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The	play	of	thermodynamics	
Leading	role	.	Thermodynamics	is	often	called	the	science	of		energy	.	This	designation	steals	
accomplishments	from	other	sciences,	and	diminishes	accomplishments	of	thermodynamics.	
Rather,	thermodynamics	is	the	science	of		entropy	.	Entropy	plays	the	leading	role	in	
thermodynamics.	Energy	crisis	is	a	timely	topic;	entropy	crisis,	timeless.		
	
Supporting	roles	.	In	thermodynamics,	energy	plays	a	supporting	role,	along	with	space,	
matter,	and	charge.	Indeed,	these	supporting	roles	are	analogous	to	one	another,	and	are	of	
equal	importance.	Calling	thermodynamics	the	science	of	energy	distorts	the	structure	of	the	
subject,	and	neglects	obviously	significant	roles	of	space,	matter,	and	charge.	

	



	

	
Children	and	grandchildren	.	Each	of	these	supporting	roles,	together	with	entropy,	produces	a	
child.	The	four	children—temperature,	pressure,	chemical	potential,	and	voltage—are	the	
second	generation	of	supporting	roles.	They	produce	grandchildren:	thermal	capacity,	
compressibility,	coefficient	of	thermal	expansion,	etc.		
	
Extras	.	There	are	also	some	extras:	enthalpy,	Helmholtz	function,	Gibbs	function,	etc.	They	are	
called	thermodynamic	potentials,	introduced	by	Gibbs	(1875).	They	are	shadows	of	entropy.	Let	
no	shadows	obscure	the	real	thing—entropy.	
	

The	Cast	of	Thermodynamics		
	
Leading	role	:	
Entropy	
		
Supporting	roles	:	
Energy	
Space	
Matter	
Charge	
	
Children	of	entropy	and	the	supporting	roles	:	
Temperature	
Pressure	
Chemical	potential	
Voltage	
	
Grandchildren	:	
Thermal	capacity	
Compressibility	
Coefficient	of	thermal	expansion	
…...	
	
Extras:	
Enthalpy	
Helmholtz	function	
Gibbs	function	
…...	

	
This	course	.	This	course	will	develop	the		logic		of	entropy	from	first	principles,		intuition		of	
entropy	from	everyday	experience,	and		application		of	entropy	in	many	domains.		
	

	



	

We	will	let	everyday	experience,	along	with	discoveries	and	inventions,	reveal	the	long	arm	of	
entropy,	and	its	intriguing	plays	with	the	supporting	roles.		
	
I	am	writing	this	file	for	lectures	that	focus	on	thermodynamics	itself,	rather	than	its	applications.	
Any	one	of	the	standard	textbooks	will	fill	the	rest	of	the	course	with	copious	applications.	
	
This	course	does	not	teach	the	history	of	thermodynamics.	It	is	impractical	to	teach	
thermodynamics	by	tracing	the	steps	of	Carnot,	Clausius,	Boltzmann,	and	Gibbs,	just	as	it	is	
impractical	to	teach	calculus	by	tracing	the	steps	of	Newton	and	Leibniz.	A	subject	and	its	
history	are	different	things.	Thus	said,	the	history	of	thermodynamics	is	interesting,	important,	
and	well-documented,	full	of	moments	of	triumph	and	despair.	Many	original	works	are	available	
online	in	English.	I	will	place	a	few	names	and	years	in	the	notes	as	landmarks.	You	can	read	
the	history	of	thermodynamics	online,	starting	with	the		Wikipedia	entry	.	

Entropy	
The	definition	of	entropy	requires	two	ideas:	isolated	system	and	sample	space.	

Isolated	system		
System	.	We	have	met	the	cast.		Now	look	at	the	stage—the		world	.	Any	part	of	the	world	is	
called	a		system	.	The	rest	of	the	world	is	called	the		surroundings	.		
	
We	can	regard	any	part	of	the	world	as	a	system.	Even	the	empty	space	can	be	a	system;	the	
vacuum	hosts	electromagnetic	field.		
	
A	proton	and	an	electron	constitute	a	system,	called	a	hydrogen	atom.		
	
A	half	bottle	of	water	is	a	system.	The	system	is	composed	of	water	molecules	and	some	other	
molecules,	such	as	nitrogen,	oxygen,	and	carbon	dioxide.	In	the	half	bottle	of	water,	liquid	
occupies	some	volume,	and	gas	fills	the	rest.	The	liquid	and	the	gas	together	constitute	the	
system.	Do	we	include	the	plastic	bottle	as	a	part	of	the	system?	Maybe,	if	we	decide	to	study	
the	permeation	of	water	molecules	through	the	plastic.	The	decision	is	ours.		
	
Interaction	between	a	system	and	its	surroundings	.	A	system	and	its	surroundings	can	have	
many	modes	of		interaction	.	The	hydrogen	atom	changes	the	shape	of	its	electron	cloud	when	
the	atom	absorbs	or	emits	photons,	or	when	the	atom	is	subject	to	an	electric	field.	
	
I	hold	the	half	bottle	of	water	in	my	hand.	I	see	the	water	because	the	liquid-gas	interface	
refracts	light.	I	feel	moist	because	water	molecules	hit	me.	I	warm	up	the	water	when	the	
vibration	of	the	molecules	in	my	hand	couples	the	vibration	of	the	molecules	in	the	water.	When	
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I	drink	from	the	bottle,	the	bottle	transfers	water	molecules	to	my	body.	I	shake	the	bottle	and	
hear	the	sound.	I	pour	honey	into	water	and	watch	them	mix.	
	
Isolated	system	.	Our	play—thermodynamics—shows	all	modes	of	interaction	between	a	
system	and	its	surroundings.	But	our	narrative	begins	with	something	simpler:	an		isolated	
system	—a	system	that	does	not	interact	with	its	surroundings.	
	
To	make	the	half	bottle	of	water	an	isolated	system,	I	cap	the	bottle	to	prevent	molecules	from	
leaking	in	and	out.	I	insulate	the	bottle	in	a	thermos	to	block	the	vibration	of	the	molecules	in	my	
hand	from	coupling	with	the	vibration	of	molecules	in	the	water.	I	make	the	bottle	rigid	to	fix	the	
volume.	I	do	not	shake	the	bottle.	I	am	alert	to	any	other	modes	of	interaction	between	the	water	
and	the	surroundings.	Does	the	magnetic	field	of	the	earth	affect	the	water?	If	it	does,	I	will	find	
a	way	to	shield	the	bottle	of	water	from	the	magnetic	field	also.	
	
Of	course,	nothing	is	perfectly	isolated.	Like	any	idealization,	the	isolated	system	is	a	useful	
approximation	of	the	reality,	so	long	as	the	interaction	between	the	system	and	the	rest	of	the	
world	negligibly	affects	a	phenomenon	that	I	choose	to	study.	For	example,	it	may	be	too	much	
trouble	for	me	to	isolate	the	water	from	gravity.	Few	people	care	to	study	water	under	the	
zero-gravity	condition.	Gravity	is	important	if	I	move	the	bottle	around,	but	unimportant	if	I	study	
the	vapor	pressure	in	the	bottle.	
	
Exercise	.	Describe	a	system	and	what	you	need	to	do	to	make	it	an	isolated	system.	

Sample	space	
Quantum	states	of	an	isolated	system.		When	a	hydrogen	atom	is	isolated	at	the	second	
energy	level,	the	isolated	system	has	eight	quantum	states.	
	
Quantum	mechanics	governs	all	systems,	however	complicated.	A	quantum	state	of	the	half	
bottle	of	water	is	a	cloud	of	electrons	and	positions	of	nuclei.	Such	a	macroscopic	isolated	
system	has	a	large,	but	finite,	number	of	quantum	states.		
	
Sample	space	.	In	the	theory	of	probability,	each	trial	of	an	experiment	is	assumed	to	result	in	
one	of	multiple	possible	outcomes.	Each	possible	outcome	is	called	a		sample	point	.	The	set	of	
all	possible	outcomes	of	the	experiment	is	called	the		sample	space	.	The	notion	of	sample	space	
comes	from	Mises	(1919).	
	
An	isolated	system	is	an	“experiment”	in	the	sense	of	the	word	used	in	the	theory	of	probability.	
The	isolated	system	flips	from	one	quantum	state	to	another,	rapidly	and	ceaselessly.	Each	
quantum	state	is	a	possible	outcome,	or	a	sample	point,	of	the	isolated	system.	All	the	quantum	
states	of	the	isolated	system	constitute	the		sample	space	of	the	isolated	system	.	
	

	



	

Exercise	.	What	is	the	sample	space	of	a	throw	of	a	coin?	What	is	the	sample	space	of	throw	a	
coin	and	a	die	simultaneously?	What	is	the	sample	space	of	a	throw	of	two	dies	
simultaneously?	How	many	possible	outcomes	do	you	get	when	you	throw	1000	dies?	
	
Exercise	.	What	is	the	sample	space	of	a	hydrogen	atom	isolated	at	the	second	energy	level?	
Sketch	the	electron	clouds	of	the	quantum	states.	

Definition	of	entropy	
Now	enters	the	leading	role—entropy.	Let	Ω	be	the	number	of	quantum	states	of	an	isolated	
system.	Define	the		entropy		of	the	isolated	system	by	
	
S	=	log	Ω.		
	
Logarithm	of	any	base	will	do.	For	convenience,	we	will	use	the	natural	base	e.	The	number	e	
simplifies	the	derivative	of	logarithm.	Recall	a	fact	of	calculus:	d	log	x	/	dx	=	1/x.	For	any	other	
base	b,	recall	that	log	b		x	=	(log	b		e)(log	e		x),	so	that	d	log	b		x	=	(log	b		e)/x.	The	prefactor	clutters	the	
formula	and	serves	no	purpose.	
	
Entropy	is	an	extensive	quantity.		Why	do	we	hide	Ω	behind	a	log?	Consider	two	isolated	
systems,	A	and	B.		Isolated	system	A	has	one	sample	space	of	Ω	A		quantum	states,	labeled	as	
	
{a	1	,	a	2	,...,	a	ΩA	}.		
	
Isolated	system	B	has	another	sample	space	of	Ω	B		quantum	states,	labeled	as		
	
{b	1	,	b	2	,...,	b	ΩB	}.		
	
The	two	systems	are		separately	isolated	.	Together	they	constitute	a		composite	,	which	is	also	an	
isolated	system.	Each	quantum	state	of	this	composite	is	a	combination	of	a	quantum	state	of	
one	isolated	system,	a	i	,	and	a	quantum	state	of	the	other	isolated	system,	b	j	.	All	such	
combinations	together	constitute	the	sample	space	of	the	composite.	The	total	number	of	all	
such	combinations	is	the	product:	
	
Ω	composite		=	Ω	A	Ω	B	.	
	
Recall	a	property	of	logarithm:	log	(Ω	A		Ω	B	)	=	log	Ω	A			+	log	Ω	B	.	Thus,	the	entropy	of	a	composite	of	
two	separately	isolated	systems	is	the	sum	of	the	entropies	of	the	two	individual	isolated	
systems.		
	
We	now	see	the	significance	of	logarithm:	it	turns	a	product	to	a	sum.	The	entropy	of	a	system	is	
the	sum	of	the	entropies	of	its	parts,	each	part	being	separately	isolated.	Such	an	additive	
quantity	is	called	an		extensive	quantity	.	

	



	

		
Entropy	of	a	pure	substance.		A	pure	substance	is	a	collection	of	a	large	number	of	a	single	
species	of	molecules	(or	atoms).	The	molecules	can	aggregate	into	various	forms,	called	
phases	.	For	example,	at	room	temperature	and	atmospheric	pressure,	diamond	is	a	crystalline	
lattice	of	carbon	atoms,	water	is	a	liquid	of	H	2	O	molecules,	and	oxygen	is	a	gas	of	O	2		molecules.	
	
Entropy	is	an	extensive	quantity.	The	entropy	of	a	piece	of	a	pure	substance	is	proportional	to	
the	number	of	molecules	in	the	piece.	For	a	piece	of	a	pure	substance,	having	the	number	of	
molecules	N	and	entropy	S,	the	entropy	of	the	substance	per	molecule	is	
	
s	=	S/N.	
	
Later	we	will	describe	how	to	measure	entropy	experimentally.	For	now,	we	look	at	some	
measured	numbers.	At	room	temperature	and	atmospheric	pressure,	the	entropy	of	diamond,	
lead	and	water	are	0.3,	7.8	and	22.70,	respectively.	A	strong	substance,	such	as	diamond,	has	
a	small	value	of	entropy,	because	individual	atoms	are	held	together	by	strong	chemical	bonds,	
which	reduces	the	number	of	quantum	states.	
	
Complex	substances	generally	have	larger	entropies	than	simple	substances.	For	example,	at	
room	temperature	and	atmospheric	pressure,	the	entropies	for	O,	O	2		and	O	3		are	19.4,	24.7,	
28.6,	respectively.	
	
When	a	pure	substance	melts,	the	molecules	transform	from	a	crystal	to	a	liquid.	Associated	
with	this	phase	transition,	the	entropy	typically	increases	by	a	number	between	1	to	1.5	per	
molecule.	
	
Zero	entropy	.	The	entropy	of	a	pure	substance	is	often	tabulated,	at	the	end	of	textbooks	and	
online,	as	a	function	of	temperature	and	pressure.	Such	a	table	often	assumes	an	arbitrary	state	
of	temperature	and	pressure	as	a	reference	state.	The	table	lists	the	entropy	of	the	substance	at	
this	reference	state	as	zero,	and	lists	the	entropy	of	the	substance	at	any	other	state	of	
temperature	and	pressure	relative	to	the	reference	state.	
	
We	follow	this	practice	with	caution.	Recall	the	definition	of	entropy,	S	=	log	Ω	.	Zero	entropy	is	
not	something	arbitrary,	but	has	physical	significance:	zero	entropy	corresponds	to	an	isolated	
system	of	a	single	quantum	state.	
	
Exercise	.	The	entropy	of	a	throw	of	a	fair	die	is	log	6.	The	entropy	of	an	isolated	system	is	log	
Ω.	What	is	the	entropy	of	a	throw	of	a	coin?	What	is	the	entropy	of	a	simultaneous	throw	of	a	
coin	and	a	die?	What	is	the	entropy	of	a	simultaneous	throw	of	1000	dies?	
	
Exercise	.	12	grams	of	diamond	has	6.02×10	23		number	of	carbon	atoms.	How	many	quantum	
states	are	there	in	one	gram	of	diamond	at	room	temperature	and	atmospheric	pressure?	
	

	



	

Exercise	.	Carbon	atoms	can	also	aggregate	in	other	forms,	such	as	graphene,	nanotube,	and	
buckyball.	Learn	about	these	forms	online,	and	find	the	entropy	per	atom	in	each	form.	

Fundamental	postulate		
Of	our	world	we	know	the	following	facts:	
	

1. An	isolated	system	has	a	certain	number	of	quantum	states.	Denote	this	number	by	Ω.	
2. The	isolated	system	flips	from	one	quantum	state	to	another,	rapidly	and	ceaselessly.	
3. A	system	isolated	for	a	long	time	flips	to	every	one	of	its	quantum	states	with	equal	

probability,	1/Ω	.	
	
Thus,	a	system	isolated	for	a	long	time	behaves	like	a		fair	die	:	
	

1. The	die	has	six	faces.	
2. The	die	is	rolled	from	one	face	to	another.	
3. The	die	is	rolled	to	every	face	with	equal	probability,	1/6.	

	
Fact	3	of	the	world	is	called	the		fundamental	postulate	.	The	fundamental	postulate	cannot	be	
deduced	from	more	elementary	facts,	but	its	predictions	have	been	confirmed	without	exception	
by	empirical	observations.	We	will	regard	the	fundamental	postulate	as	an	empirical	fact,	and	
use	the	fact	to	build	thermodynamics.	
	
The	fundamental	postulate	links	thermodynamics	to	probability.	Our	world	acts	like	a	compulsive	
gambler,	ceaselessly	and	rapidly	throwing	fair	dies,	each	having	an	enormous	number	of	faces.	
	

	 Probability	 Thermodynamics	

Experiment	 Roll	a	fair	die	 Isolate	a	system	
for	a	long	time	

Sample	space	 6	faces	 Ω	quantum	states	

Probability	of	
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Subset	 Event	 Subset	

Probability	to	
realize	a	
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(number	of	
quantum	states	in	
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Random	variable	
	

Internal	variable	

	
Exercise	.	A	cheater	makes	an	unfair	die	of	six	faces,	labeled	as	a,b,c,d,e,	f.	Through	many	
throws,	the	cheater	finds	that	the	probability	of	face	a	is	½,	the	probability	of	face	f	is	1/10,	and	
the	other	four	faces	have	an	equal	probability.	What	is	the	probability	of	getting	face	b	twice	in	
two	throws?	
	
Ignorance	is	bliss	.	In	throwing	a	die,	the	gambler	does	not	need	to	know	the	material	that	
makes	the	die,	or	the	symbols	that	mark	the	faces.	All	the	gambler	needs	to	know	about	the	die	
is	that	it	has	six	faces	of	equal	probability.	
	
The	same	is	true	in	thermodynamics.	In	studying	an	isolated	system,	we	do	not	need	to	know	
the	quantum	states	themselves	(the	shape	of	the	cloud	of	electrons,	the	positions	of	nuclei,	or	
the	number	of	protons).	We	just	need	to	know	how	many	quantum	states	that	the	isolated	
system	has.		
	
This	enormous	reduction	of	information	is	central	to	the	success	of	thermodynamics.	An	isolated	
system	is	reduced	to	a	pure	number,	the	number	of	quantum	states,	Ω.	Later	we	will	learn	how	
to	count	the	number	of	quantum	states	of	an	isolated	system	experimentally.	

Dispersion	of	ink	
Empirical	facts	.	Let	us	watch	the	fundamental	postulate	in	action.		Drip	a	drop	of	ink	into	a	
bottle	of	water,	and	the	ink	disperses	over	time.	The	dispersion	of	ink	is	readily	observed	at	
macroscopic	scale,	but	can	also	be	observed	in	a	microscope,	as	described	below.	
	
The	ink	contains	pigment	particles	of	size	less	than	a	micron.	Each	pigment	particle	is	
bombarded	by	water	molecules,	rapidly	and	ceaselessly,	from	all	directions.	At	any	given	time,	
the	bombardments	do	not	fully	cancel	out,	but	result	in	a	net	force	that	moves	the	pigment	
particle.	This	rapid,	ceaseless,	random	motion	of	a	particle	in	a	liquid	was	first	observed	in	a	
microscope	by	Brown	(1827).	Wiki		Brownian	motion	.	
	
Thermodynamic	theory	.		Individual	pigment	particles	move	in	all	directions		randomly	.	After	
some	time,	the	pigment	particles	disperse	in	the	bottle	of	water		homogeneously	.		How	can	the	
random	motion	of	individual	pigment	particles	cause	pigment	particles	collectively	to	do	
something	directional—dispersion?		
	

	

https://en.wikipedia.org/wiki/Brownian_motion


	

The	answer	is	simple.	When	the	concentration	of	pigment	particles	is	inhomogeneous,	more	
particles	will	diffuse	from	a	region	of	high	concentration	to	a	region	of	low	concentration.	This	
bias	continues	until	the	pigment	particles	are	distributed	homogeneously.		
	
Let	us	relate	this	everyday	experience	to	the	fundamental	postulate.	To	make	a	definite	
calculation,	we	assume	that	the	pigment	particles	in	water	are	far	apart,	so	that	each	particle	is	
free	to	explore	everywhere	in	the	bottle	of	water,	unaffected	by	the	presence	of	other	pigment	
particles.	Consequently,	the	number	of	quantum	states	of	each	pigment	particle	is	proportional	
to	the	volume	of	the	water	in	the	bottle,	V.	The	number	of	quantum	states	of	N	pigment	particles	
is	proportional	to	V	N	.		
	
On	the	other	hand,	if	the	N	pigment	particles	are	localized	in	a	small	region,	say,	in	the	initial	
drop	of	ink	of	volume	V/70,	the	number	of	quantum	states	of	the	N	pigment	particles	is	
proportional	to	(V/70)	N	.		
	
