mechanical load. The normalized 

local J-integral is larger as a negative (parallel to the original polarization direction) applied 

electric field increases its strength, whereas the normalized local J-integral is smaller as a 

positive (anti-parallel) electric field increases.  

 

A

gral, which means that the crack will propagate if the local J-integral exceeds a critical 

value. In the present study, we arbitrarily take the critical value of local J-integral to be 

18.108*
, =clJ  under the purely mechanical load of 36.223*0

, =MbeforeJ  to illustrate the effect of 

n the fracture behavior of ferroelectri  this failure criterion, the 

apparent toughness in terms of the applied J-integral is 36.223*0
, =MbeforeJ  under purely 

mechanical loading. The apparent toughness in terms of the critical applied J-integral under 

combined electric and mechanical loading is determined by the phase field simulations. A 

electric field o c ceramics. With
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uniform electric field is applied first and remained unchanged. Then, the applied mechanical 

load, i.e., the applied J-integral, is increased or decreased step by step. Under each applied J-

integral, the local J-integral is calculated and compared with the critical value. If the 

calculated local J-integral is higher than the critical value, the applied J-integral will be 

reduced, otherwise, increased. In this way, the apparent toughness, i.e., the critical value of 

applied J-integral, is determined as a function of the applied electric field, which is 

normalized by the value under purely mechanical loading and plotted in Figure 12. The result 

indicates that an applied uniform electric field parallel (negative) to the original polarization 

direction reduces the apparent fracture toughness, while an applied uniform electric field anti-

parallel (positive) to the original polarization direction enhances it. Note that in the literature, 

an applied electric field parallel or anti-parallel to the poling direction is usually defined to be 

a positive or negative electric field. The phase field simulations are consistent with the 

experimental observations [1] and theoretical results [11].  

 

The polarization switching under different applied uniform electric fields perpendicular to 

the 

lmost symm

rs, as illustr

original polarization direction is also simulated under the fixed applied stress field of 

* 560appK = . Figures 13(a), 13(b) and 13(c) show the polarization patterns under uniform 

lds of 25.0,* −=aE , 0,* =aE and 25.0,* =aE , respectively. Under purely 

mechanical loading, the switched zone shape is a etric with respect to the crack, 

but the polarizations in the wings above and below the crack switch m 90

electric fie 1 1 1

o clockwise, 

respectively, as shown in Fig. 13(b). Thus, applying an electric field of 25.0,*
1 −=aE  

enhances the polarizations in the wing above the crack and retards the polarizations in the 

wing below the crack. As a result, the switched zone becomes asymmetric with the applied 

perpendicular electric field of 25.0,*
1 −=aE . The wing above the crack grows up, while the 

wing below the crack disappea ated in Fig. 13(a). Similarly, applying an electric 
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field of 25.0,*
1 =aE  enlarges the wing below the crack and destroyed the wing above the 

crack, as shown in Fig. 13(c). The disappearance of the wing below or above the crack under 

a negative or positive electric field is to reduce the electrical energy. This is because the 

polarizations parallel to the external electric field have lower energy than the polarizations 

anti-parallel to it.  

 

Fig. l J-integral variation under different uniform electric fields perpendicular 

to t

4. Concluding remarks  

ion switching near a crack tip in a mono-domain ferroelectric is 

sim

14 gives loca

he poling direction. It shows little influence of both positive and negative electric fields on 

the local J-integral.   

 

In summary, polarizat

ulated by using a phase field model, which takes into account the polarization gradient 

energy and the long-range mechanical and electrical interactions between polarizations. The 

major advantage of the phase field simulations lies in that the polarization switching is the 

result of minimizing the total free energy of the simulated system, which does not need any 

pre-described switching criteria. The polarizations in the switched wing above the crack 

switch 90o clockwise, while the polarizations in the wing below the crack switch 90o 

anticlockwise. There are electric domain walls between the switched and un-switched zones. 