After	the	ink	is	in	water	for	a	long	time,	all	quantum	states	are	equally	probable.	Thus,	the	ratio	
of	the	probability	of	finding	the	N	pigment	particles	in	volume	V	to	the	probability	of	finding	the	N	
pigment	particles	in	volume	V/70	is	70	N	.	This	ratio	is	enormous	because	a	drop	of	ink	has	a	
large	number	of	pigment	particles,	N.	This	fact	explains	why	the	pigment	particles	much,	much	
prefer	dispersion	to	localization.		
	
Exercise	.	The	density	of	the	pigment	material	is	1000	kg/m	3	.	Assume	each	pigment	particle	is	a	
sphere,	diameter	100	nm.	How	many	pigment	particles	are	there	in	1g	of	dry	ink?	After	the	ink	is	
in	a	bottle	of	water,	volume	100	ml,	for	a	long	time,	what	is	the	ratio	of	the	probability	of	finding	
all	pigment	particles	in	a	volume	of	10	ml	to	the	probability	of	finding	all	pigments	in	the	volume	
of	100	ml?	

Equilibrium	
The	dispersion	of	ink	illustrates	several	characteristics	common	to	all	isolated	systems.		
	
Right	after	a	small	drop	of	ink	enters	the	bottle	of	water,	all	the	pigment	particles	are	localized	in	
the	drop.	The	pigment	particles	then	start	to	diffuse	into	the	pure	water.	After	some	time,	the	
pigment	particles	disperse	in	the	bottle	of	water	homogeneously,	and	the	system	of	the	pigment	
particles	in	water	is	said	to	have	reached		equilibrium	.		
	
Right	after	isolation,	the	system	has	Ω	quantum	states,	flips	to	some	of	them	more	often	than	
others,	and	is	said	to	be	out	of	equilibrium.	Out	of	equilibrium,	the	probability	for	the	isolated	
system	to	be	in	a	quantum	state	is	time-dependent.		
	
After	being	isolated	for	a	long	time,	the	system	flips	to	every	one	of	its	quantum	states	with	
equal	probability,	1/Ω,	and	is	said	to	have	reached	equilibrium.	In	equilibrium,	the	probability	for	
the	isolated	system	to	be	in	a	quantum	state	is	time-independent.		

	



	

	
Several	phrases	are	synonymous:	a	system	“isolated	for	a	long	time”	is	a	system	“flipping	to	
every	one	of	its	quantum	states	with	equal	probability”,	and	is	a	system	“in	equilibrium”.	
Whenever	we	speak	of	equilibrium,	we	identify	a	system	isolated	for	a	long	time.		
	
In	or	out	of	equilibrium,	an	isolated	system	flips	from	one	quantum	state	to	another,	ceaselessly	
and	rapidly.		
	
In	or	out	of	equilibrium,	an	isolated	system	has	a	fixed	sample	space	of	Ω	quantum	states.	The	
entropy	of	the	isolated	system,	S	=	log	Ω,	is	a	fixed	number	and	does	not	change,	no	matter	
whether	the	isolated	system	is	in	or	out	of	equilibrium.	

Irreversibility	
So	long	as	the	bottle	is	isolated,	the	homogeneously	dispersed	pigment	particles	will	be	
extremely	unlikely	to	come	back	into	a	small	volume.		
	
Once	in	equilibrium,	the	isolated	system	will		not		go	out	of	equilibrium.	The	isolated	system	out	of	
equilibrium	is	said	to	approach	equilibrium	with		irreversibility	.		
	
Thermodynamics	uses	the		direction	of	time	,	but	not	the		duration	of	time	.	Thermodynamics	
makes	no	use	of	any	quantity	with	dimension	of	time.	Time	enters	thermodynamics	merely	to	
distinguish	between	“before”	and	“after”.	Irreversibility	gives	time	the	direction,	the		arrow	of	time	.	

Fluctuation		
In	equilibrium,	the	pigment	particles	keep	in	ceaseless	Brownian	motion.	The	distribution	of	the	
pigment	particles		fluctuates	.	Possibly	all	pigment	particles	can	move	into	a	small	volume	in	the	
bottle.	However,	the	probability	of	finding	a	nonuniform	distribution	is	exceedingly	small.	This	
course	will	ignore	fluctuation.		

Kinetics	
A	system	isolated	for	a	long	time	flips	to	every	one	of	its	quantum	states	with	equal	probability.	
How	long	is	long	enough?	The	fundamental	postulate	is	silent	on	this	question.	The	pigment	
particles	disperse	slower	in	honey	than	in	water.	The	time	needed	to	reach	equilibrium	scales	
with	the	viscosity	of	the	liquid.	The	study	of	how	fast	a	system	evolves	is	called		kinetics	,	which	
will	not	be	studied	in	this	course.	

	



	

Constrained	equilibrium		
When	an	isolated	system	is	in	equilibrium,	any	part	of	the	isolated	system	is	also	in	equilibrium,	
so	long	as	the	part	is	macroscopic.	It	makes	no	sense	to	talk	about	equilibrium	at	the	level	of	a	
few	pigment	particles,	but	equilibrium	will	prevail	in	a	large	number	of	pigment	particles.		
	
We	can	divide	the	isolated	system	into	many	parts.	Each	part	is	large	compared	to	individual	
particles,	but	small	compared	to	the	entire	isolated	system.	We	regard	each	part	as	an	isolated	
subsystem.	Each	isolated	subsystem	has	its	own	sample	space	of	quantum	states.	Thus,	the	
entropy	of	an	isolated	system	is	the	sum	of	the	entropies	of	all	parts	of	the	system.	
	
When	an	isolated	system	is	out	of	equilibrium,	we	often	divide	the	isolated	system	into	parts.	
For	example,	before	the	ink	is	fully	dispersed	in	the	bottle	of	water,	we	may	divide	the	bottle	into	
many	small	volumes.	Each	small	volume	has	a	large	number	of	pigment	particles,	which	are	
approximately	homogeneously	distributed,	so	that	we	can	think	of	each	small	volume	as	an	
isolated	system,	with	its	own	sample	space	of	quantum	states.	We	say	that	the	isolated	system	
is	in		constrained	equilibrium.		

Separation	of	phases	
Empirical	facts	.	An	isolated	system	in	equilibrium	can	be	heterogeneous.	Here	is	the	half	bottle	
of	water	again.	As	I	shake	the	bottle,	water	moves	and	bubbles	pop.	After	I	stop	shaking,	the	
half	bottle	of	water	becomes	approximately	an	isolated	system.	Right	after	the	isolation,	the	half	
bottle	of	water	is	still	out	of	equilibrium.	After	being	isolated	for	some	time,	the	half	bottle	of	
water	calms	down	at	macroscopic	scale.	In	equilibrium,	some	water	molecules	form	the	liquid,	
and	others	form	the	vapor.	Water	molecules	in	the	bottle	are	said	to	separate	into	two		phases	,	
liquid	and	vapor.	
	
Thermodynamic	theory	.	We	are	not	ready	to	develop	a	full	theory	of	phase	separation,	but	
begin	with	a	few	ideas	here,	and	pick	them	up	later.	The	isolated	system	flips	among	a	set	of	
quantum	states,	which	constitute	the	sample	space	of	the	isolated	system.	Denote	the	number	
of	quantum	states	of	the	isolated	system	by	Ω.		
	
The	half	bottle	of	water	has	a	total	of	M	water	molecules.	The	number	of	water	molecules	in	the	
vapor,	N,	can	take	one	of	a	set	of	values:		
	
{0,1,...,M}.	 	
	
When	the	number	of	water	molecules	in	the	vapor	is	fixed	at	N,	the	isolated	system	flips	among	
quantum	states	in	a		subset	of	the	sample	space	.	Denote	the	number	of	quantum	states	in	this	
subset	by	Ω(N).	Thus,	
	

	



	

Ω(0)	+	Ω(1)	+	…	+	Ω(M)	=	Ω.	
	
Probability	.	After	the	bottle	is	isolated	for	a	long	time,	every	quantum	state	in	the	sample	space	
is	equally	probable,	so	that	the	probability	to	observe	N	water	molecules	in	the	vapor	is		
	
Ω(N)/Ω.		
	
In	equilibrium,	the	most	probable	amount	of	molecules	in	the	vapor,	N,	maximizes	the	function	
Ω(N).		
	
From	probability	to	(almost)	certainty	.	The	half	bottle	of	water	is	a	macroscopic	isolated	system,	
and	has	a	sample	space	of	a	large	number	of	quantum	states.	In	equilibrium,	the	fluctuation	in	
the	number	of	water	molecules	in	the	vapor	is	exceedingly	small,	and	the	observed	amount	of	
water	molecules	in	the	vapor	is	well	described	by	the	amount	N	that	maximizes	the	function	
Ω(N).	The	fluctuation	in	the	number	of	molecules	in	the	vapor	is	negligible	compared	to	the	total	
number	of	molecules	in	the	vapor.	This	observation	indicates	that	the	function	Ω(N)	has	a	sharp	
peak.		

Internal	variable		
Constraint	internal	to	an	isolated	system.		Fixing	the	number	of	water	molecules	in	the	vapor	
in	the	half	bottle	of	water	is	an	example	of	a		constraint	internal	to	an	isolated	system	.	The	
constraint	can	be	made	real	by	placing	a	seal	between	the	liquid	and	vapor.	With	the	seal,	the	
two	parts	of	the	isolated	system	can	separately	reach	equilibrium,	but	are	not	in	equilibrium	with	
each	other.	The	isolated	system	is	in	constrained	equilibrium.		
	
When	the	constraint	is	removed,	the	number	of	water	molecules	in	the	vapor	can	change,	and	is	
called	an		internal	variable	.	Let	us	abstract	this	example	in	general	terms.		
	
Sample	space	.	An	isolated	system	has	a	set	of	quantum	states,	which	constitute	the	sample	
space.	Denote	the	total	number	of	quantum	states	of	the	isolated	system	by	Ω.	
	
Subset	of	sample	space.		Let	X	be	a	set	of	values:	
	
X	=	{x	1	,...,	x	n	}.	
	
An	internal	variable	is	a	function	that	maps	the	sample	space	to	the	set	X.	In	the	theory	of	
probability,	such	a	function	is	called	a		random	variable	.	
	
When	a	constraint	internal	to	the	isolated	system	fixes	the	internal	variable	at	a	value	x	in	the	
set	X,	the	isolated	system	flips	among	quantum	states	in	a		subset	of	the	sample	space	.	Denote	
the	number	of	quantum	states	in	this	subset	by	Ω(x).		
	

	



	

The	internal	variable	dissects	the	sample	space	into	a	family	of	subsets.	Any	two	subsets	in	the	
family	are	disjoint.	The	union	of	all	the	subsets	in	the	family	is	the	sample	space.	Thus,	
	
Ω(x	1	)	+	…	+	Ω(x	n	)	=	Ω.	
	
Probability	.		After	the	constraint	is	removed	for	a	long	time,	the	isolated	system	flips	to	every	
one	of	its	Ω	quantum	states	with	equal	probability,	and	the	internal	variable	can	take	any	value	
in	X.	In	equilibrium,	the	probability	for	the	internal	variable	to	take	a	particular	value	x	in	X	is		
	
Ω(x)/Ω.	
	
Equilibrium.		A	macroscopic	isolated	system	has	a	sample	space	of	a	large	number	of	quantum	
states.		The	function	Ω(x)	has	a	sharp	peak.	After	the	constraint	is	removed	for	a	long	time,	the	
observed	value	of	the	internal	variable	is	well	described	by	the	value	x	that	maximizes	the	
function	Ω(x).		
	
Thermodynamics	studies	an	isolated	system	in	constrained	equilibrium,	and	determines	the	
most	probable	value	of	the	internal	variable.	Thermodynamics	neglects	the	fluctuation	in	an	
internal	variable,	and	does	not	study	the	kinetics	of	how	the	isolated	system	approaches	
equilibrium.	 	
	
Irreversibility	.		Right	after	being	isolated,	the	system	is	out	of	equilibrium.	As	time	moves	
forward,	the	isolated	system	evolves	toward	equilibrium,	and	the	internal	variable	changes	in	a	
sequence	of	values	that	increase	the	function	Ω(x).	So	long	as	the	system	is	isolated,	the	
change	in	the	internal	variable	is	irreversible.	

Basic	algorithm	of	thermodynamics	
Function	Ω(x)	.	An	internal	variable	is	a	function	that	maps	the	sample	space	of	an	isolated	
system	to	a	set	X.	When	the	internal	variable	takes	a	value	x	in	the	set	X,	the	isolated	system	
flips	among	the	quantum	states	in	a	subset	of	the	sample	space.	Denote	the	number	of	
quantum	states	in	the	subset	by	Ω(x).	
	
Function	S(x)	.	Define	S(x)	=	log	Ω(x).		Because	logarithm	is	an	increasing	function,	maximizing	
Ω(x)	is	equivalent	to	maximizing	S(x),	and	increasing	Ω(x)	is	equivalent	to	increasing	S(x).	
	
The	function	S(x)	stands	for	“the	logarithm	of	the	number	of	quantum	states	in	the	subset	of	the	
sample	space	of	an	isolated	system	when	an	internal	variable	is	fixed	at	a	value	x”.	This	
function	is	central	to	the	application	of	thermodynamics,	but	is	unnamed.	For	brevity,	I	will	call	
the	function	S(x)	the		subset	entropy	.		
	
Basic	algorithm	of	thermodynamics.		Here	is	how	we	use	entropy	in	thermodynamics.	

1. Construct	an	isolated	system	with	an	internal	variable	x.		

	



	

2. Identify	the	function	S(x).	
3. Equilibrium	.	Find	the	value	of	the	internal	variable	x	that	maximizes	the	function	S(x).	
4. Irreversibility	.	Change	the	value	of	the	internal	variable	x	in	a	sequence	that	increases	

the	function	S(x).	

The	second	law	of	thermodynamics	
The	basic	algorithm	is	one	of	many	alternative	statements	of		the			law	of	the	increase	of	entropy	,	
or		the			second	law	of	thermodynamics	.		
	
For	entertainment,	we	will	later	list	some	historical	statements	of	the	second	law	of	
thermodynamics.	They	may	sound	like	ancient	philosophical	pronouncements.	They	sound	
mysterious	not	because	they	are	more	profound	than	the	basic	algorithm,	but	because	they	
miss	basic	facts	of	the	world	(e.g.,	the	rapid	and	ceaseless	flips	among	quantum	states,	and	the	
fundamental	postulate).		
	
Here	is	one	such	statement	made	by	Clausius	(1865),	in	the	same	paper	in	which	he	made	up	
the	word	entropy:		
	
The	entropy	of	the	universe	tends	to	a	maximum.		
	
We	will	take	the	word		universe		to	mean	an	isolated	system.	This	statement	is	adopted	by	
numerous	textbooks.	The	statement	is	elegant	but	confusing.	The	entropy	of	an	isolated	system	
is	S	=	log	Ω,	where	Ω	is	the	total	number	of	quantum	states	in	the	entire	sample	space	of	the	
isolated	system.	The	entropy	of	an	isolated	system	is	a	fixed	number,	not	a	function	that	can	
change	values.		
	
To	talk	about	a	macroscopic	change	of	an	isolated	system,	we	need	to	identify	an	internal	
variable.	When	a	constraint	internal	to	the	isolated	system	fixes	the	internal	variable	at	a	value	
x,	the	isolated	system	flips	among	quantum	states	in	a	subset	of	the	sample	space.	The	number	
of	quantum	states	in	this	subset	is	Ω(x),	and	the	entropy	of	this	subset	is	S(x)	=	log	Ω(x).	When	
the	constraint	internal	to	the	isolated	system	is	removed,	the	internal	variable	x	can	change	
values.	It	is	the	subset	entropy	S(x)	that	tends	to	a	maximum.	When	elegance	and	clarity	
conflict,	we	go	for	clarity.		
	
This	course	does	not	study	the	history	of	thermodynamics.	We	do	not	attempt	to	read	the	mind	
of	Clausius	and	decipher	old	pronouncements.	Rather,	we	will	use	the	basic	algorithm	to	direct	
calculation	and	measurement.	In	particular,	the	basic	algorithm	will	let	us	count	the	number	of	
quantum	states	experimentally.	

	



	

Energy,	space,	matter,	charge		
The	basic	algorithm	calls	for	internal	variables.	Now	enters	the	particular	showy	supporting	
actor—energy.	Energy	serves	as	an	internal	variable	in	thermodynamics,	along	with	space,	
matter,	and	charge.	

Potential	energy	
An	apple	weighs	about	1	Newton.	When	I	pick	up	the	apple	from	the	ground,	the	apple	reaches	
about	1	meter	high	and	adds	about	1	Joule	of	energy.	This	form	of	energy	is	called	the		potential	
energy		(PE).	From	mechanics	you	have	learned	the	fact:	
	
PE	=	(weight)(height).	
	
Potential	energy	has	the	unit	of	force	times	length,	(Newton)(meter).	This	unit	of	energy	is	called	
the	Joule.		
	
The	height	is	relative	to	some	fixed	point,	such	as	the	ground.	Thus,	potential	energy	is	a	
relative	quantity	.	For	a	given	height,	the	potential	energy	is	proportional	to	the	amount	of	
material.	Thus,	potential	energy	is	also	an		extensive	quantity	.	Indeed,	all	forms	of	energy	are	
relative	and	extensive.		
	
From	mechanics	you	have	learned	another	fact:	 	
	
weight	=	(mass)(acceleration	of	gravity).	
	
An	apple	has	a	mass	about	0.1	kg.	The	acceleration	of	gravity	is	about	10	m/s	2	.		Thus,	the	
weight	of	the	apple	is	(0.1	kg)(10	m/s	2	)	=	1	Newton.	

Definition	of	energy		
Energy	is	whatever	that	can	lift	a	weight	to	some	height.	By	this	definition,	energy	is	conserved,	
relative,	and	extensive.	
	
The	definition	of	energy	calls	for	action.	It	is	up	to	people	to	discover	energy	in	its	various	forms,	
and	invent	ways	to	convert	energy	from	one	form	to	another.	How	do	we	know	that	something	
offers	a	form	of	energy?	Just	test	if	this	something	can	be	converted	to	lift	a	weight	to	some	
height.	

	



	

Forms	of	energy	
Kinetic	energy	.	My	hand	now	releases	the	apple.	Just	after	the	release,	the	apple	is	1	meter	
high	and	has	zero	velocity.	The	falling	apple	then	loses	height,	but	gains	velocity.		The	energy	
associated	with	the	velocity	of	a	mass	is	called	the		kinetic	energy		(KE).	The	falling	apple		convert	
potential	energy	to	kinetic	energy.	Mechanics	tells	us	that	
	
KE	=	(½)(mass)(velocity)	2	.	
	
The	conservation	of	mechanical	energy	.	The	friction	between	the	apple	and	the	air	is	
negligible.	Mechanics	tells	you	that,	as	the	apple	falls,	the	sum	of	the	potential	energy	and	the	
kinetic	energy	is	constant—that	is,	
	
PE	+	KE	=	constant.	
	
The	potential	energy	and	the	kinetic	energy	are	two	forms	of		mechanical	energy	.	The	above	
equation	says	that	mechanical	energy	is		conserved		when	friction	is	negligible.	
	
Exercise	.	What	is	the	velocity	of	the	apple	just	before	hitting	the	ground?	
	
Exercise	.	A	tiger	jumps	1	m	high.		What	is	the	velocity	of	the	tiger	just	before	it	hits	the	ground?	
	
Exercise	.	Derive	the	conservation	of	mechanical	energy	from	Newton’s	second	law.	
	
Thermal	energy	(internal	energy)	.	Watch	the	apple	fall	again.		The	apple	falls	from	a	height,	
and	gains	a	velocity	just	before	hitting	the	ground.	After	hitting	the	ground,	the	apple	bumps,	
rolls,	and	then	stops.	What	happens	to	all	that	potential	energy	and	kinetic	energy?	
	
Just	before	the	apple	hits	the	ground,	all	potential	energy	has	converted	to	kinetic	energy.	After	
the	apple	hits	the	ground	and	comes	to	rest,	all	the	kinetic	energy	of	the	apple	disperses,	or	
dissipates	,	into	the	motion	of	the	molecules	inside	the	apple	and	the	ground.	We	say	that	the	
apple	and	the	ground	gains		thermal	energy		(TE),	also	called		internal	energy	.	We	generalize	the	
principle	of	the	conservation	of	energy	to	
	
TE	+	PE	+	KE	=	constant.	
	
The	word		thermal		is	an	adjective	that	describes	phenomena	related	to	microscopic	interaction	
and	motion.	Thermal	energy	is	just	the	potential	energy	and	kinetic	energy	at	microscopic	scale.	
We	designate	PE	and	KE	as	the	potential	energy	and	kinetic	energy	at	macroscopic	scale.		
	

	



	

In		Heat	considered	as	a	Mode	of	Motion	,	published	in	1863,	John	Tyndall	described	numerous	
experiments	that	tested	the	hypothesis	of	heat	as	a	form	of	energy.	Wiki		Julius	Robert	von	
Mayer	.	Wiki		James	Prescott	Joule	.	The	following	passage	is	taken	from	the	book.	
	
A	bullet,	in	passing	through	the	air,	is	warmed	by	the	friction,	and	the	most	probable	theory	of	
shooting	stars	is	that	they	are	small	planetary	bodies,	revolving	round	the	sun,	which	are	
caused	to	swerve	from	their	orbits	by	the	attraction	of	the	earth,	and	are	raised	to	
incandescence	by	friction	against	our	atmosphere.	
	
Electrical	energy	.	Electrical	energy	(EE)	takes	many	forms.	One	way	to	use	electrical	energy	is	
the	resistive	heating.	A	voltage	of	an	electric	outlet	moves	electrons	in	a	metal	wire,	and	the	
resistance	of	the	metal	converts	the	electrical	energy	into	thermal	energy.	Recall	voltage	=	
(resistance)(current).	The	electrical	energy	is	
	
EE		=	(resistance)(current)	2	(time)	=	(voltage)(current)(time).	
	
Chemical	energy	.	Chemical	energy	(CE)	has	always	been	familiar	to	humans	in	the	form	of	fire	
and	food.	We	will	learn	how	to	measure	chemical	energy	later	in	the	course.		
	
Exercise	.	Describe	how	one	can	test	if	electrostatics	offers	a	form	of	energy.	
	
Exercise	.	Find	the	nutrition	energy	of	a	banana.		If	this	nutrition	energy	is	fully	converted	to	the	
potential	energy	of	the	banana,	what	will	be	the	height	of	the	banana?	

Energy	belongs	to	many	sciences	
Energy	plays	parts	in	many	sciences.	All	have	much	to	claim	about	energy:	forms	of	energy,	
stores	of	energy,	carriers	of	energy,	conversion	of	energy	from	one	form	to	another,	and	flow	of	
energy	from	one	place	to	another.	
	
Associated	with	these	words—forms,	stores,	carriers,	conversion,	and	flow—are	a	great	variety	
of	inventions	and	discoveries.	Examples	include	fire,	food,	blood,	wind,	rivers,	springs,	
capacitors,	water	wheels,	windmills,	steam,	engines,	refrigerators,	turbines,	generators,	
batteries,	light	bulbs,	and	solar	cells.	These	you	have	learned,	and	will	learn	more,	from	many	
courses	(including	this	one),	as	well	as	from	daily	life.	These	facts	do	not	originate	from	
thermodynamics,	but	we	will	use	them	just	as	we	use	facts	in	calculus.	We	do	not	steal	lines	
from	other	sciences;	we	borrow.	
	
It	has	been	common	to	let	the	supporting	actor—energy—to	dominate	the	play	of	
thermodynamics.	We	will	avoid	this	pitfall.	We	will	let	energy	play	its	supporting	role,	along	with	
space,	matter,	and	charge.	
	

	

https://books.google.com/books?id=R5sAAAAAMAAJ&dq=editions%3AUO5_HeSjnokC&pg=PP1#v=onepage&q&f=false
https://en.wikipedia.org/wiki/Julius_von_Mayer
https://en.wikipedia.org/wiki/Julius_von_Mayer
https://en.wikipedia.org/wiki/James_Prescott_Joule


	

	 to	thermal	 to	mechanical	 to	electrical	 to	chemical	

thermal	 heat	exchanger	 engine	 thermocouple	 reaction	

mechanical	 friction	 turbine	 generator	 fracture	

electrical	 resistor	 compressor	 capacitor	 charging	battery	

chemical	 fire,	food	 muscle		 battery	 reaction	

	
Exercise	.	What	is	the	function	of	a	turbine?	How	does	it	work?	Link	your	answer	to	a	video	
online.	
	
Exercise	.	What	is	the	function	of	a	generator?	How	does	it	work?	Link	your	answer	to	a	video	
online.	

An	isolated	system	conserves	energy,	space,	matter,	and	charge	
Beside	energy,	we	now	add	a	few	other	supporting	roles:	space,	matter,	and	charge.		
	
I	make	a	half	bottle	of	water	into	an	isolated	system.	I	close	the	bottle	so	that	water	molecules	
can	neither	enter	nor	leave	the	bottle.	I	thermally	insulate	the	bottle	to	stop	any	energy	transfer	
by	heat.	I	do	not	squeeze	the	bottle,	so	that	the	volume	of	the	bottle	is	fixed.	There	is	also	no	
transfer	of	charge	between	the	system	and	its	surroundings.	We	state	the		principles	of	
conservation	:	an	isolated	system	conserves	energy,	space,	matter,	and	charge.	
	
Thermodynamics	will	use	these	conserved	quantities	as	internal	variables.		Of	course,	internal	
variables	need	not	be	restricted	to	conserved	quantities.	All	conserved	quantities	obey	similar	
mathematics,	and	are	convenient	to	study	in	parallel.	
	
Exercise	.	What	are	space,	matter,	and	charge?	Do	you	know	why	each	is	conserved?	

A	classification	of	systems		
Depending	on	the	modes	of	interaction	between	the	systems	and	their	surroundings,	we	classify	
systems	into	several	types.		
	

	 transfer	
matter	

transfer	
space	

transfer	
energy	

isolated	system	 no	 no	 no	

thermal	system	 no	 no	 yes	

	



	

closed	system	 no	 yes	 yes	

open	system	 yes	 yes	 yes	

	
Thermal	system	.	A		thermal	system		interacts	with	its	surroundings	in	one	mode:	transfer	
energy.		
	
For	example,	a	bottle	of	water	is	a	thermal	system.	We	cap	the	bottle	to	prevent	molecules	to	
leak	in	or	out.		We	make	the	bottle	rigid	to	fix	its	volume.	We	can	still	change	the	energy	of	the	
water	by	placing	the	bottle	over	a	flame,	or	by	shaking	the	bottle.	
	
Closed	system.		A		closed	system		and	its	surroundings	do	not	transfer	matter,	but	transfer	space	
and	energy.		
	
Consider	a	cylinder-piston	setup	that	encloses	water	molecules.	Some	water	molecules	form	a	
liquid,	and	others	form	a	vapor.	We	can	make	the	water	molecules	inside	the	cylinder	closed	
system	by	sealing	the	piston,	so	that	no	molecules	will	leak	in	or	out.	The	cylinder-piston	setup	
interacts	with	the	rest	of	the	world	in	two	ways.	First,	when	weights	are	added	on	top	of	the	
piston,	the	piston	moves	down	and	reduces	the	volume	inside	the	cylinder.	Second,	when	the	
cylinder	is	brought	over	a	flame,	the	flame	heats	up	the	water.		
	
Open	system	.	An		open	system		and	its	surroundings	transfer	matter,	space,	and	energy.	A	
bottle	of	water,	once	the	cap	is	removed,	is	an	open	system.	
	
Exercise	.	Describe	a	method	to	keep	water	hot	for	a	long	time.	What	can	you	do	to	prolong	the	
time?	What	makes	water	eventually	cool	down?	
	
Exercise	.	For	each	type	of	system	listed	above,	give	an	example.		In	each	example,	describe	
all	modes	of	interaction	between	the	system	and	its	surroundings.	

Transfer	energy	between	a	closed	system	and	its	surroundings		
A	half	bottle	of	water	.	Here	is	the	half	bottle	of	water	again.	I	cap	the	bottle	to	prevent	
molecules	from	leaking	in	or	out.	I	shake	the	bottle,	or	just	touch	it.	In	both	cases,	my	hand	
transfers		energy		to	the	bottle.	In	shaking	the	bottle,	my	hand	transfers	energy	to	the	bottle	by	
work	,	through	force	times	displacement.	In	touching	the	bottle,	my	hand	transfers	energy	to	the	
bottle	by		heat	,	through	molecular	vibration.	
	
The	half	bottle	of	water	is	a	closed	system.	Work	and	heat	are	two	ways	to	transfer	energy	
between	the	closed	system	and	its	surroundings.	
	

	



	

Transfer	energy	by	work	.	We	have	learned	many	ways	of	doing	work	in	mechanics	and	
electrodynamics.	We	now	recall	two	examples.		
	
The	expansion	of	a	gas	.		A	weight	is	placed	on	top	of	a	piston,	which	seals	a	cylinder	of	gas.	
For	brevity,	by	a	weight	we	mean	the	force	acting	on	the	piston	due	to	both	a	block	of	mass	and	
the	pressure	of	the	surrounding	air:	
	
weight	=	mg	+	P	0	A.	
	
Here	m	is	mass,	g	is	the	acceleration	of	gravity,	P	0		is	the	pressure	of	surrounding	air,	and	A	is	
the	area	of	the	piston.	
	
Assume	that	the	piston	moves	with	no	friction.	The	balance	of	the	forces	acting	on	the	piston	
relates	the	force	of	the	weight,	F,	to	the	pressure	of	the	gas	in	the	cylinder,	P:	
	
weight	=	PA.	
	
When	the	piston	raises	its	height	by	dz,	the	gas	expands	its	volume	by	dV	=	Adz	and	does	work	
to	the	weight:		
	
(weight)dz	=	PdV.	
	
The	expansion	of	the	gas	raises	the	weight.	
	
Resistive	heating	.	As	a	second	example,	a	resistor	is	placed	in	a	container	of	water.	When	a	
voltage	V	is	applied	to	the	two	ends	of	the	resistor,	an	electric	current	I	goes	through	the	
resistor,	and	the	work	done	by	the	voltage	per	unit	time	is	IV.	The	electrical	work	heats	the	
water.	
	
Transfer	energy	by	heat	.	Energy	transfers	by	heat	in	several	ways.	
	
Conduction	.	Energy	can	go	through	a	material.	At	a	macroscopic	scale,	the	material	remains	
stationary.	At	a	microscopic	scale,	energy	is	carried	by	the	flow	of	electrons	and	vibration	of	
atoms.	
	
Convection	.	Energy	can	go	from	one	system	to	another	with	the	flow	of	a	fluid.	This	way	of	
energy	transfer	involves	the	transfer	of	matter	between	systems	and	is	present	for	an	open	
system.	
	
Radiation	.	Energy	can	be	carried	by	electromagnetic	waves.	Because	electromagnetic	waves	
can	propagate	in	vacuum,	two	systems	can	transfer	energy	without	being	in	proximity.	
	
Sign	convention	.	Given	a	closed	system,	we	adopt	the	following	sign	convention.		

	



	

● Q	>	0,	energy	transfer	by	heat	to	the	closed	system	from	the	surroundings.	
● W	>	0,	energy	transfer	by	work	from	the	closed	system	to	the	surroundings.	
● ΔU	>	0,	increase	of	the	internal	energy	of	the	closed	system.		

	
Some	authors	adopt	other	sign	conventions.	You	can	adopt	any	sign	convention,	so	long	as	you	
make	your	sign	convention	explicit	in	the	beginning	of	a	thought,	and	do	not	change	the	sign	
convention	in	the	middle	of	the	thought.	
	
The	first	law	of	thermodynamics	.	For	a	closed	system,	the	first	law	of	thermodynamics	states	
that	
	
Q	=	W	+	ΔU.	
	
Internal	energy	is	a	property	of	the	closed	system.	Neither	transfer	energy	by	work	nor	transfer	
energy	by	heat	is	a	property	of	the	closed	system;	they	are	methods	of	the	transfer	of	energy	
between	the	closed	system	and	its	surroundings.		
	
We	already	know	how	to	measure	the	internal	energy	and	the	energy	transfer	by	work.	The	first	
law	of	thermodynamics	defines	the	energy	transfer	by	heat.	We	do	our	best	to	identify	various	
processes	that	transfer	energy	by	work.	Energy	transfer	by	heat	is	then	the	transfer	of	energy	
that	we	do	not	bother	to	call	work.	Thus,	the	first	law	of	thermodynamics	is	not	really	a	law;	it	
just	defines	the	energy	transfer	by	heat.		
	
In	old	literature,	heat	was	sometimes	used	as	a	synonym	for	thermal	energy.		We	will	stick	to	the	
modern	usage.	Heat	is	a	method	of	energy	transfer,	whereas	thermal	energy	is	a	form	of	
energy.	The	two	concepts	are	distinct.	One	can	increase	the	thermal	energy	of	a	system	by	
work	or	heat.	

Entropy	and	energy	
Now	that	you	have	seen	both	entropy	and	energy,	you	are	ready	to	critique	the	following	extract	
from	a	paper	by	a	founder	of	thermodynamics	(Clausius	1865).	
	
We	might	call	S	the	transformational	content	of	the	body,	just	as	we	termed	the	magnitude	U	its	
thermal	and	ergonal	content.	But	as	I	hold	it	to	be	better	to	borrow	terms	for	important	
magnitudes	from	the	ancient	languages,	so	that	they	may	be	adopted	unchanged	in	all	modern	
languages,	I	propose	to	call	the	magnitude	S	the		entropy		of	the	body,	from	the	Greek	word	
τροπη	),	transformation.	I	have	intentionally	formed	the	word		entropy		so	as	to	be	as	similar	as	
possible	to	the	word		energy	;	for	the	two	magnitudes	to	be	denoted	by	these	words	are	so	nearly	
allied	in	their	physical	meanings,	that	a	certain	similarity	in	designation	appears	to	be	desirable.	

1. The	energy	of	the	universe	is	constant.	
2. The	entropy	of	the	universe	tends	to	a	maximum.	

	

	



	

Exercise	.	Critique	this	extract.		Take	the	word	“universe”	to	mean	an	isolated	system.	Do	you	
agree	that	entropy	and	energy	are	nearly	allied	in	their	physical	meanings?	How	can	the	entropy	
of	an	isolated	system	increase?	

Thermal	system	
Now	we	have	an	all-star	cast	of	actors.	Let	us	watch	them	play,	act	by	act.		
	
Let	act	one	start:	the	union	of	entropy	and	energy	produces	a	child—temperature.	The	child	is	
so	prodigious	that	it	is	much	better	known	than	its	parents,	entropy	and	energy.		

A	family	of	isolated	systems	of	a	single	independent	variation	
Characteristic	function	S(U)	.	A	thermal	system	and	its	surroundings	interact	in	one	mode	only:	
transfer	energy.	When	the	thermal	energy	of	the	thermal	system	is	fixed	at	a	value	U,	the	
thermal	system	becomes	an	isolated	system.	Denote	the	number	of	quantum	states	of	this	
isolated	system	by	Ω(U).		
	
As	the	energy	U	of	the	thermal	system	varies,	the	function	Ω(U),	or	its	equivalent,	S(U)	=	log	
Ω(U),	characterizes	the	thermal	system	as		a	family	of	isolated	systems	,	capable	of	one	
independent	variation	.		
	
We	call	S(U)	the		characteristic	function		of	the	thermal	system.	Later	we	will	determine	this	
function	by	experiment—that	is,	we	will	count	the	number	of	quantum	states	of	each	member	
isolated	system	experimentally.	
	
Hydrogen	atom	.	A	hydrogen	atom	changes	its	energy	by	absorbing	photons.	When	isolated	at	
a	particular	value	of	energy,	the	hydrogen	atom	has	a	fixed	set	of	quantum	states.	Each	
quantum	state	in	the	set	is	characterized	by	a	distinct	electron	cloud	and	spin.	
	
The	hydrogen	atom	is	a	thermal	system.	Its	characteristic	function	has	been	computed	in	
quantum	mechanics:	
		
Ω(−13.6eV)	=	2,		
Ω(−3.39eV)	=	8,		
Ω(−1.51eV	)	=	18,	
...…	
	
The	domain	of	the	function	Ω(U)	is	a	set	of	discrete	values	of	energy:	−13.6eV,	-3.39eV,	-1.51eV	
,…	The	range	of	the	function	Ω(U)	is	a	set	of	integers:	2,	8,	18,….	For	the	hydrogen	atom,	the	
values	of	energy	have	large	gaps.	
	

	



	

A	half	bottle	of	water	.	A	half	bottle	of	water	is	a	thermal	system.	We	can	transfer	energy	to	the	
water	in	many	ways,	by	touch,	fire,	shake,	and	electric	current,	etc.	We	seal	the	bottle	to	prevent	
any	transfer	of	matter.	We	make	the	bottle	rigid	to	fix	the	volume.	
	
For	a	complex	system	like	a	half	bottle	of	water,	the	values	of	energy	are	so	closely	spaced	that	
we	regard	the	energy	of	the	system	as	a	continuous	real	variable.	The	characteristic	function	
S(U)	is	a	continuous	function.		
	
Exercise.		Describe	a	few	more	examples	of	thermal	systems.	

General	features	of	the	function	S(U)	
Energy-entropy	plane	.	In	a	plane,	we	draw	energy	and	entropy	as	two	perpendicular	axes,	
with	energy	as	the	horizontal	axis	and	entropy	as	the	vertical	axis.		
	
Drawing	two	axes	perpendicularly	is	a	convention,	and	has	no	experimental	significance.	What	
does	it	even	mean	to	say	that	energy	is	perpendicular	to	entropy?	The	world	works	well	if	we	
draw	the	two	axes	with	an	arbitrary	angle,	or	not	draw	them	at	all.	But	we	will	follow	the	
convention	and	draw	the	two	axes	perpendicularly.		
	
In	linear	algebra,	we	call	energy	U	and	entropy	S	two		scalars	.	A	pair	of	the	values	of	energy	and	
entropy	(U,S)	is	called	a		vector	.	The	energy-entropy	plane	is	called	a		two-dimensional	vector	
space	.	
	
Features	of	the	S(U)	curve	.	We	characterize	a	thermal	system	with	a	function	S(U),	which	is	a	
curve		in	the	energy-entropy	plane.		
	
Of	course,	different	thermal	systems	have	different	characteristic	functions.	Several	features	are	
common	to	all	thermal	systems.	We	will	list	these	common	features	in	mathematical	terms	of	the	
curve	S(U)	here,	and	will	relate	them	to	experimental	observations	as	we	progress.		

1. Because	energy	is	relative,	the	curve	S(U)	can	translate	horizontally	without	affecting	the	
behavior	of	the	thermal	system.		

2. Because	entropy	is	absolute,	the	curve	starts	at	S	=	0,	and	cannot	be	translated	up	and	
down.		

3. The	behavior	of	a	thermal	system	is	often	independent	of	the	size	of	the	system.	For	
example,	1	kg	of	water	behaves	the	same	as	2	kg	of	water.	Both	energy	and	entropy	is	
linear	in	the	size	of	the	thermal	system.	As	we	change	the	size	of	the	thermal	system,	
the	curve	S(U)	changes	size,	but	keeps	the	shape.		

4. As	entropy	approaches	zero,	the	curve	S(U)	approaches	the	horizontal	axis	vertically.	
That	is,	as	S	→	0,	dS(U)/dU	→	∞.	

5. The	more	energy,	the	more	quantum	states.	Thus,	Ω(U)	is	an	increasing	function.	
Because	logarithm	is	an	increasing	function,	S(U),	is	also	an	increasing	function.	That	is,	
the	slope	of	the	curve	S(U)	is	positive,	dS(U)/dU	>	0.	