All polarizations follow the head-to-tail arrangements due to the polarization gradient energy 

and the long range electric interaction energy. Since the internal stress field induced by 

polarizations is calculated by the thermal-stress-like method, the polarization-switched zone 

likes a plastic zone in the elastic-plastic fracture mechanics. In this case, J-integral is purely 

mechanical and path-independent as long as the integration contour does not pass through the 

switched zone. The polarization switching changes an original mode I crack to a mixed mode 
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I+II crack with a predominant mode I component. At the moment, it is difficult to attribute 

the mode II component to numerical errors. In this sense, a local J-integral is numerically 

calculated and used as a fracture criterion. Base on the fracture criterion, the simulations 

illustrate that an applied uniform electric field parallel to the original polarization direction 

reduces the apparent fracture toughness, while an applied uniform electric field anti-parallel 

to the original polarization direction enhances it. The results are consistent with some 

experimental observations.  
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Appendix 

Following the previous work [24], spontaneous polarizations associated with spontaneous 

strains are considered to be embedded in a paraelectric background material. Under an 

external electric field, E, the total polarization, , is divided into two components, the 

spontaneous polarization, P , and the induced polarization, . For simplicity, the induced 

polarization may be assumed to be linearly proportional to the electric field [26]. In this case, 

the electric displacement vector, D, can be given by 

)(P t

)(P i

PEPPEPED +=++=+= κ0
)(

0
)(

0 εεε it ,   (A1) 

where Fm12
0 10858 −×= .ε -1  is the dielectric constant of vacuum and 332211 κκκκ ===  and 

)(0 jiij ≠=κ denotes the relative dielectric constant tensor of the background paraelectric 

material.  

The standard Landau - Devonshire energy density is [27] 
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where 0001 2/)( CTT εα −=  is the dielectric stiffness, 1231121111211 ,,,, ααααα  are higher order 

dielectric stiffnesses, T and T0 denote temperature and the Curie-Weiss temperature, 

respectively, C0 is the Curie constant;  are the elastic compliance coefficients,  are 

electrostrictive constants and  denote mechanical stresses. Note that mechanical stresses 

include applied and internal stresses induced by spontaneous strains.  

ijs ijQ

ijσ
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For ferroelectric materials, the polarization gradient energy represents also the domain 

wall energy. For simplicity, the lowest order of the gradient energy density is used here, 

which takes the form:  
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2
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2
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1,22,144

3,31,13,32,22,21,112
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2
2,2

2
1,111,

PPPPPPG
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PPPPPPGPPPGPf jiG

−+−+−+

++++++

+++++=

                            (A3) 

where  and  are gradient energy coefficients, and P,,, 441211 GGG '
44G i,j denotes the derivative 

of the ith component of the polarization vector, Pi, with respect to the jth coordinate and i, j 

=1, 2, 3.  

 

The total free energy includes the depolarization energy induced by spatially 

inhomogeneous spontaneous polarizations. The depolarization energy is a self-electrostatic 

energy corresponding to the long-range electrostatic interaction of spontaneous polarizations 

and is calculated by [28,29] 

)( 3322112
1 PEPEPEf ddd

dep ++−= ,                                                 (A4) 

where , and  are the components of depolarization field along the ,  and  

axes, respectively. The self-electrostatic field is the negative gradient of the electrostatic 

potential, 

dE1
dE2

dE3 1x 2x 3x

φ , induced by spontaneous polarizations, i.e., . The electrostatic potential 

can be obtained by solving the following electrostatic equilibrium equation,  

i
d
iE ,φ−=

0)κ( ,0, =+= iiii PED ε  or  3322113322110 ,,,,,, )( PPP ++=++ φφφκε   (A5) 

for a body-charge-free paraelectric medium [30]. The polarization in Eq. (A5) is spontaneous 

polarization. If the total polarization is taken as order parameter, then theκ  in Eq. (A5) 

 18



should be deleted. Equation (A5) is solved by using the finite difference method for a given 

polarization distribution.  