	



	

6. The	curve	S(U)	is		convex	upward	.	That	is,	the	slope	dS(U)/dU	decreases	as	U	
increases,	or	equivalently,	d	2	S(U)/dU	2		<	0.	

	

	

Phrases	associated	with	a	family	of	isolated	systems	
A	single	isolated	system	.	For	a	single	isolated	system,	as	noted	before,	several	phrases	are	
synonymous:	a	system	“isolated	for	a	long	time”	is	a	system	“flipping	to	every	one	of	its	
quantum	states	with	equal	probability”,	and	is	a	system	“in	equilibrium”.		
	
Whenever	we	speak	of	equilibrium,	we	should	identify	a	system	isolated	for	a	long	time.	
Associated	with	each	isolated	system	is	a	set	of	quantum	states—the	sample	space.	The	
isolated	system	flips	to	its	quantum	states	ceaselessly	and	rapidly.	Out	of	equilibrium,	the	
isolated	system	flips	to	some	of	its	quantum	states	more	often	than	others.		In	equilibrium,	the	
isolated	system	flips	to	every	one	of	its	quantum	states	with	equal	probability.	
	
A	family	of	isolated	systems.		A	thermal	system	is	a	family	of	isolated	systems	capable	of	one	
independent	variation—energy.	Each	member	in	this	family	is	a	distinct	isolated	system,	has	a	
fixed	value	of	energy,	and	flips	among	the	quantum	states	in	its	own	sample	space.		
	
We	describe	a	family	of	isolated	systems	using	several	additional	phrases.	These	phrases	are	
applicable	to	any	family	of	isolated	systems,	but	here	we	introduce	these	phrases	using	a	family	
of	isolated	systems	that	constitute	a	thermal	system.	
	
Thermodynamic	state.		In	a	family	of	isolated	systems,	a	member	isolated	system	in	
equilibrium	is	called	a		thermodynamic	state	,	or	a		state	of	equilibrium	,	of	the	family.	
	
We	now	use	the	word	“state”	in	two	ways.	An	isolated	system	has	many	quantum	states,	but	a	
single	thermodynamic	state.	A	thermodynamic	state	is	synonymous	to	an	isolated	system	in	
equilibrium.	In	a	thermodynamic	state,	the	isolated	system	flips	to	every	one	of	its	quantum	
states	with	equal	probability.	
	

	



	

A	thermal	system	is	a	family	of	isolated	systems.	Each	member	isolated	system	corresponds	to	
one	thermodynamic	state	of	the	thermal	system,	specified	by	a	value	of	energy.	As	energy	
varies,	the	thermal	system	can	be	in	many	thermodynamic	states.	Each	thermodynamic	state	
corresponds	to	a	point	on	the	curve	S(U).	
	
Thermodynamic	process.		A	sequence	of	thermodynamic	states	is	called	a		reversible	
thermodynamic	process	,	or		quasi-equilibrium	process	.	Each	thermodynamic	state	in	this	
process	corresponds	to	a	distinct	isolated	system	in	equilibrium.	A	thermodynamic	process	is	
synonymous	to	a	family	of	isolated	systems,	each	being	in	equilibrium.	
	
A	thermal	system	is	capable	of	one	type	of	thermodynamic	process:	changing	energy.	After	
each	change	of	energy,	we	isolate	the	thermal	system	long	enough	to	reach	equilibrium.		
	
Function	of	state	.	We	specify	a	thermodynamic	state	of	the	thermal	system	by	a	value	of	
energy.		Energy	is	called	a		function	of	state	.	The	word		state		here	means	thermodynamic	state,	
not	quantum	state.		A	function	of	state	is	also	called	a		thermodynamic	property	.		
	
Entropy	is	also	a	function	of	state,	so	is	the	number	of	quantum	states.	For	a	thermal	system,	
we	will	soon	introduce	four	other	functions	of	state:	temperature,	thermal	capacity,	Massieu	
function,	and	Helmholtz	function.		
	
Equation	of	state	.	Once	the	energy	U	is	fixed,	a	thermal	system	becomes	an	isolated	system	
of	a	fixed	sample	space,	so	that	the	entropy	S	is	also	fixed.	Consequently,	given	a	thermal	
system,	the	energy	and	entropy	are	related.	The	relation	S(U)	is	called	an		equation	of	state	.	
Again,	the	word		state		here	means	thermodynamic	state,	not	quantum	state.		
	
In	general,	an	equation	of	state	is	an	equation	that	relates	thermodynamic	properties	of	a	family	
of	isolated	systems.	For	a	thermal	system,	we	will	soon	introduce	several	equations	of	state,	in	
addition	to	S(U).	

Dissipation	of	energy	
Empirical	facts	.	When	I	shake	a	half	bottle	of	water,	energy	transfers	from	my	muscle	to	the	
water,	and	increases	the	temperature	of	the	water.		
	
I	can	also	transfer	energy	to	the	water	using	an	electric	current.	This	transfer	of	energy	goes	
through	several	steps.	An	electric	outlet	transfers	energy	by	work	to	a	metal	wire,	where	the	
voltage	of	the	electric	outlet	moves	electrons	in	the	metal	wire.	The	resistance	of	the	metal	wire	
heats	up	the	metal	wire.	Let	us	say	that	the	metal	wire	is	immersed	in	the	water,	and	transfers	
energy	by	heat	to	the	water.		
	
I	can	also	drop	a	weight	into	the	bottle	of	water	from	some	height.	The	weight	comes	to	rest	in	
the	water	and	heats	up	the	water.	

	



	

	
In	the	three	examples,	the	energy	starts	in	the	form	of,	respectively,	chemical	energy	in	the	
muscle,	electrical	energy	in	the	outlet,	and	the	potential	energy	in	the	weight	at	some	height.	
After	transferring	into	the	water,	chemical,	electrical,	and	potential	energy	converts	to	thermal	
energy	of	the	water.	The	chemical,	electrical,	and	potential	energy	are	said	to		dissipate		into	
thermal	energy.		
	
Thermodynamic	analysis	.	To	speak	of	the	dissipation	of	energy,	we	identify	thermal	energy	
and	other	forms	of	energy	in	a	single	isolated	system.	The	isolated	system	conserves	energy,	
but	dissipates	the	other	forms	of	energy	into	thermal	energy.	So	long	as	the	system	is	isolated,	
the	direction	of	dissipation	is	irreversible,	from	other	forms	of	energy	to	thermal	energy,	not	the	
other	way	around.		Thermal	energy	is	called		low-grade	energy	.	We	next	analyze	the	falling	
weight	into	water	using	the	basic	algorithm.	 	
	
Construct	an	isolated	system	with	an	internal	variable	.	The	bottle	of	water	and	the	weight	
together	constitute	an	isolated	system.	Before	the	weight	drops,	the	thermal	energy	of	water	is	
U	0	,	and	the	potential	energy	of	the	weight	is	PE.	According	to	the	principle	of	the	conservation	of	
energy,		the	energy	of	the	isolated	system	is	fixed.	After	the	weight	comes	to	rest	in	water,	the	
potential	energy	of	the	weight	vanishes,	and	the	thermal	energy	of	the	water	is	U	0		+	PE.	Thus,	
the	thermal	energy	of	the	water,	U,	is	an	internal	variable	of	the	isolated	system,	increasing	from	
U	0		to	U	0		+	PE.	
	
Find	the	subset	entropy	as	a	function	of	the	internal	variable.		The	bottle	of	water	is	a	thermal	
system,	characterized	by	a	function	S(U),	which	is	an	increasing	function.	Let	the	entropy	of	the	
weight	be	S	weight	,	which	is	taken	to	be	unchanged	after	falling	into	the	water.	The	entropy	of	the	
isolated	system	is	the	sum		
	
S(U)	+	S	weight	.	
	
Maximize	the	subset	entropy	to	reach	equilibrium.		Before	the	weight	drops,	the	entropy	of	the	
isolated	system	is	S(U	0	)	+	S	weight	.		After	the	weight	comes	to	rest	in	the	water,	S(U	0		+PE)	+	S	weight	.	
The	law	of	the	increase	of	entropy	requires	that		
	
S(U	0		+	PE)	+	S	weight		>	S(U	0	)	+	S	weight	.		
	
Because	S(U)	is	an	increasing	function,	the	above	inequality	holds	if	the	potential	energy	of	the	
weight	changes	to	thermal	energy	in	the	water.	The	potential	energy	of	the	weight	is	said	to	
dissipate		into	the	thermal	energy	in	the	water.	The	isolated	system	maximizes	the	entropy	when	
the	potential	energy	of	the	weight	fully	changes	to	the	thermal	energy	of	the	water,	the	weight	
comes	to	rest,	and	the	isolated	system	reaches	equilibrium.	
	
Increase	the	subset	entropy	to	see	irreversibility	.	The	reverse	change	would	violate	the	law	of	
the	increase	of	entropy,	and	therefore	violate	the	fundamental	postulate.		The	weight,	after	rest	

	



	

in	water,	will	not	draw	thermal	energy	from	the	water	and	jump	up.	Dissipation—the	conversion	
of	potential	energy	to	thermal	system—is	irreversible.	What	make	thermal	energy	low-grade	
energy	is	its	high	entropy.	
	
The	irreversibility	is	understood	from	the	molecular	picture.	Thermal	energy	corresponds	to	
molecular	motion,	whereas	the	jumping	up	of	the	weight	corresponds	to	all	molecules	adding	
velocity	in	one	direction.		The	former	corresponds	to	more	quantum	states	than	the	latter.	The	
isolated	system	changes	in	the	direction	that	increases	the	number	of	quantum	states.	
Consequently,	the	potential	energy	dissipates	into	thermal	energy,	not	the	other	way	around.	
	
The	Kelvin-Planck	statement	of	the	second	law	of	thermodynamics	.	This	analysis	confirms	
a	general	empirical	observation.	It	is	impossible	to	produce	no	effect	other	than	the	raising	of	a	
weight	by	drawing	thermal	energy	from	a	single	thermal	system.	This	observation	is	called	the	
Kelvin-Planck	statement	of	the	second	law	of	thermodynamics	.	
	
Exercise	.	Use	the	basic	algorithm	to	analyze	heating	water	by	an	electric	current.	
	
Exercise	.	Use	the	basic	algorithm	to	analyze	heating	by	friction.	

Isentropic	process.	Reversibility	
A	falling	apple	loses	height,	but	gains	velocity.	So	long	as	the	friction	of	air	is	negligible,	the	sum	
of	the	potential	energy	and	kinetic	energy	of	the	apple	is	constant,	and	the	thermal	energy	of	the	
apple	is	also	constant.	We	model	the	apple,	together	with	a	part	of	space	around	the	apple,	as	
an	isolated	system.	The	height	of	the	apple	is	the	internal	variable	of	the	isolated	system.	When	
the	apple	is	at	a	particular	height,	z,	the	isolated	system	flips	among	a	set	of	quantum	states,	
and	has	a	certain	entropy,	S(z).	The	process	of	falling	keeps	the	subset	entropy	S(z)	fixed,	
independent	of	the	internal	variable	z.		Such	a	process	is	called	an		isentropic	process	.	
	
An	isentropic	process	of	an	isolated	system	is		reversible	.	We	can	arrange	a	setup	to	return	the	
apple	to	its	original	height	without	causing	any	change	to	the	rest	of	the	world.		For	example,	we	
can	let	the	apple	fall	along	a	circular	slide.	So	long	as	friction	is	negligible,	the	apple	will	return	
to	the	same	height.		
	
Of	course,	friction	is	inevitable	in	reality;	we	have	never	seen	an	apple	go	up	and	down	a	slide	
for	a	long	time.	The	apple	inevitably	stops	after	some	time.	But	a	frictionless	process	can	be	a	
useful	idealization.	For	example,	the	planet	Earth	has	been	moving	around	the	Sun	for	a	very	
long	time.	
	
For	an	isolated	system,	the	two	words,		isentropic		and		reversible,		are	equivalent.	Both	adjectives	
describe	an	isolated	system	that	keeps	the	number	of	quantum	states	unchanged	when	an	
internal	variable	changes.	An	isentropic	(or	reversible)	process	is	also	called	a		quasi-equilibrium	

	



	

process	.	To	avoid	increasing	entropy,	the	process	must	be	slow	enough	for	the	isolated	system	
to	have	a	long	enough	time	to	reach	equilibrium	at	every	point	along	the	process.	
	
Exercise	.	Describe	another	isentropic	process.		

Thermal	contact		
We	have	just	analyzed	the	dissipation	of	energy	from	a	high	grade	to	a	low	grade.		We	now	look	
the	transfer	energy	from	one	thermal	system	to	another	thermal	system.		Two	thermal	systems	
are	said	to	be	in		thermal	contact		if	the	following	conditions	hold.		

1. The	two	thermal	systems	interact	in	one	mode	only:	transfer	energy.		
2. The	two	thermal	systems	together	form	an	isolated	system.	

	
Empirical	facts	.	The	principle	of	the	conservation	of	energy	requires	that	an	isolated	system	
should	have	a	fixed	amount	of	energy.	It	allows	arbitrary	partition	of	energy	between	the	two	
thermal	systems,	so	long	as	the	sum	of	the	energies	of	the	two	thermal	systems	remains	
constant.	However,	our	everyday	experience	indicates	two	facts.	 	

1. When	two	thermal	systems	are	in	thermal	contact,	energy	transfers	from	one	system	to	
the	other	system,	one-way	and		irreversible	.		

2. After	some	time,	the	energy	transfer	stops,	and	the	two	thermal	systems	are	said	to	
reach		thermal	equilibrium	.	

	
Thermodynamic	analysis	.	We	now	trace	these	empirical	facts	to	the	fundamental	postulate.	
We	use	the	basic	algorithm	to	analyze	thermal	contact.		
	
Construct	an	isolated	system	with	an	internal	variable	.	The	two	thermal	systems,	A	and	B,	
together	constitute	an	isolated	system.	We	call	this	isolated	system	the	composite.	Let	the	
energies	of	the	two	thermal	systems	be	U	A		and	U	B	.The	composite	of	the	two	thermal	systems	is	
an	isolated	system,	and	has	a	fixed	amount	of	energy,	denoted	by	U	composite	.	Energy	is	an	
extensive	quantity,	so	that	
	
U	composite		=	U	A		+	U	B	.		
	
Consequently,	the	isolated	system	has	a	single	independent	internal	variable,	say,	the	energy	of	
one	of	the	thermal	systems,	U	A	.		
	
Find	the	subset	entropy	as	a	function	of	the	internal	variable.		The	two	thermal	systems	are	
characterized	by	two	functions,	S	A	(U	A	)	and	S	B	(U	B	).	Once	the	internal	variable	U	A		is	fixed,	the	
composite	flips	among	a	subset	of	its	quantum	states.	Denote	the	subset	entropy	by	
S	composite	(U	A	).	Entropy	is	an	extensive	quantity,	so	that	
	
S	composite	(U	A	)	=	S	A	(U	A	)	+	S	B	(U	B	).	
	

	



	

Equilibrium.		When	one	thermal	system	gains	energy	dU	A	,	the	other	thermal	system	loses	
energy	by	the	same	amount,	so	that		
	
dS	composite	(U	A	)	=	(dS	A	(U	A	)/dU	A		-	dS	B	(U	B	)/dU	B	)dU	A	.		
	
After	being	isolated	for	a	long	time,	the	composite	reaches	equilibrium,	and	the	subset	entropy	
maximizes,	dS	composite	(U	A	)	=	0,	so	that	
	
dS	A	(U	A	)/dU	A		=	dS	B	(U	B	)/dU	B	.	
	
This	equation	is	the	condition	of		thermal	equilibrium	,	and	determines	the	equilibrium	partition	of	
energy	between	the	two	thermal	systems	A	and	B.	
	
Irreversibility.		Prior	to	reaching	equilibrium,	the	subset	entropy	of	the	composite	increases	in	
time,	dS	>	0,	so	that	
	
If	dS	A	(U	A	)/dU	A		>	dS	B	(U	B	)/dU	B	,	then	dU	A		>	0,	and	thermal	system	A	gains	energy	from	thermal	
system	B;	
	
If	dS	A	(U	A	)/dU	A		<	dS	B	(U	B	)/dU	B	,	then	dU	A		<	0,	and	thermal	system	A	loses	energy	to	thermal	
system	B.	
	
These	inequalities	dictate	the	direction	of	energy	transfer.	In	thermal	contact,	the	direction	of	
energy	transfer	is	one	way	and	irreversible.	
	
This	analysis	confirms	the	two	empirical	facts	of	thermal	contact	.		

1. Without	loss	of	generality,	assume	that,	right	after	thermal	contact,	dS	A	(U	A	)/dU	A		>	
dS	B	(U	B	)/dU	B	.	Our	analysis	shows	that	system	A	grains	energy	from	system	B.	The	
direction	of	the	energy	transfer	is	one-way	and	irreversible.		

2. We	further	assume	that	S	A	(U	A	)	and	S	B	(U	B	)	are	convex	functions.	Consequently,	as	
system	A	gains	energy,	the	slope	dS	A	(U	A	)/dU	A		decreases.	As	system	B	loses	energy,	the	
slope	dS	B	(U	B	)/dU	B		increases.	Our	analysis	shows	that	the	transfer	of	energy	continues	
until	the	two	slopes	are	equal,	when	the	two	thermal	systems	reach	thermal	equilibrium.	

Definition	of	temperature	
Define	the	temperature	T	by	
	
1/T	=	dS(U)/dU.	
	
Both	S	and	U	are	extensive	thermodynamic	properties.	The	definition	ensures	that	T	is	an	
intensive	thermodynamic	property.	
	

	



	

We	can	use	the	word		temperature		to	paraphrase	the	above	analysis	of	thermal	contact.		
1. When	two	thermal	systems	are	brought	into	thermal	contact,	energy	transfers	only	in	

one	direction,	from	the	system	of	high	temperature	to	the	system	of	low	temperature.	
This	observation	is	called	the		Clausius	statement	of	the	second	law	of	thermodynamics	.		

2. After	some	time	in	thermal	contact,	energy	transfer	stops,	and	the	two	systems	have	the	
same	temperature.	This	observation	is	called	the		zeroth	law	of	thermodynamics	.	

	
But	wait	a	minute!	Any	monotonically	decreasing	function	of	dS/dU	will	also	serve	as	a	definition	
of	temperature.	What	is	so	special	about	the	choice	made	above?	Nothing.	It	is	just	a	choice.	
Indeed,	all	that	matters	is	the	slope	dS/dU.	What	we	call	the	slope	makes	no	difference.	
	
Range	of	temperature	.	For	a	thermal	system,	the	function	S(U)	is	a	monotonically	increasing	
function.	The	more	energy,	the	more	quantum	states,	and	the	more	entropy.		Thus,	the	definition	
1/T	=	dS(U)/dU	makes	temperature	positive.	Usually	we	only	measure	temperature	within	some	
interval.	Extremely	low	temperatures	are	studied	in	the	science	of	cryogenics.	Extremely	high	
temperatures	are	realized	in	stars,	and	other	special	conditions.	
	
What	can	you	do	for	temperature?		An	essential	step	to	grasp	thermodynamics	is	to	get	to	
know	the	temperature.	We	define	temperature	by	analyzing	an	everyday	experience—thermal	
contact.	How	does	temperature	rises	up	as	an	abstraction	from	everyday	experience	of	thermal	
contact?	How	does	temperature	comes	down	from	the	union	of	energy	and	entropy?		
	
Let	me	paraphrase	a	better-known	Bostonian.	And	so,	my	fellow	thermodynamicist:	ask	not	
what	temperature	can	do	for	you—ask	what	you	can	do	for	temperature.	
	
Exercise	.	Write	an	essay	with	the	title,		What	is	temperature	?		How	does	temperature	rises	up	
as	an	abstraction	from	everyday	experience	of	thermal	contact?	How	does	temperature	comes	
down	from	the	union	of	energy	and	entropy?		
	
Exercise	.	Hotness	and	happiness	are	two	common	feelings.		We	measure	hotness	by	an	
experimental	quantity,	temperature.	Can	we	do	so	for	happiness?	Why?	

Two	units	of	temperature		
Recall	the	definition	of	temperature,	1/T	=	dS/dU.	Because	entropy	is	a	dimensionless	number,	
temperature	has	the	unit	of	energy,	Joule.		
	
But	a	different	unit	for	temperature,	Kelvin,	is	commonly	used.	The	conversion	factor	between	
the	two	units	of	temperature,	Joule	and	Kelvin,	is	called	the	Boltzmann	constant	k,	defined	by		
	
1.380649	×	10	−23		Joule	=	1	Kelvin.	
	

	



	

Wiki		2019	redefinition	of	the	SI	base	units	.	The	old	and	new	definitions	of	Kelvin	start	at		28:40		of	
this	video.	
	
Modern	Celsius	scale	.	Temperature	is	defined	by	the	equation	1/T	=	dS(U)/dU.	
Any	monotonic	function	of	this	temperature	defines	an		arbitrary	scale	of	temperature	.	Here	we	
will	just	mention	a	commonly	used	scale,	the	Celsius	scale	C,	defined	by	
	
C	=	T	−	273.15	K	(T	in	the	unit	of	kelvin).	
	
This	modern	definition	of	the	Celsius	scale	differs	from	the	historical	definition.	Specifically,	the	
melting	point	and	the	boiling	point	of	water	are	no	longer	used	to	define	the	modern	Celsius	
scale.	Rather,	these	two	temperatures	are	determined	by	experimental	measurements.	The	
experimental	values	are	as	follows:	water	melts	at	0°C	and	boils	at	99.975°C.		
	
The	merit	of	using	Celsius	in	everyday	life	is	evident.	It	feels	more	pleasant	to	hear	that	today’s	
temperature	is	20	degree	Celsius	than	293.15	Kelvin,	or	404.34	×	10	−23	Joule.		
	
Exercise	.	How	was	Celsius	scale	originally	defined?	What	made	the	international	committee	to	
redefine	it?	
	
Exercise	.	How	would	you	defend	the	choice	of	the	conversion	factor,	1.380649	×	10	−23		Joule	=	1	
Kelvin?	

Unit	of	entropy	
Dimensionless	entropy	.	The	entropy	of	an	isolated	system,	S,	is	defined	by	the	number	of	
quantum	states	of	the	isolated	system,	Ω,	as	
	
S	=	log	Ω.	
	
The	entropy	is	a	dimensionless	number.		
	
A	unit	of	entropy.			By	a	historical	accident,	however,	the	entropy	is	given	a	unit.	To	preserve	
the	equation	1/T	=	dS/dU,	when	we	use	temperature	in	the	unit	of	Kelvin,	we	multiply	the	
dimensionless	entropy	by	k.	The	entropy	is	then	reported	in	the	unit	of	JK	-1	.	Write	
	
S	=	k	log	Ω.	
	
The	Boltzmann	constant,	k	=	1.380649	×	10	−23		Joule/Kelvin,	does	no	honor	to	the	three	great	
scientists.	It	is	unfortunate	that	we	associate	an	unsightly	number	with	the	three	great	names.	
The	number	is	just	the	conversion	factor	between	the	two	units	of	temperature,	Joule	and	
Kelvin.		
	

	

https://en.wikipedia.org/wiki/2019_redefinition_of_the_SI_base_units#Temperature
https://youtu.be/dguZLChkRV8?t=1720


	

This	unit	of	entropy	may	give	an	impression	that	the	concept	of	entropy	depends	on	the	
concepts	of	energy	and	temperature.	This	impression	is	wrong.	As	we	have	seen,	for	a	sample	
space	of	a	finite	number	Ω	of	sample	points,	entropy	is	log	Ω.	Entropy	and	energy	are	two	
independent	concepts.	Whereas	entropy	is	a	measure	of	the	size	of	a	sample	space	of	an	
isolated	system,	energy	is	just	one	of	numerous	quantities	that	can	serve	as	internal	variables.	
Temperature	is	the	child	of	the	union	of	entropy	and	energy,	1/T	=	dS/dU.	

Ideal	gas	law		
kT	is	temperature	in	the	unit	of	energy.		The	Boltzmann	constant	k	has	no	fundamental	
significance;	it	merely	defines	a	unit	of	temperature	more	manageable	in	everyday	use.	For	any	
fundamental	result,	if	T	is	in	units	of	Kelvin,	the	product	kT	must	appear	together.	Often	people	
call	kT	thermal	energy.	This	designation	is	in	general	incorrect.	There	is	no	need	to	give	any	
other	interpretation:	kT	is	temperature	in	the	unit	of	energy.	
	
Ideal	gas	law	.	The	change	of	unit	is	illustrated	with	the	ideal	gas	law.	The	ideal	gas	law	takes	
the	form	
	
PV	=	NT.	
	
where	P	is	the	pressure,	V	the	volume,	N	the	number	of	molecules,	and	T	the	temperature	in	
the	unit	of	energy.	Historically,	the	law	of	ideal	gases	was	discovered	empirically	before	the	
discovery	of	entropy.	Later	we	will	show	that	the	two	definitions	of	temperature,	PV	=	NT	and	
1/T	=	dS(U)/dU,	are	the	same.	
	
When	T	is	in	the	unit	of	Kelvin,	the	ideal	gas	law	becomes	that	
	
PV	=	NkT.		
	
Avogadro	constant	N	A	.	According	to	the		2019	redefinition	of	the	SI	base	units	,	the	Avogadro	
constant	N	A		is	defined	by	
	
6.02214076	×	10	23		items	=	1	mole	of	items.		
	
If	we	use	mole	at	a	unit	for	the	amount	of	gas,	and	use	Kelvin	as	a	unit	for	temperature,	the	
ideal	gas	law	becomes	that		
	
PV	=	nRT,	
	
where	n	is	the	amount	of	the	gas	in	the	unit	of	mole	and	 	
	
R	=	kN	A		=	8.314	JK	

-1	mole	-1	.	
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This	quantity	R	is	called	the	universal	gas	constant,	and	is	the	product	of	two	historical	
accidents:	the	Kelvin	unit	for	temperature,	and	the	Avogadro	unit	for	amount	of	items.	The	name	
“the	universal	gas	constant”	sounds	pretentious	to	the	modern	ear.	

Vapor	pressure	
Partial	pressure	.	The	air	around	us	is	a	mixture	of	many	species	of	molecules,	including	
nitrogen,	oxygen,	carbon	dioxide,	and	water.	Wiki		atmosphere	of	the	Earth	.		
	
Let	V	be	the	volume	of	a	mixture	of	gas,	and	N	water		be	the	number	of	water	molecules	in	the	
volume.	The		partial	pressure		of	water	in	the	mixture,	P	water	,	is	defined	by	
	
P	water	V	=	P	water	kT.	
	
Vapor	pressure.		The	vapor	pressure	of	water	is	the	partial	pressure	of	water	at	which	the	vapor	
equilibrates	with	a	condensed	phase	of	water,	liquid	water	or	ice.	The	vapor	pressure	depends	
on	temperature.	At	room	temperature,	the	vapor	pressure	is	approximately	3	kPa.	At	100	
degrees	Celsius,	the	vapor	pressure	is	approximately	100	kPa.	Wiki		vapor	pressure	.	Wiki		vapor	
pressure	of	water	.	
	
When	the	partial	pressure	of	water	is	below	the	vapor	pressure,	the	liquid	water	or	ice	
evaporates.		When	the	partial	pressure	the	vapor	pressure,	the	water	molecules	in	the	gas	will	
condense.	
	
Relative	humidity	.	At	a	given	temperature,	when	a	moist	air	is	in	equilibrium	with	the	liquid	
water,	we	say	that	the	air	is	saturated	with	water.	If	air	contains	fewer	water	molecules	than	the	
saturated	air	does,	the	number	of	water	molecules	in	the	air	divided	by	the	number	of	water	
molecules	in	the	saturated	air	is	called	the		relative	humidity	.	Write		
	
RH	=	N/N	satu	.	
	
When	the	vapor	is	modeled	as	an	ideal	gas,	the	relative	humidity	is	also	given	by	
	
RH	=	P/P	satu	,	
		
Exercise	.	Estimate	the	number	of	water	molecules	in	the	vapor	in	the	half	bottle	of	water.	What	
is	the	volume	of	the	vapor	divided	by	the	number	of	molecules?	Compare	this	value	to	the	
volume	of	an	individual	water	molecule.	

	

https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Vapor_pressure
https://en.wikipedia.org/wiki/Vapour_pressure_of_water
https://en.wikipedia.org/wiki/Vapour_pressure_of_water


	

Specific	quantities	
Both	mass	M	and	volume	V	are	extensive	quantities.	Their	ratios	define	two	intensive	quantities:	
the	ratio	of	mass	to	volume	M/V	is	called	the		mass	density	,	and	the	ratio	of	volume	to	mass	V/M	
is	called	the		specific	volume	.		
	
We	also	report	volume	per	molecule	V/N,	or	volume	per	mole	of	molecules,	V/n.	Some	
textbooks	give	V/M,	V/N,	and	V/n	distinct	symbols.	We	will	denote	them	all	by	v,	and	let	the	
context	tell	the	difference.		
	
We	will	similarly	denote	specific	entropy	S/M,	entropy	per	molecule	S/N,	and	entropy	per	mole	
of	molecules	S/n	by	s.	We	denote	specific	energy	U/M,	energy	per	molecule	U/N,	and	energy	
per	mole	of	molecules	U/n	by	u.	
	
The	mass	of	a	mole	of	water	is	18	g.	At	room	temperature	and	atmospheric	pressure,	the	mass	
density	of	water	is	1000	kg/m	3	.	
	
Exercise	.	How	would	you	defend	the	choice	of	the	conversion	factor,	6.02214076	×	10	23		items	=	
1	mole	of	items?	
	
Exercise.		Calculate	the	mass	density,	specific	volume,	volume	per	molecule,	and	volume	per	
mole	of	water	molecules	at	a	temperature	of	200°C	and	a	pressure	of	100	kPa.	
	
Exercise	.	The	gravity	of	the	Earth	pulls	molecules	of	gas	toward	the	Earth,	but	the	entropy	of	
the	gas	disperses	the	molecules	into	the	space.	Assume	that	the	temperature	is	constant,	how	
does	the	density	of	a	species	of	molecules	in	the	gas	change	with	the	elevation?	

General	features	of	the	function	T(U)	
Recall	the	definition	of	temperature,	1/T	=	dS(U)/dU.	We	plot	the	function	T(U)	on	the	
energy-temperature	plane.	We	use	energy	as	the	horizontal	axis,	and	temperature	as	the	
vertical	axis.	Each	point	on	the	curve	represents	a	thermal	system	isolated	at	a	particular	value	
of	energy.	That	is,	each	point	on	the	curve	represents	a	thermodynamic	state	of	the	thermal	
system.	Note	several	general	features	of	the	curve	T(U).		

1. The	energy	is	defined	up	to	an	additive	constant,	so	that	the	curve	T(U)	can	be	
translated	along	the	axis	of	energy	by	an	arbitrarily	amount.		

2. The	temperature	T	starts	at	absolute	zero,	is	positive,	and	has	no	upper	bound.	
3. For	the	time	being,	we	assume	that	T(U)	is	an	increasing	function.		

	
These	features	of	T(U)	should	be	compared	with	those	of	S(U).	
	

	



	

Exercise	.	A	thermal	system	can	also	be	characterized	by	function	S(T).	Discuss	the	general	
features	of	the	curve	S(T)	on	the	entropy-temperature	plane.	

Thermal	capacity	
When	the	energy	of	a	thermal	system	changes	by	dU,	the	temperature	changes	by	dT.	Define	
the		thermal	capacity		by	
	
1/C	=	dT(U)/dU.	
	
Because	energy	is	an	extensive	quantity	and	temperature	is	an	intensive	quantity,	thermal	
capacity	is	an	extensive	quantity.		Thermal	capacity	is	a	function	of	state.	When	we	report	
temperature	in	the	unit	of	energy,	thermal	capacity	is	dimensionless.	When	we	report	
temperature	in	the	unit	Kelvin,	the	thermal	capacity	has	the	unit	JK	-1	.		
	
The	thermal	capacity	is	a	function	of	energy,	C(U).	We	assume	that	the	thermal	capacity	is	
positive.	This	assumption	is	equivalent	to	that	the	function	T(U)	has	positive	slope,	and	that	the	
function	S(U)	is	convex.	Recall	the	definition	of	temperature,	1/T	=	dS(U)/dU.	
	
Thermal	capacity	is	also	called	heat	capacity.	Thermal	capacity	is	a	function	of	state,	and	is	
independent	of	the	method	of	energy	transfer.	For	example,	we	can	add	energy	to	a	half	bottle	
of	water	by	work,	such	as	shaking	the	bottle,	or	electric	heating.	Once	we	commit	to	the	modern	
usage	of	the	word	heat	as	a	method	of	energy	transfer,	it	is	inappropriate	to	name	a	function	of	
state	using	the	word	heat.		
	
Specific	thermal	capacity	.	The	energy	needed	to	raise	the	temperature	of	a	unit	mass	of	a	
substance	by	a	degree	is	called	the		specific	thermal	capacity		of	the	substance.	Liquid	water	has	
approximately	a	constant	specific	thermal	capacity	of	4.18	J/g/K.	Ice	has	approximately	a	
constant	specific	thermal	capacity	of	2.06	kJ/kg/K.		
	
Exercise	.	(a)	We	immerse	a	100	W	light	bulb	in	1	kg	of	water	for	10	minutes.	Assume	that	all	
electric	energy	applied	to	the	bulb	converts	to	the	internal	energy	of	water.	How	much	does	the	
temperature	of	the	water	increase?	(b)	How	much	does	the	temperature	of	the	water	increase	
when	an	apple	falls	from	a	height	of	1	m	into	the	water	and	converts	all	its	potential	energy	to	
the	internal	energy	of	the	water?		Similar	experiments	were	conducted	in	1840s	to	establish	that	
heat	is	a	form	of	energy.		
	
Exercise	.	What	are	the	changes	in	energy	and	entropy	of	1	kg	of	water	when	raised	from	the	
freezing	to	the	boiling	temperature?	
	
Exercise	.	When	1	kg	of	water	at	the	freezing	point	is	mixed	with	2	kg	of	water	at	the	boiling	
point,	what	is	the	temperature	in	equilibrium?	What	is	the	change	of	entropy	associated	with	this	
mixing?	

	



	

	
Exercise	.	For	a	solid	or	a	liquid,	the	change	of	volume	is	small	when	temperature	increases.	
We	model	the	solid	or	liquid	as	a	thermal	system,	and	measure	the	temperature-energy	curve	
experimentally.	For	a	small	range	of	temperature,	the	thermal	energy	is	approximately	linear	in	
temperature,	U(T)	=	CT,	where	the	thermal	capacity	C	is	taken	to	be	a	constant.	Derive	the	
characteristic	function	S(U).	

Experimental	thermodynamics	

Division	of	labor	
Some	things	are	easy	to	calculate	theoretically,	others	are	easy	to	measure	experimentally.	A	
division	of	labor	improves	the	economics	of	getting	things	done.	Much	of	thermodynamics	is	
only	sensible	in	terms	of	the	division	of	labor	between	theory	and	experiment,	and	between	
people	and	machines.	For	most	isolated	systems,	counting	quantum	states	experimentally	is	far	
more	economic	than	computing	them	theoretically.		
	 	
Experiment	and	theory		(Bryan,	Thermodynamics,	1907).	It	is	maintained	by	many	people	
(rightly	or	wrongly)	that	in	studying	any	branch	of	mathematical	physics,	theoretical	and	
experimental	methods	should	be	studied	simultaneously.	It	is	however	very	important	that	the	
two	different	modes	of	treatment	should	be	kept	carefully	apart	and	if	possible		studied	from	
different	books	,	and	this	is	particularly	important	in	a	subject	like	thermodynamics.	

Calorimetry	
The	art	of	measuring	thermal	energy	is	called		calorimetry	.	A	device	that	measures	thermal	
energy	is	called	a		calorimeter	.	Calorimetry	has	become	a	fine	art	of	high	sophistication,	and	it	is	
too	much	of	a	tangent	to	talk	about	current	practice	of	calorimetry	in	a	beginning	course	in	
thermodynamics.	All	we	need	to	know	is	that	thermal	energy	is	measured	routinely.	If	you	wish	
to	have	a	specific	method	in	mind,	just	think	of	an	electric	heater.	The	electric	energy	is	
(current)(voltage)(time),	assumed	to	be	fully	converted	into	thermal	energy.	

Thermometry	
The	art	of	measuring	temperature	is	called		thermometry	.	A	device	that	measures	temperature	is	
called	a		thermometer	.	Temperature	affects	all	properties	of	all	materials.	In	principle,	any	
property	of	any	material	can	serve	as	a	thermometer.	The	choice	is	a	matter	of	convenience,	
accuracy,	and	cost.	Here	are	two	commonly	used	thermometers.	
	

	



	

Mercury-in-glass	thermometer	.	A	mercury-in-glass	thermometer	relies	on	a	property	of	
mercury:	the	volume	expands	as	temperature	increases.	Thus,	a	volume	indicates	a	
temperature.	 	
	
Gas	thermometer	.	An	ideal	gas	obeys	the	equation	of	state:	
	
PV	=	NkT,		
	
This	equation	relates	temperature	T	to	measurable	quantities	P,	V,	and	N.	Thus,	an	ideal	gas	
can	serve	as	a	thermometer,	called	the		gas	thermometer	.		
	
Exercise	.	Before	you	accept	an	ideal	gas	as	a	thermometer,	describe	a	method	to	measure	the	
number	of	molecules	in	a	bottle	of	gas.		
	
A	division	of	labor	.	How	does	a	doctor	determine	the	temperature	of	a	patient?	Certainly	she	
does	not	count	the	enormous	number	of	quantum	states	of	her	patient.	Instead,	she	uses	a	
thermometer.	Let	us	say	that	she	brings	a	mercury-in-glass	thermometer	into	thermal	contact	
with	the	patient.	Upon	reaching	thermal	equilibrium	with	the	patient,	the	mercury	expands	a	
certain	amount,	giving	a	reading	of	the	temperature	of	the	patient.	
	
The	manufacturer	of	the	thermometer	must	assign	a	volume	of	the	mercury	to	a	temperature.	
This	he	can	do	by	bringing	the	thermometer	into	thermal	contact	with	a	flask	of	an	ideal	gas.	He	
determines	the	temperature	of	the	gas	by	measuring	its	volume,	pressure,	and	number	of	
molecules.	Also,	by	heating	or	cooling	the	gas,	he	varies	the	temperature	and	gives	the	
thermometer	a	series	of	markings.	
	
Any	experimental	determination	of	the	thermodynamic	temperature	follows	these	basic	steps:	
	

1. For	a	simple	system,	formulate	a	theory	that	relates	temperature	to	a	measurable	
quantity.	

2. Use	the	simple	system	to	calibrate	a	thermometer	by	thermal	contact.	
3. Use	the	thermometer	to	measure	temperatures	of	any	other	system	by	thermal	contact.	

	
Steps	2	and	3	are	sufficient	to	set	up	an	arbitrary	scale	of	temperature.	It	is	Step	1	that	maps	the	
arbitrary	scale	of	temperature	to	the	thermodynamic	temperature.	
	
Our	understanding	of	temperature	now	divides	the	labor	of	measuring	temperature	among	a	
doctor	(Step	3),	a	manufacturer	(Step	2),	and	a	theorist	(Step	1).	Only	the	theorist	needs	to	
count	the	number	of	quantum	states,	and	only	for	a	very	few	idealized	systems.	

	



	

Experimental	determination	of	entropy	
This	is	a	magic	of	thermodynamics.	We	can	count	experimentally	the	number	of	quantum	states	
of	an	isolated	system	of	any	complexity,	knowing	nothing	about	the	quantum	states	themselves.	
We	illustrate	the	method	using	a	thermal	system. 	
	