 

If an externally electric field, , is applied to the system, the applied field generates an 

additional electrical energy density,  

a
iE

i
a
ielec PEf −= .                                                                (A6) 

 

Integrating all free energy densities over the entire volume of a simulated ferroelectric 

material yields the total free energy, F, of the simulated ferroelectric material:   

( ) dVEPfEPfPfPfF a
iielec

d
iidepjiGijiDLV∫ +++= )],(),()(,[ ,σ ,                        (A7) 

where V denotes the volume of the simulated ferroelectric material.  

 

In the present two-dimensional simulations, a uniform electric field, , and/or a  tip 

stress field are applied to the simulated system. The tip stresses under a given  are 

expressed by [31]:   

a
iE IK

appK

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+−

= 2/1
1

1
2/1

2

2

21

21
11 )sin(cos)sin(cos

Re
2 θθθθπ

σ
s
s

s
s

ss
ss

r

K appa , 

       
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+−

= 2/1
1

2
2/1

2

1

21
22 )sin(cos)sin(cos

1Re
2 θθθθπ

σ
s
s

s
s

ssr

K appa ,              (A8) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+−

= 2/1
2

2/1
121

21
12 )sin(cos

1
)sin(cos

1Re
2 θθθθπ

σ
ssss

ss
r

K appa . 

In Eq. (A8)  and are two unequal complex roots with positive imaginary parts of the 

characteristic equation  

1s 2s

0)( 11
2

4412
4

11 =+++ bsbbsb ii ,                                          (A9) 
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in which  

11

2
12

1111 s
ssb −= ,  

11

2
12

1212 s
ssb −= ,  4444 sb = ,                                 (A10) 

and ,  and  are material compliance constants. In the text and follows, we use  

to denote the applied mode I stress intensity factor. The relationship between the J-integral, 

, and the applied mode I stress intensity factor is given by [31]  

11s 12s 44s appK
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bbb
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analy .                                        (A11) 

Without any applied mechanical and/or electrical loads, there are no stresses and electric 

field in the simulated system due to the homogeneous polarizations. Once polarizations are 

inhomogeneously distributed, a depolarization field, , and an internal stress field, , will 

be generated. Thus, the total electric field is the sum of the applied field plus the 

depolarization field. The total stress field, 

d
iE in

ijσ

ijσ , includes the applied K-field  and the 

internal stress field, , i.e.,  

a
ijσ

in
ijσ

in
ij

a
ijij σσσ += .                                                        (A12) 

The internal stress field is caused by the spontaneous strains. The spontaneous strains at 

stress-free state, which are called eigenstrains, are associated with the spontaneous 

polarizations in the following form [26],  
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where ,  and  are the electrostrictive coefficients. Following the thermal stress 

approach, elastic strains are generated when polarization switching occurs in a perfect mono-

domain ferroelectric material, which are calculated by  

11Q 12Q 44Q

0
ijijije εε Δ−= ,                                                            (A14) 

where  is the change of  spontaneous strain after switching, is the 

initial polarization and  are strains excluding the applied elastic strain, which must be 

compatible and are defined by  

)( 000
lklkijklij PPPPQ −=Δε 0

iP

ijε

)( ,, ijjiij uu +=
2
1ε ,                                                        (A15) 

in which  are displacements. In linear elasticity, stresses are related to elastic strains 

through Hooke’s law: 

iu

)( 0
ijijijklklijkl

in
ij cec εεσ Δ−== .                                               (A16) 

Without any body forces, the mechanical equilibrium equations are expressed by . 

Since the applied stress field meets the mechanical equilibrium condition, the internal stress 

field  should also satisfy the following static mechanical equilibrium equation  

0
,
=

jij
σ

in
ijσ

0, =in
jijσ ,                                                              (A17) 

which is solved by the finite element method.   