Here	is	a	statement	of	the	task.	Given	a	thermal	system,	measure	its	characteristic	function	
S(U).	Recall	the	definition	of	temperature,	dS(U)	=	T	-1	dU.	Counting	the	number	of	quantum	
states	requires	a	combination	of	thermometry	to	measure	T	and	calorimetry	to	measure	U.	
	
Experimental	measurement	of	the	function	T(U)	.	We	add	energy	to	the	thermal	system	by,	
say,	an	electric	heater.	We	measure	the	change	in	energy	U	by	(time)(resistance)(current)	2	.	At	
each	increment	of	energy,	we	isolate	the	system,	wait	until	the	system	reaches	equilibrium,	and	
measure	temperature	T.	These	incremental	measurements	determine	the	function	T(U).	 	
	
Determination	of	entropy	.	Recall	the	definition	of	temperature:	
	
dS(U)	=	T	-1	dU.	
	
This	equation	relates	the	function	S(U)	to	experimentally	measurable	quantity,	U	and	T.	Once	
the	function	T(U)	is	measured	experimentally,	an	integration	determines	the	function	S(U).		
	
In	this	integration,	set	S	=	0	as	T	→	0.	That	is,	at	the	ground	state,	the	number	of	quantum	
states	is	low,	and	is	set	to	be	one.	This	is	a	statement	of		the	third	law	of	thermodynamics	.	On	
the	energy-entropy	plane,	the	curve	S(U)	approaches	the	horizontal	axis	vertically.	
	
Often,	the	measurement	only	extends	to	a	temperature	much	above	absolute	zero.	Assume	that	
the	measurement	gives	the	energy-temperature	curve	in	the	interval	between	T	0		and	T.	Upon	
integrating,	we	obtain	S(T)	-	S(T	0	).	Such	an	experiment	leaves	S(T	0	)	undetermined.	
	
Recall	that	the	function	S(U)	characterize	the	thermal	system	as	a	family	of	isolated	systems.	
Thus,	we	can	count	the	number	of	quantum	states	of	each	member	isolated	system	in	the	
family.	
	
Debye	model	(1912)	.	To	illustrate	the	determination	of	the	characteristic	function	S(U),	consider	
the	Debye	model.	Near	absolute	zero,	the	internal	energy	of	a	solid	takes	the	form	
	
U	=	aT	4	,	
	
where	a	is	a	constant.	Debye	obtained	this	expression	from	a	microscopic	model.	Here	we	
regard	the	U(T)	as	a	curve	obtained	from	experimental	measurement.	
	

	



	

Invert	the	above	equation,	and	we	have	T	=	(U/a)	1/4	.		Integrating	dS	=	T	-1	dU,	we	obtain	that	
	
S(U)	=	(4/3)a	1/4	U	3/4	.	
	
We	have	used	the	condition	S	=	0	at	T	=	0.	
	
Exercise	.	Calculate	the	function	C(U)	for	the	Debye	model.	

Melting	

Empirical	facts	
Ice	and	liquid	are	called	two		phases		of	water.	The	melting	of	ice	is	called	a		phase	transition	.		
	
A	fixed	number	of	water	molecules	is	a	thermal	system.	Its	thermodynamic	states	are	capable	of	
one	independent	variation.	We	represent	the	thermodynamic	states	by	a	curve,	T(U),	on	the	
temperature-energy	plane,	with	energy	as	the	horizontal	axis,	and	temperature	as	the	vertical	
axis.	

	
Solid	.	In	a	block	of	solid	water,	ice,	water	molecules	form	a	crystal—a	periodic	lattice	of	water	
molecules.	Individual	water	molecules	vibrate	around	their	lattice	sites,	but	change	neighbors	
rarely.	The	block	of	ice	usually	contains	many	grains	of	the	same	crystal.	Between	two	grains,	a	
layer	of	water	molecules	do	not	belong	to	the	lattice	of	either	grain,	and	is	called	a	grain	
boundary.	The	grain	boundary	is	thin,	and	the	thickness	is	no	more	than	a	few	molecules.	
Consequently,	the	water	molecules	in	the	grain	boundary	contribute	negligibly	to	the	extensive	
quantities	(i.e.,	entropy,	energy,	and	volume)	of	the	block.	
	
As	a	block	of	ice	receives	energy,	its	temperature	increases.	Ice	has	an	approximately	constant	
value	of	specific	thermal	capacity:		
	
c	s		=	2.06	kJ/kg/K.		
	

	



	

The	solid	phase	corresponds	to	a	line	of	this	slope	in	the	energy-temperature	plane.	Each	point	
on	the	line	corresponds	to	one	thermodynamic	state	of	the	solid	phase.	In	this	thermodynamic	
state,	once	the	grain	boundaries	are	neglected,	all	parts	of	the	block	are	similar.	The	block	of	ice	
is	said	to	be	in	a		homogeneous	thermodynamic	state	.	
	
Liquid.		In	a	bottle	of	liquid	water,	water	molecules	do	not	form	a	lattice.	The	water	molecules	
touch	one	another	and	change	neighbors	readily.	As	the	liquid	receives	more	energy,	the	
temperature	increases	again.	Water	has	an	approximately	constant	value	of	specific	thermal	
capacity:	
	
c	f		=	4.18	kJ/kg/K.		
	
The	subscript	f	stands	for		flüssigkeit,		the	German	word	for	liquid.	The	liquid	phase	corresponds	
to	a	line	of	this	slope	in	the	energy-temperature	plane.	Each	point	on	the	line	corresponds	to	
one	thermodynamic	state	of	the	liquid	phase.	In	this	thermodynamic	state,	all	parts	of	the	liquid	
in	the	bottle	are	similar.	The	bottle	of	water	is	said	to	be	in	a	homogeneous	thermodynamic	
state.	
	
Mixture	of	solid	and	liquid.		When	the	temperature	increases	to	a	certain	level,	as	the	block	of	
ice	receives	more	energy,	its	temperature	remains	fixed,	but	some	water	molecules	become	
liquid	water.	The	fixed	temperature	is	called	the		melting	temperature	,	T	m	.	For	water,	the	melting	
temperature	is		
	
T	m		=	273.15	K.		
	
A	mixture	of	ice	and	water,	when	isolated,	conserves	the	amount	of	energy	and	the	number	of	
water	molecules.	After	being	isolated	for	a	long	time,	the	two	phases		coexist	in	equilibrium	:	
some	water	molecules	form	the	solid,	and	the	remaining	water	molecules	form	the	liquid.	The	
solid	and	the	liquid	are	two	thermal	systems,	in	thermal	contact	and	in	thermal	equilibrium.	The	
coexistent	solid	and	the	liquid	have	the	same	temperature,	T	m	.	A	mixture	of	solid	and	liquid	in	
equilibrium	is	called	a		heterogeneous	thermodynamic	state.	
	
When	a	mixture	of	solid	and	liquid	equilibrate,	denote	the	energy	per	molecule	in	the	solid	by	u	s	,	
and	the	energy	per	molecule	in	the	liquid	by	u	f	.	Of	a	total	number	of	N	molecules	in	the	mixture,	
N	s		molecules	form	the	solid,	and	N	f		molecules	form	the	liquid.	The	total	energy	of	the	mixture	is	
	
U	=	N	s	u	s		+	N	f	u	f	.	
	
This	equation	is	called	the		rule	of	mixture	.		We	can	add	energy	to	the	mixture,	while	keeping	the	
total	number	of	water	molecules	in	the	mixture	fixed.	As	the	energy	of	the	mixture	increases,	
some	water	molecules	go	from	the	solid	to	the	liquid.		
	

	



	

Thus,	melting	corresponds	to	a	horizontal	line	in	the	energy-temperature	plane.	The	level	of	the	
line	is	fixed	at	the	melting	temperature,	T	m	.	The	line	ends	on	the	left	when	all	molecules	form	the	
solid,	and	ends	on	the	right	when	all	molecules	form	the	liquid.	
	
Latent	energy	.	Define	the		latent	energy		per	molecule	by	the	jump	in	energy,	u	f			−	u	s	.	Often,	we	
report	latent	energy	per	unit	mass,	or	specific	latent	energy.	We	will	use	the	same	symbol	u	for	
both	the	energy	per	molecule	and	energy	per	unit	mass.	The	two	quantities	are	converted	by	
recalling	that	6	×	10	23		water	molecules	=	1	mole	of	water	molecules	=	18	grams	of	water	
molecules.	The	specific	latent	energy	of	water	is		
	
u	f			−	u	s		=	334	kJ/kg.		
	
The	latent	energy	is	commonly	known	by	its	historical	name,		latent	heat		(Black,	1750).	This	
historical	name	is	no	longer	appropriate.	Latent	energy	is	a	jump	in	energy	(a	function	of	state),	
and	should	not	be	named	using	the	word	heat,	a	method	of	energy	transfer.	We	can	melt	a	
block	of	ice	by	work,	such	as	moving	the	block	against	friction.	That	is,	we	can	form	the	concept	
of	latent	energy	and	measure	it	experimentally	without	ever	invoking	heat.	
	
Function	T(U)	.	In	summary,	a	pure	substance	near	melting	is	characterized	by	a	curve	on	the	
temperature-energy	plane	using	four	quantities:	the	melting	temperature	T	m	,	the	latent	energy	u	f	
−	u	s	,	the	specific	thermal	capacity	of	the	solid	c	s	,	and	the	specific	thermal	capacity	of	the	liquid	
c	f	.	Below	the	melting	temperature	and	above	the	temperature,	the	function	T(U)	is	curved,	and	
both	c	s		and	c	f		change	with	temperature.	In	many	estimate	involving	water,	we	will	assume	
approximate	constant	values,	c	s		=	2.06	kJ/kg/K	and	c	f		=	4.18	kJ/kg/K.	The	approximate	function	
T(U)	summarizes	a	thermodynamic	model	of	water.	
	
Exercise	.	Calculate	the	energy	needed	to	bring	1	kg	of	ice	at	-50	degree	Celsius	to	liquid	water	
at	50	degree	Celsius.		
	
Exercise	.	1	kg	of	ice	at	the	freezing	temperature	is	mixed	with	1	kg	of	water	at	the	boiling	
temperature.	The	mixture	is	insulated.	What	will	be	the	temperature	in	equilibrium?	

Primitive	curves		
We	now	trace	the	experimental	observation	of	melting	back	to	the	fundamental	postulate.	We	
model	fixed	amount	of	a	pure	substance	as	a	thermal	system.	This	model	assumes	that	the	
pure	substance	can	change	energy,	but	ignores	that	the	pure	substance	can	also	change	
volume.	The	model	is	a	good	approximation	for	solid	and	liquid,	but	not	for	gas.	 	
	
In	phase	A,	the	energy	per	molecule	is	u	A	,	the	entropy	per	molecule	is	s	A	,	and	the	characteristic	
function	is	s	A	(u	A	).		Similarly,	we	model	phase	B	as	a	thermal	system	of	characteristic	function	
s	B	(u	B	).	The	functions	s	A	(u	A	)	and	s	B	(u	B	)	are	two	curves	in	the	energy-entropy	plane.	The	two	

	



	

curves	are	called	the		primitive	curves		of	the	pure	substance.	Each	point	on	a	primitive	curve	
corresponds	to	a		homogeneous	thermodynamic	state		of	the	pure	substance.	

Rule	of	mixture		
A	mixture	of	two	homogeneous	states	.	We	now	consider	a	mixture	of	two	homogeneous	
states:		state	(u	A	,s	A	)	is	a	point	on	one	primary	curve,	and	state	(u	B	,s	B	)	is	a	point	on	the	other	
primary	curve.	The	mixture	has	a	total	of	N	molecules,	of	which	N	A		molecules	are	in	state	A,	and	
N	B		molecules	are	in	state	B.	Denote	the	number	fractions	of	the	molecules	in	the	two	
homogeneous	states	by		
	
y	A			=	N	A	/N,		y	B			=	N	B	/N.		
	
Both	y	A		and	y	B		are	nonnegative	numbers.	The	number	of	molecules	in	the	mixture	is	conserved:	
	
N	=	N	A		+	N	B	.		
	
Dividing	the	above	equation	by	N,	we	obtain	that	
	
y	A		+	y	B		=	1.	
	
The	mixture	is	also	a	thermal	system.	Let	u	and	s	be	the	energy	and	entropy	of	the	mixture	
divided	by	the	total	number	of	molecules.	Energy	is	an	extensive	variable,	so	that	the	energy	of	
the	mixture	is	the	sum	of	the	energies	of	the	two	homogeneous	states:	
	
Nu	=	N	A	u	A		+	N	B	u	B	.	
	
Dividing	the	above	equation	by	N,	we	obtain	that	
	
u	=	y	A	u	A		+	y	B	u	B	.	
	
The	same	is	true	for	entropy:	
	
s	=	y	A	s	A		+	y	B	s	B	.	
	
Graph	the	rules	of	mixture.		These	rules	of	mixture	can	be	graphed	on	the	energy-entropy	
plane.	Homogeneous	state	A	is	a	point	(u	A	,s	A	)	on	the	primitive	curve	s	A	(u	A	).		Homogeneous	
state	B	is	a	point	(u	B	,s	B	)	on	the	primitive	curve	s	B	(u	B	).		The	mixture	is	a	point	(u,s)	on	the	line	
segment	joining	the	two	points	(u	A	,s	A	)	and	(u	B	,s	B	),	located	at	the	center	of	gravity,	depending	on	
the	fraction	of	molecules	y	A		and	y	B		allocated	to	the	two	phases.	In	general,	the	mixture	(u,s)	is	a	
point	off	the	primitive	curves,	and	may	not	be	a	state	of	equilibrium.	
	

	



	

A	mixture	of	any	number	of	homogeneous	states	.	Now	consider	a	mixture	of	any	number	of	
homogenous	states.	The	homogeneous	states	can	be	on	one	primitive	curve,	or	on	both	
primitive	curves.	For	example,	consider	a	mixture	of	three	homogeneous	states,	A,	B,	and	C.	A	
pure	substance	has	a	total	of	N	molecules,	of	which	N	A	,	N	B	,	and	N	C		molecules	are	in	the	three	
homogeneous	states.	Denote	the	number	fractions	by	y	A			=	N	A	/N,	y	B			=	N	B	/N,	and	y	C			=	N	C	/N.	
Here	y	A,		y	B		and	y	C		are	non-negative	numbers.	The	mixture	conserves	the	number	of	molecules:	
	
N	A		+	N	B		+	N	C		=	N.		
	
Divide	this	equation	by	N,	and	we	obtain	that	
	
y	A		+	y	B		+	y	C		=	1.	
	
The	three	homogeneous	states,	(u	A	,s	A	),	(u	B	,s	B	),	and	(u	C	,s	C	),	are	three	points	on	one	or	two	
primitive	curves.	The	three	points	form	a	triangle	in	the	energy-entropy	plane.	The	energy	and	
energy	per	molecule	of	the	mixture	(u,s)	are	given	by	
	
u	=	y	A	u	A		+	y	B	u	B		+	y	C	u	C	,	
s	=	y	A	s	A		+	y	B	s	B		+	y	C	s	C	.	
	
The	mixture,	(u,s),	is	a	point	in	the	energy-entropy	plane,	located	at	the	center	of	gravity	in	the	
triangle,	depending	on	the	fraction	of	molecules	y	A,		y	B		and	y	C		allocated	to	the	three	
homogeneous	states	at	the	vertices	of	the	triangle.	In	general,	the	mixture	(u,s)	is	a	point	off	the	
primitive	curves.	
	
Neglect	the	spatial	arrangement	of	pieces	of	homogeneous	states	.		The	rules	of	mixture	
depend	on	the	number	of	molecules	in	each	homogenous	state,	but	not	on	how	the	pieces	of	
homogenous	states	are	arranged	in	space.		
	
The	rules	of	mixture	also	neglect	molecules	at	the	interfaces	between	pieces	of	homogenous	
states.	The	molecules	at	the	interfaces	have	their	own	thermodynamic	properties,	different	from	
those	of	the	homogeneous	states.	The	interfaces	contribute	to	energy	and	entropy	negligibly,	so	
long	as	the	pieces	of	the	homogenous	states	are	much	larger	than	the	size	of	individual	
molecules.	
	
Convex	hull	.	Each	point	on	the	primitive	curves	corresponds	to	a	homogenous	state.	A	mixture	
corresponds	to	a	point	at	the	center	of	gravity	of	some	number	of	homogeneous	states.	All	
possible	mixtures	of	arbitrary	numbers	of	homogeneous	states	constitute	a	region	in	the	
energy-entropy	plane.	Each	mixture	in	the	region	may	not	be	a	state	of	equilibrium.	
	
Incidentally,	in	the	language	of	convex	analysis,	the	energy-entropy	plane	is	called	a		vector	
space	,	and	each	point	in	the	plane	is	called	a		vector	.	All	the	homogeneous	states	on	the	primary	

	



	

curves	define	a	set	of	vectors.	A	mixture	is	called	a		convex	combination		of	the	homogenous	
states,	and	the	set	of	all	mixtures	is	called	the		convex	hull		of	the	homogenous	states.	

Derived	curve	
The	region	of	all	possible	mixtures	(i.e.,	the	convex	hull)	is	bounded	from	above	by	a	single	
curve,	called	the		derived	curve	.	The	derived	curve	is	formed	by	rolling	tangent	lines	on	the	
primitive	curves.	A	tangent	line	can	touch	the	primitive	curves	at	one	point	or	two	points,	but	not	
three	or	more	points.	The	derived	curve	is	convex.	
	
So	far	energy	and	entropy	play	similar	roles.	All	we	have	invoked	is	that	they	are	extensive	
quantities.	We	next	apply	the	basic	algorithm.	A	fixed	amount	of	mixture	of	a	fixed	amount	of	
energy	is	an	isolated	system.	The	isolated	system	has	an	enormous	number	of	internal	
variables:	the	number	of	homogeneous	states,	the	location	of	each	homogeneous	state	on	one	
of	the	primitive	curves,	and	the	number	fraction	of	molecules	allocated	to	each	homogeneous	
state.	
	
The	isolated	system	has	a	fixed	amount	of	energy	u,	represented	by	a	vertical	line	on	the	
energy-entropy	plane.	The	vertical	line	intersects	the	derived	curve	at	one	point,	which	
maximize	the	subset	entropy.		
	
As	the	energy	of	a	pure	substance	varies,	the	derived	curve	represents	all	thermodynamic	
states	of	the	pure	substance.		

	

	



	

Equilibrium	of	a	single	homogeneous	state	
If	a	line	tangent	to	one	point	on	a	primitive	curve	does	not	cut	any	primitive	curves,	this	point	
belongs	to	the	derived	curve.	The	set	of	all	such	points	is	called	the		curve	of	absolute	stability	.	
The	tangent	line	can	roll	on	the	primitive	curve	to	change	the	slope	of	the	tangent	line.	Thus,	the	
curve	of	absolute	stability	has	one	degree	of	freedom.	Recall	1/T	=	ds(u)du.	The	slope	of	the	
tangent	line	corresponds	to	temperature.	

Equilibrium	of	two	homogeneous	states	
If	a	line	tangent	to	two	points	on	the	primitive	curves	does	not	cut	any	primitive	curves,	the	
straight-line	segment	connecting	the	two	tangent	points	belongs	to	the	derived	curve.	The	
straight-line	segment	is	called	a		tie	line	.	The	common	tangent	line	cannot	roll	on	the	primitive	
curves,	is	fixed	in	the	energy-entropy	plane,	and	has	no	degree	of	freedom.	The	two	tangent	
points	at	the	ends	of	the	tie	line	are	called	the		limits	of	absolute	stability	.	
	
Let	the	tangent	line	touch	one	primitive	curve	s	A	(u	A	)	at	point	(u	A	,s	A	),	and	touch	the	other	primitive	
curve	s	B	(u	B	)	at	point	(u	B	,s	B	).	The	two	tangent	points	correspond	to	the	two	homogeneous	states	
in	equilibrium.	The	slope	of	the	tangent	line	defines	the	melting	temperature.	Thus,	
	
1/T	m		=	(s	B		-	s	A	)/(u	B		-	u	A	)	=	ds	B	(u	B	)/du	B		=	ds	A	(u	A	)/du	A	.	
	
Given	the	two	primitive	curves,	s	A	(u	A	)	and	s	B	(u	B	),	the	above	equations	solve	for	the	melting	
temperature	T	m	,	as	well	as	the	two	homogeneous	states	in	equilibrium,	(u	A	,s	A	)	and	(u	B	,s	B	).	

Temperature-entropy	curve		
We	now	sketch	the	curve	T(S)	near	the	melting	temperature.	Recall		
	
dS	=	T	-1	dU	=	C(T)T	-1	dT.		
	
Ice	melts	at	temperature	273.15	K.	At	the	melting	temperature,	the	specific	thermal	capacity	for	
ice	is	c	s		=	2.06	kJ/kg/K.	Thus,	the	slope	of	the	temperature-entropy	curve	for	ice	near	the	
melting	temperature	is	
	
c	s	/T	m		=	(2.06	kJ/kg/K)/(273.15	K)	=	0.0075	kJ/kg/K	

2	.	 	
	
At	the	melting	temperature,	the	specific	thermal	capacity	for	liquid	water	is	c	f		=	4.18	kJ/kg/K.	
Thus,	the	slope	of	the	temperature-entropy	curve	for	liquid	water	near	the	melting	temperature	
is	
	
c	f	/T	m		=	(4.18	kJ/kg/K)/(273.15	K)	=	0.015	kJ/kg/K	

2	.		

	



	

	
Recall	that	s	f		-	s	s		=	(u	f		-	u	s	)/T	m	.	The	specific	latent	energy	is	334	kJ/kg.	The	change	in	specific	
entropy	is		
	
s	f		-	s	s		=	(334	kJ/kg)/(273.15	K)	=1.2	kJ/kg/K.	

	
Exercise	.	Can	the	model	of	thermal	system	describes	three	homogenous	states	in	equilibrium?	
	
Exercise	.	For	water,	we	have	sketched	curves	T(u)	and	T(s)	near	the	melting	temperature.	Now	
calculate	and	sketch	the	curve	s(u)	near	the	melting	temperature.	
	
Exercise	.	For	water,	the	melting	temperature	is	273.15	K,	the	specific	latent	energy	is	334	
kJ/kg.	Calculate	the	ratio	of	the	number	of	quantum	states	in	the	liquid	to	that	in	the	solid.		

Thermal	system	of	a	nonconvex	characteristic	function	s(u).		
In	hindsight,	we	should	not	have	accepted	so	readily	that	the	characteristic	function	of	a	thermal	
system,	s(u),	is	a	convex	function,	or	that	u(T)	is	an	increasing	function,	or	that	thermal	capacity	
is	positive.	In	fact,	a	thermal	system	may	have	a	nonconvex	primary	curve	s(u).	We	can	form	a	
tangent	line	touching	two	points	on	the	curve	s(u).		The	two	points	correspond	to	equilibrium	of	
two	homogeneous	states.		
	
It	turns	out	that	a	solid-liquid	transition	is	modeled	with	two	convex	primitive	curves,	but	a	
liquid-gas	transition	is	modeled	with	a	single	nonconvex	primitive	curve.	We	will	see	this	effect	
clearly	later	in	a	model	that	allows	the	pure	substance	to	vary	both	energy	and	volume.		

Metastability		
A	primitive	curve	may	contain	a	convex	part	and	a	non-convex	part.	The	point	separating	the	
two	parts	is	called	the		inflection	point		in	calculus,	and	is	called	the		limit	of	metastability		in	
thermodynamics.	If	a	convex	part	of	the	primitive	curve	lies	below	the	derived	curve,	the	part	of	
the	primitive	curve	is	beyond	the	limit	of	absolute	stability.	Each	point	of	this	part	of	the	primitive	
curve	is	called	a		metastable	state	.	A	metastable	state	is	stable	in	regard	to	continuous	changes	

	



	

of	state,	but	is	unstable	in	regard	to	discontinuous	changes	of	state.	Watch	a	video	on	
supercooled	water	.	

Temperature	as	an	independent	variable	
A	thermal	system	has	a	single	independent	variation.	So	far	we	have	specified	the	
thermodynamic	states	of	the	thermal	system	using	energy	as	an	independent	variable.	Any	one	
of	the	functions	of	state	can	serve	as	an	independent	variable.	A	popular	choice	is	temperature.		

U(T)	and	T(U)	
As	described	above,	we	can	measure	the	energy-temperature	curve	of	a	thermal	system,	T(U).	
For	the	time	being,	we	assume	that	the	function	T(U)	is	an	increasing	function.	That	is,	on	
receiving	energy,	a	thermal	system	increases	temperature.	From	calculus	we	have	learned	that	
any	monotonic	function	is	invertible.	Write	the	inverse	function	as	U(T).	The	two	functions,	U(T)	
and	T(U),	correspond	to	the	same	curve	on	the	energy-temperature	plane,	and	contain	the	
same	information.	

Thermostat		
A	thermostat	is	a	device	that	measures	temperature	and	switches	heating	or	cooling	equipment	
on,	so	that	the	temperature	is	kept	at	a	prescribed	level.	Thermostats	are	widely	used	in	
refrigerators	and	home-heating	and	-cooling	units.	
	
Sous-vide	(/suːˈviːd/;	French	for	"under	vacuum")	is	a	method	of	cooking.	Food	(e.g.,	a	piece	of	
meat)	is	sealed	in	an	airtight	plastic	bag,	and	placed	in	a	water	bath	for	a	longer	time	and	at	a	
lower	temperature	than	those	used	for	normal	cooking.	The	temperature	is	fixed	by	a	feedback	
system.	Because	of	the	long	time	and	low	temperature,	sous-vide	cooking	heats	the	food	
evenly;	the	inside	is	properly	cooked	without	overcooking	the	outside.	The	airtight	bag	retains	
moisture	in	the	food.	

Thermal	reservoir	
A	thermal	reservoir	is	a	thermal	system	of	a	fixed	temperature.	We	use	the	thermal	reservoir	to	
fix	the	temperature	of	another	thermal	system	by	thermal	contact.	The	other	thermal	system	has	
a	much	smaller	thermal	capacity	than	the	thermal	reservoir,	so	that	the	temperature	of	the	
reservoir,	T	R	,	is	fixed	as	the	thermal	reservoir	and	the	other	thermal	system	exchange	energy.	In	
thermal	equilibrium,	the	other	thermal	system	has	the	same	temperature	as	the	thermal	
reservoir.		
	
We	can	realize	a	thermal	reservoir	by	using	a	large	tank	of	water.	When	water	loses	or	gains	a	
small	amount	of	thermal	energy,	the	temperature	of	water	is	nearly	unchanged.		

	

https://www.youtube.com/watch?v=ph8xusY3GTM


	

	
The	situation	is	analogous	to	a	water	reservoir.	A	water	reservoir	has	a	lot	of	water.		Its	water	
level	remains	nearly	unchanged	when	we	take	a	small	cup	of	water	from	the	reservoir.	
	
The	thermal	reservoir	is	a	thermal	system,	and	interacts	with	the	rest	of	the	world	in	one	mode:	
transfer	energy.	When	the	energy	of	the	reservoir	is	fixed	at	a	value	U	R	,	the	reservoir	becomes	
an	isolated	system,	and	has	a	certain	number	of	quantum	states,	Ω	R	(U	R	).	As	U	R		varies,	the	
function	Ω	R	(U	R	),	or	its	equivalent,	S	R	(U	R	)	=	log	Ω	R	(U	R	),	characterizes	the	reservoir	as	a	family	of	
isolated	systems.		
	
When	the	reservoir	is	in	thermal	contact	with	a	small	thermal	system,	the	composite	of	the	
reservoir	and	the	system	is	an	isolated	system	and	has	a	constant	energy,	U	composite	.	Let	U	be	the	
energy	of	the	small	thermal	system.	The	energy	of	the	composite	is	a	sum	of	parts:	
	
U	composite		=	U	R		+	U.	
	
Recall	the	definition	of	temperature,	1/T	R		=	dS	R	(U	R	)/dU	R	.	Because	T	R		is	constant,	integrating,	we	
find	that	
	
S	R	(U	R	)	=	S	R	(U	composite	)	-	(U	composite		-	U	R		)/T	R	.	
	
Thus,	a	thermal	reservoir	is	a	thermal	system	characterized	by	a	linear	function	S	R	(U	R	).		

Isothermal	process		
A	process	that	occurs	at	a	constant	temperature	is	called	an		isothermal	process	.	For	example,	
the	sous-vide	cooking	in	an	isothermal	process.	The	temperature	is	fixed	while	the	food	cooks.	
We	can	fix	the	temperature	by	a	thermostat,	or	by	a	thermal	reservoir.	So	far	as	the	food	is	
concerned,	the	method	of	fixing	temperature	makes	no	difference.	 	
	
We	model	an	isothermal	process	by	a	system	of	two	variables:	energy	U	and	an	internal	
variable	x.	When	both	U	and	x	are	fixed,	the	system	is	an	isolated	system	having	a	certain	
number	of	the	quantum	states,	Ω(U,x).	Let	S(U,x)	=	log	Ω(U,x).	
	
We	fix	the	temperature	of	the	system	by	thermal	contact	with	a	reservoir.	The	composite	of	the	
system	and	the	reservoir	is	an	isolated	system.	The	entropy	of	the	composite	is	the	sum	of	the	
entropies	of	the	reservoir	and	the	system:	
	
S	composite		=	S	R	(U	composite	)	-	U/T	+	S(U,x).		
	
The	isolated	system	has	two	internal	variables:	the	energy	U	in	the	system,	and	the	internal	
variable	x.	The	total	energy	of	the	composite	U	composite		is	fixed.		
	

	



	

The	isolated	system	is	in	thermal	equilibrium,	so	that	∂S	composite	/∂U	=	0.	This	condition	recovers	a	
familiar	condition:	
	
1/T	R		=	∂S(U,x)/∂U.		
	
That	is,	in	thermal	equilibrium,	the	reservoir	and	the	thermal	system	have	the	same	
temperature.	We	will	drop	the	subscript	R	and	write	the	temperature	as	T	in	the	following.	The	
function	S(U,x)	is	known,	the	above	condition	of	thermal	equilibrium	defines	the	function	U(T,x).	
We	can	also	write	the	entropy	as	a	function	S(T,x).	
	
Massieu	function	.	The	energy	of	the	composite	U	composite		is	fixed,	so	that	S	R	(U	composite	)	is	a	
constant.	The	composite	is	an	isolated	system	of	a	single	internal	variable,	x.	The	process	
proceeds	to	change	x	to	increase	S	composite	,	or	equivalently,	increase	the	function	
	
J	=	S(T,x)	-	U(T,x)/T.	
	
This	function	is	written	as	J(T,x).	This	function	contains	quantities	of	the	thermal	system	alone,	
and	was	introduced	by	Massieu	(1869)	.		In	the	isothermal	process,	the	temperature	is	not	a	
variable,	but	is	fixed	by	the	thermal	reservoir.	Aside	from	an	additive	constant,	the	Massieu	
function	is	the	subset	entropy	of	an	isolated	system:	the	composite	of	a	thermal	system	and	a	
thermal	reservoir.		

Algorithm	of	thermodynamics	for	isothermal	process	
We	now	paraphrase	the	basic	algorithm	of	thermodynamics	for	an	isothermal	process.	
	

1. Construct	a	thermal	system	with	an	internal	variable	x.		
2. Identify	the	function	J(T,x).	
3. Equilibrium	.	Find	the	value	of	the	internal	variable	x	that	maximizes	the	function	J(T,x).	
4. Irreversibility	.	Change	the	value	of	the	internal	variable	x	in	a	sequence	that	increases	

the	function	J(T,x).	

Helmholtz	function	
Because	the	temperature	is	constant	and	positive,	maximizing	the	J(T,x)			is	the	same	as	
minimizing	the	following	function:	
	
F	=	U	−TS.	
	
This	function	is	written	as	F(T,x).	This	function	contains	quantities	of	the	thermal	system	alone,	
and	is	called	the		Helmholtz	function	,	or		free	energy	.	The	function	was	introduced	by	Gibbs	
(1865).	Note	that	U	has	an	arbitrary	additive	constant,	which	also	appears	in	F.		
	

	



	

Observe	that	F	=	-	J/T.	When	the	system	is	held	at	a	fixed	temperature	(i.e.,	in	thermal	
equilibrium	with	the	reservoir),	of	all	values	of	the	internal	variable	x,	the	most	probable	value	
minimizes	the	Helmholtz	function	F(T,x).	In	this	minimization,	temperature	is	not	a	variable,	but	
is	fixed	by	the	thermal	reservoir.		
	
Shadow	of	the	real	thing	.	The	Helmholtz	function	comes	from	the	subset	entropy	of	an	
isolated	system:	the	combination	of	a	system	and	a	thermal	reservoir.	The	Helmholtz	function	
contains	no	new	fundamental	principle,	and	is	a	shadow	of	entropy.	In	the	practice	of	
thermodynamics,	the	Helmholtz	function	is	so	commonly	used	that	many	people	are	enamored	
by	the	shadow,	and	forget	the	real	thing—entropy.	
	
Derivative	of	Helmholtz	function	.	At	fixed	x,	dF	=	dU	-	TdS	-	SdT.	Recall	the	definition	of	
temperature,	dU	=	TdS.	We	have	that		
	
dF	=	-	SdT.	 	
	
Thus,	
	
-	S	=	∂F(T,x)/∂T.	
	
Because	S	is	positive,	F	decreases	as	T	increases.	Because	S	increases	as	T	increases,	F	is	a	
convex	function	of	T.		
	
We	can	paraphrase	the	algorithm	of	thermodynamics	for	isothermal	process	in	using	the	
Helmholtz	function	F(T,x).	Let	us	use	the	algorithm	to	analyze	melting.	

Melting	analyzed	using	the	Helmholtz	function	
Let	the	Helmholtz	function	per	molecule	in	the	solid	be	f	A	(T),	and	that	in	the	liquid	be	f	B	(T).	The	
Helmholtz	function	per	molecule	in	a	mixture	of	solid	and	liquid	is	
	
f	=	y	A	f	A	(T)	+	y	B	f	B	(T).	
	
The	change	of	phase	is	modeled	as	an	isothermal	process.	Recall	that	y	A		+	y	B		=	1.	
The	fraction	of	molecules	in	the	solid,	y	A	,	is	the	independent	internal	variable,	which	is	varied	to	
minimize	the	Helmholtz	function	of	the	mixture.	
	
The	two	curves	f	A	(T)	and	f	B	(T)	are	decreasing	and	convex	functions.	The	equation	
	
f	A	(T)	=	f	B	(T)	.	
	

	



	

determines	the	melting	temperature	T	m	.	When	T	<	T	m	,	the	Helmholtz	function	of	the	mixture	
minimizes	if	all	molecules	freeze.	When	T	>	T	m	,	the	Helmholtz	function	of	the	mixture	minimizes	
if	all	molecules	melt.	
	
Recall	the	definition	of	the	Helmholtz	function,	f	=	u−Ts.	The	condition	of	equilibrium	of	the	solid	
and	liquid	gives	that	
	
u	A		-	T	m	s	A		=	u	B		-	T	m	s	B	.		
	
This	expression	recovers	what	we	have	obtained	before.	The	Helmholtz	function	gives	us	a	slick	
derivation	of	the	equilibrium	condition,	but	pushes	us	a	step	away	from	the	leading	role,	entropy.		

Closed	system	
Now	enters	a	second	supporting	role—	volume	.	In	thermodynamics,	energy	and	volume	play	
analogous	supporting	roles.	

A	family	of	isolated	systems	of	two	independent	variations	
A	closed	system	and	its	surroundings	do	not	transfer	matter,	but	transfer	energy	and	volume.	
Consider	a	half	cylinder	of	water	sealed	with	a	piston.	Above	the	piston	is	a	weight,	and	beneath	
the	cylinder	is	a	fire.	Inside	the	cylinder,	liquid	occupies	some	volume,	and	vapor	occupies	the	
rest.	The	water	molecules	inside	the	cylinder	constitute	a	closed	system.	
	
Characteristic	function	S(U,V)	.	Let	U	be	the	energy	and	V	be	the	volume	of	a	closed	system.	
When	the	energy	U	and	volume	V	are	fixed,	the	closed	system	becomes	an	isolated	system.	
For	the	half	cylinder	of	water,	we	fix	U	and	V	by	thermally	insulate	the	cylinder	and	lock	the	
position	of	the	piston.	Denote	the	number	of	quantum	states	of	this	isolated	system	by	Ω(U,V).	
As	U	and	V	vary,	the	function	Ω(U,V),	or	its	equivalent,	S(U,V)	=	log	Ω(U,V),	characterizes	the	
closed	system	as	a	family	of	isolated	systems,	capable	of	two	independent	variations,	U	and	V.		
	
Thermodynamic	state	.	Each	member	isolated	system,	in	equilibrium,	defines	a		thermodynamic	
state	of	the	closed	system	,	specified	by	fixed	values	of	the	two	thermodynamic	properties,	U	
and	V.	In	the	energy-volume	plane,	a	point	represents	a	thermodynamic	state.	A	thermodynamic	
state	is	synonymous	to	a	member	isolated	system	in	equilibrium.		
	
Thermodynamic	process	.	A	curve	in	the	energy-volume	plane	represents	a	thermodynamic	
process.	A	thermodynamic	process	is	synonymous	to	a	sequence	of	member	isolated	states,	
each	being	in	equilibrium.	A	closed	system	is	a	family	of	isolated	systems.	A	thermodynamic	
process	of	the	closed	system	is	a	subfamily	of	isolated	systems.	Because	the	closed	system	is	
capable	of	two	independent	variations,	there	are	infinitely	many	types	of	thermodynamic	
processes.	

	



	

	
Energy-volume-entropy	space	.		
	
The	characteristic	function	of	a	closed	system,	S(U,V),	is	a		surface		in	the	
energy-volume-entropy	space,	with	energy	and	volume	as	the	horizontal	axes	and	entropy	as	
the	vertical	axis.	Characterizing	a	closed	system	by	a	surface	S(U,V)	in	the	
energy-volume-entropy	space	starts	with	Gibbs	(1873).		
	
For	a	function	of	two	variables,	S(U,V),	recall	a	fact	of	calculus:	
	
dS(U,V)	=	(∂S(U,V)/∂U)dU	+	(∂S(U,V)/∂V)dV.	
	
Further	recall	the	meanings	of	the	two	partial	derivative	in	calculus:	
	
∂S(U,V)/∂U	=	(S(U	+	dU,V)	-	S(U,V))/dU,	
∂S(U,V)/∂V	=	(S(U,V	+	dV)	-	S(U,V))/dV.	
	
Draw	a	plane	tangent	to	the	surface	at	a	point	on	the	surface	S(U,V).	The	tangent	plane	has	the	
slope	∂S(U,V)/∂U	with	respect	to	the	U	axis,	and	the	slope	∂S(U,V)/∂V	with	respect	to	the	V	axis.	
We	next	interpret	the	two	partial	derivatives	in	terms	of	experimental	measurements.	

Constant-volume	process		
When	the	volume	V	is	fixed	and	the	energy	U	is	varied,	the	closed	system	becomes	a	thermal	
system.	For	the	half	cylinder	of	water,	we	lock	the	position	of	the	piston,	so	that	the	volume	in	
the	cylinder	is	fixed.	We	allow	the	water	to	receive	energy	from	the	fire,	so	that	the	energy	in	the	
cylinder	is	varied.	In	the	energy-volume	plane,	the	constant-volume	process	corresponds	to	a	
line	parallel	to	the	energy	axis.	
	
For	a	thermal	system,	we	have	defined	temperature	T	by		
	
1/T	=	∂S(U,V)/∂U.	
	
This	equation	relates	one	partial	derivative	to	an	experimentally	measurable	
quantity—temperature	T.	

Adiabatic	process	
We	next	look	at	the	other	partial	derivative,	∂S(U,V)/∂V.	We	make	both	the	cylinder	and	the	
piston	using	materials	that	block	the	transfer	of	matter	and	block	the	transfer	of	energy	by	heat.	
But	we	can	move	the	piston	and	transfer	energy	by	work.		
	