 

For convenience, we employ the following set of the dimensionless variables for Eq. (3).   
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)|(|* 2
001111 Pss α= , , , )|(|* 2

001212 Pss α= )|(|* 2
004444 Pss α=

11011
*
11 /GGG = , , , , 11012

*
12 /GGG = 11044

*
44 /GGG = 1104444 GGG /''* =

* 1/ 4
1 110 1 0( / ) /(app appK K G Pα α= 2 ) ,                                            (A18) 

where P0 is the magnitude of the spontaneous polarization at room temperature,  is a 

reference value of the gradient energy coefficients, and 

110G

0α  represents the value of 1α  at 25ºC. 

The superscript asterisk, * , denotes the dimensionless value of the corresponding variable. 

We set the magnitude of the spontaneous polarization at room temperature to be 

P0=|P0|=0.757 , the reference value of the gradient energy coefficients as 

, the relative dielectric constant, 

2/ mC

2410
110 /1073.1 CNmG −×= 066.=κ , and the value of 1α  at 

25ºC to be )/()(, 000C2510 2 CTT εαα −== o  = , where T  is in 

units of ºC. The values of the dimensionless (normalized) material coefficients used in the 

simulations are taken from Reference [19] and listed in Table I.  

225 N/Cm108347925 ××− .)(

 

Table I. Values of the normalized coefficients used in the simulations [19]  
 

                                                           G  *
11α *

12α *
111α *

112α *
123α *

11Q *
12Q *

44Q *
11s *

12s *
44s *

11G   *
12G *

44G '*
44

-0.24   2.5   0.49   1.2   -7.0   0.05  –0.015  0.038  7.9x10-4 -2.5x10-4  2.08x10-3  0.6  0.0   0.3   0.3  

 

The values of the dimensionless gradient energy coefficients used in the present study are 

smaller than those used in the pervious work [24]. It was found in the simulations with the 

higher values of the dimensionless gradient energy coefficients that polarization switching 

was very difficult to occur near the crack tip and the numerical iteration was often divergent. 

A systematic investigation is needed to clarify the role of the values of the dimensionless 

gradient energy coefficients in the polarization switching-induced toughening.   
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With the dimensionless variables we explicitly express the 2D time-dependent Ginzburg-

Landau equation, i.e., Eq. (3), as:   
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The finite difference method for spatial derivatives and the Runge-Kutta method of order four 

for temporal derivatives are employed to solve Eq. (A19) in real space with the free boundary 

condition.    
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Fig.1 Schematic illustration of an electrically permeable crack in a mono-domain ferroelectric:  

(a) crack in infinite medium under combined remote loadings; (b) simulated crack tip area  

subjected to applied K-field stresses of mode I and a uniform electric field of , where Pa
iE 0 

indicating the poling direction. 
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Fig.2 Polarization distribution under (a) , (b) and (c) , 

without any applied electric field.  
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Fig.3 The detailed polarization distribution near the crack tip in Fig. 2 (a). 
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Fig.4 The detailed polarization distribution near the crack tip in Fig. 2 (b). 
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Fig.5 Temporal evolution of polarization switching at different time steps n under  
without any applied electric field. 
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Fig.6 Polarization distribution under (a) and * 560appK = ,*
2 0.5aE = − , (b) and 

, and (c) and .  
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Fig. 7  Stresses distribution in front of the crack tip with θ=0 before and after switching. The 

curve with solid circles denotes the applied stress. The curves with solid triangles, solid 

rectangles and solid stars represent the total stresses after switching under  and 

uniform electric fields of , 
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Fig. 8 The illustration of different J-integral contours around the crack tip. Contour 2 in (b) is 

the same as the local contour in (a) 
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Fig. 9 The mechanical part of J-integrals obtained from different integral contours before and 

after polarization switching under purely mechanical load of . * 560appK =
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Fig. 10 Local J-integral after switching versus local J-integral before switching without 

electric field. 
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Fig.11 Local J-integral variation under different uniform electric fields. 
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Fig. 12 Effects of uniform electric fields on the fracture toughness of the model ferroelectric. 
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Fig.13 Polarization distribution under and applied electric field (a) , 

(b) , and (c) .  
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Fig.14 Local J-integral variation under different uniform electric fields perpendicular to 
poling direction. 
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