	



	

When	a	closed	system	transfers	energy	with	its	surroundings	by	work	but	not	by	heat,	the	
closed	system	is	said	to	undergo	an		adiabatic	process	.		
	
When	we	add	weights,	the	gas	loses	volume	but	gains	energy.	Adding	weights	compresses	the	
gas	and	causes		adiabatic	heating	.	When	we	remove	weights,	the	gas	gains	volume	but	loses	
energy.	Removing	weights	expands	the	gas	and	causes		adiabatic	cooling.	
	
The	half	cylinder	of	water	and	the	weight	together	constitute	an	isolated	system.	The	isolated	
system	has	two	internal	variables,	the	volume	of	the	cylinder,	V,	and	the	energy	in	the	water	
molecules,	U.	The	two	internal	variables	are	related.		The	piston	is	assumed	to	move	with	no	
friction.	Let	P	be	the	pressure	inside	the	cylinder,	and	A	be	the	area	of	the	piston.	The	weight	
applies	a	force	to	the	piston,	PA.	When	the	piston	moves	up	by	a	distance	dz,	the	volume	inside	
the	cylinder	increases	by	dV	=	Adz,	the	potential	energy	of	the	weight	increases	by	PAdz	=	PdV,	
and	the	energy	of	the	water	increases	by	dU.	The	energy	of	the	isolated	system	is	the	sum	of	
the	thermal	energy	of	the	water	and	the	potential	energy	of	the	weight.	The	isolated	system	
conserves	energy,	dU	+	PdV	=	0.	This	equation	relates	the	two	internal	variables	U	and	V.	
	
When	the	piston	moves,	the	height	of	weight	changes,	but	the	entropy	of	the	weight,	S	weight	,	
does	not	change.	At	fixed	U	and	V,	the	entropy	of	the	isolated	system	is	the	sum	of	the	entropy	
of	the	water	molecules	and	the	entropy	of	the	weight:	S(U,V)	+	S	weight	.	When	U	and	V	vary,	the	
subset	entropy	maximizes	in	equilibrium,	so	that	T	-1	dU	+	(∂S(U,V)/∂V)dV	=	0.	The	isolated	
system	undergoes	an	isentropic	process.		
	
This	isentropic	condition,	together	with	the	conservation	of	energy,	dU	+	PdV	=	0,	yields	that	
	
P/T	=	∂S(U,V)/∂V.	
	
This	equation	relates	the	partial	derivative	to	experimentally	measurable	quantities—pressure	P	
and	temperature	T.	The	ratio	P/T	is	the	child	of	the	union	of	entropy	and	volume,	just	as	the	
temperature	is	the	child	of	the	union	of	entropy	and	energy.	Pressure	is	an	intensive	
thermodynamic	property.	
	
Exercise	.	When	I	stretch	a	rubber	band	rapidly,	energy	has	no	time	to	diffuse	out,	and	the	
rubber	band	approximately	undergoes	adiabatic	heating.	My	lips	can	feel	an	increase	of	the	
temperature	of	the	rubber	band.		After	some	time,	some	energy	does	diffuse	out,	and	the	
temperature	of	the	rubber	band	becomes	the	same	as	that	of	my	lips.		When	I	rapidly	release	
the	stretch,	the	rubber	band	approximately	undergoes	adiabatic	cooling,	and	my	lips	feel	a	
decrease	in	temperature.	Try	these	experiments	yourself.	

Experimental	determination	of	the	function	S(U,V)	
The	above	equations	give	
	

	



	

dS	=	(1/T)dU	+	(P/T)dV.	
	
This	equation	relates	the	characteristic	function	S(U,V)	to	experimentally	measurable	quantities,	
U,	V,	P,	T.	By	incrementally	changing	the	energy	and	volume,	we	can	measure	the	function	
S(U,V).		
	
For	example,	we	can	prescribe	a	value	of	the	volume,	V	1	,	regard	the	closed	system	as	a	thermal	
system,	and	measure	the	curve	S(U,V	1	)	using	the	procedure	the	same	as	that	for	any	thermal	
system.	That	is,	we	measure	the	function	T(U,V	1	)	by	incrementally	adding	energy	but	fixing	
volume	V	1	.		We	then	integrate	1/T	=	∂S(U,V	1	)/∂U,	starting	with	S(U,V	1	)	=	0	as	T(U,V	1	)	→	0.	
	
We	then	prescribe	another	value	of	the	volume,	V	2	,	etc.	These	measurements	determine	a	
family	of	curves	on	the	energy-entropy	plane,	S(U,V	1	),	S(U,V	2	),...	Each	curve	characterizes	a	
thermal	system	of	a	fixed	volume.		
	
Because	the	energy	is	a	relative	quantity,	each	curve	can	translate	horizontally	by	an	arbitrary	
amount	without	affecting	the	behavior	of	the	thermal	system.	But	two	curves	of	different	
volumes,	S(U,V	1	)	and	S(U,V	2	),	should	not	translate	relative	to	each	other	by	an	arbitrary	
amount.	Rather,	the	family	of	curves	constitute	a	single	surface,	S(U,V),	in	the	
energy-volume-entropy	space.	The	entire	surface	can	translate	along	the	axis	of	energy	by	one	
arbitrary	amount	without	affecting	the	behavior	of	the	closed	system.		
	
We	can	eliminate	the	arbitrary	translation	between	the	two	curves	S(U,V	1	)	and	S(U,V	2	)	by	
integrating	P/T	=	∂S(U,V)/∂V.	This	procedure	requires	measurements	of	both	pressure	and	
temperature.	
	
The	function	S(U,V)	characterize	the	closed	system	as	a	family	of	isolated	systems.	Thus,	we	
can	experimentally	count	the	number	of	quantum	states	for	each	member	isolated	system	in	the	
family.	

General	features	of	the	function	S(U,V)	
Note	the	following	features	of	the	surface	S(U,V)	common	to	all	closed	systems.	

1. Because	energy	is	relative	to	an	arbitrary	reference,	the	surface	S(U,V)	can	translate	in	
the	direction	of	energy	by	an	arbitrary	amount	without	affecting	the	behavior	of	the	
closed	system.		

2. Because	entropy	is	absolute,	the	surface	starts	at	S	=	0,	and	cannot	be	translated	up	
and	down.		

3. Volume	is	also	absolute	and	positive.		
4. When	a	plane	is	tangent	to	the	surface	S(U,V)	at	a	point,	the	two	slopes	of	the	tangent	

plane	represent	1/T	and	P/T.	
5. For	each	fixed	V,	as	S	approaches	zero,	S(U,V)	is	a	curve	that	approaches	the	U	axis	

vertically.	That	is,	∂S(U,V)/∂U	approaches	infinity	as	S	approaches	zero.	

	



	

6. The	more	energy	and	volume,	the	more	quantum	states.	Thus,	Ω(U,V)	is	an	increasing	
function	with	respect	to	both	U	and	V.	Because	logarithm	is	an	increasing	function,	
S(U,V),	is	also	an	increasing	function.	That	is,	the	slopes	∂S(U,V)/∂U	and	∂S(U,V)/∂V	are	
positive.	

7. For	the	time	being,	we	assume	that	S(U,V)	is	a		convex	function	.	

Ideal	gas	

The	model	of	ideal	gas	
A	bottle	of	volume	V	contains	N	molecules	and	energy	U.	The	molecules	are	called	an		ideal	gas	
if	they	are	far	apart	on	average.		The	molecules	fly,	collide,	and	separate.		
	
When	U,V,	N	are	fixed,	the	gas	is	an	isolated	system.	Denote	the	number	of	quantum	states	of	
this	isolated	system	by	Ω(U,V,N).	Because	the	molecules	are	far	apart,	each	molecule	can	fly	to	
anywhere	in	the	bottle	as	if	all	other	molecules	are	not	there.		Consequently,	the	number	of	
quantum	states	of	each	molecule	is	proportional	to	the	volume	V,	and	the	number	of	quantum	
states	of	N	molecules	is	proportional	to	V	N	.	The	proportional	factor	depends	on	U	and	N,	but	not	
on	V.	Write	
	
Ω(U,V,N)	=	V	N	f(U,N),	
	
where	f(U,N)	is	a	function	of	U	and	N.		
	
By	definition,	the	entropy	is	S	=	k	log	Ω,	so	that	
	
S(U,V,N)	=	Nk	logV	+	k	log	f(U,N)	.	

Ideal	gas	law	
Inserting	the	above	expression	for	entropy	into	the	general	equation	P/T	=	∂S(U,V,N)/∂V,	we	
obtain	that	
	
PV	=	NkT.	
	
This	equation	of	state	is	called	the	ideal	gas	law.	Historically,	the	ideal	gas	law	was	discovered	
experimentally,	before	the	discovery	of	entropy.	After	the	discovery	of	entropy,	the	ideal	gas	law	
is	derived	from	this	simple	model.		

	



	

Energy	of	an	ideal	gas	
Inserting	the	expression	for	entropy	into	the	definition	of	temperature,	1/T	=	∂S(U,V,N)/∂U,	we	
obtain	that	1/T	=	∂(log	f(U,N))/∂U.	This	equation	shows	that	the	energy	U	is	a	function	of	
temperature	T	and	number	N,	and	is	independent	of	the	volume	V.	The	energy	is	an	extensive	
property,	and	is	linear	in	the	number	of	molecules	N.	Write	 	
	
U	=	Nu(T).	 	
	
Here	u(T)	is	the	thermal	energy	per	molecule.	This	function	has	been	determined	for	many	
species	of	molecules.	
	
Define	the	thermal	capacity	per	molecule	under	the	condition	of	constant	volume	by		
	
c	V		=	du(T)/dT.	
	
In	general,	the	thermal	capacity	is	a	function	of	temperature,	c	V	(T).	Thus,		
	
dU	=	Nc	V	(T)dT.	
	
As	an	approximation,	the	energy	is	taken	to	be	linear	in	temperature,	and	c	V		is	a	constant	
independent	of	temperature.	

Entropy	of	an	ideal	gas	
Recall	the	general	equation	for	a	closed	system	
	
dS	=	(1/T)dU	+	(P/T)dV.	
	
Inserting	the	equations	specific	to	an	ideal	gas,	dU	=	Nc	V	(T)dT	and	PV	=	NkT,	we	obtain	that	
	
dS	=	(Nc	V	(T)/T)dT	+	(Nk/V)dV.	
	
Assuming	that	c	V		is	independent	of	temperature	and	integrating,	we	obtain	that	
	
S(T,V)	=	Nc	V		log(T/T	0	)	+	Nk	log(V/V	0	)	+	S(T	0	,V	0	).	
	
Entropy	is	a	function	of	state.	A	thermodynamic	state	of	the	closed	system	is	specified	by	two	
independent	variables,	say	T	and	V.	In	the	above	equation	for	ideal	gases,	the	first	term	is	due	
to	the	change	in	temperature,	and	the	second	is	due	to	the	change	in	volume.	

	



	

Energy	transfer	by	work	and	by	heat	for	a	fixed	amount	of	an	ideal	
gas		
A	fixed	amount	of	an	ideal	gas	is	a	closed	system,	characterized	by	two	equations:	
	
PV	=	NkT,	
dU	=	Nc	V	(T)dT.	
	
The	energy	transfer	by	work	from	the	gas	to	the	surroundings	is	
	
dW	=	PdV.	
	
The	first	law	of	thermodynamics	defines	the	energy	transfer	by	heat	from	the	surroundings	to	
the	gas	as	
	
dQ	=	dU	+	PdV.	
	
The	temperature,	pressure,	volume,	energy,	and	entropy	are	functions	of	state.		Neither	the	
energy	transfer	by	work	nor	the	energy	transfer	by	heat	is	a	function	of	state;	they	depend	on	
process.	We	next	consider	several	processes.	 	
	
Constant-volume	process	.	Subject	to	a	constant	volume,	the	gas	does	no	work.	The	energy	
transfer	by	heat	equals	the	change	in	internal	energy:	
	
dQ	=	Nc	V	(T)dT.	
	
When	the	temperature	changes	from	T	1		to	T	2	,	assuming	the	thermal	capacity	is	independent	of	
temperature,	the	energy	transfer	by	heat	is	
	
Q	=		Nc	V	(T	2		-	T	1	).	
	
Constant-pressure	process	.	When	the	volume	changes	by	dV,	the	gas	does	work	dW	=	PdV.	
When	the	volume	changes	from	V	1		to	V	2		under	a	constant	pressure	P,	the	gas	goes	work		
	
W	=	P(V	2		-	V	1	).	
	
In	general,	the	energy	transfer	by	heat	both	changes	the	internal	energy	and	volume:	dQ	=	dU	+	
PdV.	Subject	to	a	constant	pressure,	this	expression	becomes	that		
	
dQ	=	d(U	+	PV).	
	

	



	

For	an	ideal	gas	under	a	constant	pressure,	the	energy	transfer	by	heat	is	
	
dQ	=		N(c	V		+	k)dT.	
	
The	quantity	c	V		+	k	is	the	thermal	capacity	per	molecule	under	constant	pressure,	and	is	
designated	as	c	P	.	
	
Isothermal	process	.	A	constant-temperature	process	is	also	called	an	isothermal	process.	
Because	of	the	ideal	gas	law,	the	isothermal	process	is	characterized	by	a	curve	PV	=	constant.	
For	an	ideal	gas,	the	isothermal	process	does	not	change	the	internal	energy,	so	that	the	energy	
transfer	by	heat	to	the	closed	system	is	the	same	as	the	work	done	by	the	closed	system:	
	
dW	=	dQ	=	(NkT/V)dV.	
	
When	the	volume	changes	from	V	1		to	V	2	,	the	energy	transfer	by	heat	is	
	
W	=	Q	=	NkT	log	(V	2	/V	1	).	
	
Adiabatic	process	.	A	closed	system	is	said	to	undergo	an	adiabatic	process	if	the	system	is	
thermally	insulated,	so	that	no	energy	transfers	by	heat	between	the	closed	system	and	the	
surroundings:	
	
dU	+	PdV	=	0.	
	
For	an	ideal	gas,	this	equation	becomes	
	
c	V	(T)dT	+	(kT/V)dV	=	0.	
	
We	further	assume	that	the	thermal	capacity	is	independent	of	temperature.	Integration	yields	
	
c	V		log	T	+	k	log	V	=	constant,	
	
or	
	
TV	b		=	constant,	
	
where	b	=	k/c	V	.	The	constant	is	determined	by	one	state	in	the	process,	say	the	initial	state	
(T	i	,V	i	).	Thus,	constant	=	T	i	V	i	

b	.	The	result	TV	b		=	constant	explains	adiabatic	cooling	when	a	gas	
expands	in	an	adiabatic	process.	
	
Recall	the	ideal	gas	law	PV	=	NkT.	The	adiabatic	process	also	obeys	that	
	
PV	b	+	1		=	constant.	

	



	

	
When	the	volume	changes	by	dV,	the	adiabatic	process	transfers	energy	by	work:	
	
dW	=	PdV	=	(constant)	V	-b	-	1	dV.	
	
Integration	yields	
	
W	=	(constant/b)	(V	1	

-b		-	V	2	
-b	)	

	
Exercise	.	Assume	that	an	ideal	gas	has	a	constant	thermal	capacity	per	molecule	c	V	.	One	mole	
of	the	ideal	gas	changes	from	an	initial	state	(P	i	,V	i	)	to	a	final	state	(P	f	,V	f	)	along	a	straight	line	on	
the	(P,V)	plane.	Calculate	the	energy	transfer	by	work	and	energy	transfer	by	heat.	Calculate	the	
changes	in	internal	energy	and	entropy.	
	
Exercise	.	An	ideal	gas	undergoes	an	adiabatic	process	from	an	initial	state	(P	i	,V	i	)	to	a	final	
state	of	volume	V	f	.	Calculate	the	volume	of	the	final	state,	V	f	.		Calculate	the	energy	transfer	by	
work	in	the	adiabatic	process.	
	
Exercise	.	In	a	helium	gas,	each	molecule	consists	of	a	single	helium	atom.	For	such	a	gas	of	
single-atom	molecules,	c	V		=	1.5k.	Calculate	how	temperature	changes	when	pressure	doubles	
in	an	adiabatic	process.	

Entropic	elasticity	
When	a	spring	made	of	steel	is	pulled	by	a	force,	the	spring	elongates.	When	the	force	is	
removed,	the	spring	recovers	its	initial	length.	This	elasticity	is	due	to	a	distortion	of	the	electron	
cloud	of	atoms.	Such	elasticity	is	called		energetic	elasticity	.	
	 	
A	bag	of	air	acts	like	a	spring.	The	volume	decreases	when	the	pressure	increases,	and	
recovers	when	the	pressure	drops.	This	elasticity	clearly	does	not	result	from	distortion	of	
atomic	bonds	in	the	molecules,	but	from	the	change	of	the	number	of	quantum	states	with	
volume.	Such	elasticity	is	called		entropic	elasticity	.	

Thermoelastic	coupling	
The	bag	of	air	also	illustrates	thermoelastic	coupling.	Define		elastic	modulus		by	
	
B	=	-	V∂P/∂V.	
	
This	definition	is	incomplete;	we	need	to	specify	what	is	taken	to	be	constant	when	we	take	the	
partial	derivative.	Let	us	consider	two	examples.	
	

	



	

Isothermal	elastic	modulus	.	Under	the	isothermal	condition,	temperature	is	constant.	Recall	
the	ideal	gas	law,	P	=	NkT/V.	Taking	the	partial	derivative,	we	obtain	the	isothermal	elastic	
modulus	
	
B	T		=	P.	
	
Adiabatic	elastic	modulus	.	Under	the	adiabatic	condition,	PV	b	+	1		=	constant.		Taking	the	partial	
derivative,	we	obtain	the	adiabatic	elastic	modulus	
	
B	ad		=	(b	+	1)P.	
	
A	gas	is	stiffer	under	the	adiabatic	condition	than	under	the	isothermal	condition.	

Osmosis	
Consider	N	particles	dispersed	in	a	bag	of	water	of	volume	V.	The	particles	are	different	from	
water	molecules,	and	can	be	of	any	size.		The	particles	can	be	of	many	species.	When	the	
particles	are	molecules,	we	call	them	solutes.	When	the	particles	are	somewhat	larger,	say	from	
10	nm	to	10	µ	m,	we	call	them	colloids.	The	bag	is	immersed	in	a	tank	of	pure	water.	The	bag	is	
made	of	a	semipermeable	membrane:	water	can	permeate	through	the	membrane	but	the	
particles	cannot.	

Theory	of	osmosis	
The	physics	of	this	situation	is	analogous	to	the	ideal	gas,	provided	that	the	concentration	of	the	
particles	is	dilute.	Every	particle	is	free	to	explore	the	entire	volume	in	the	bag.	The	number	of	
quantum	states	of	the	water-particle	system	scales	as		
	
Ω	∝	V	N	.		
	
As	water	permeates	through	the	membrane,	the	volume	of	the	bag	V	changes.	
	
Recall	S	=	k	logΩ	and	the	P/T	=	∂S(U,V)/∂V,	we	obtain	that	
	
P	=	kTN/V.	
	
This	pressure	is	called	the		osmotic	pressure	.	The	law	of	osmosis	is	identical	to	the	law	of	ideal	
gas.	

	



	

Balance	of	osmosis	
The	osmotic	pressure	can	be	balanced	in	several	ways.	For	example,	the	tension	in	the	
membrane	can	balance	the	osmosis	pressure.	One	can	also	disperse	particles	in	the	tank	of	
water	outside	the	bag.	The	difference	in	the	concentration	of	particles	in	the	bag	and	that	of	
particles	in	the	tank	causes	a	difference	in	the	pressures	in	the	bag	and	in	the	tank.	The	
difference	in	pressure	can	be	balanced	by	the	tension	in	the	membrane.	
	
As	yet	another	example,	we	place	a	rigid,	semi-permeable	wall	in	the	liquid,	with	the	particles	on	
one	side,	but	not	the	other.	Water	is	on	both	sides	of	the	wall,	but	alcohol	is	only	on	one	side.	
The	molecules	of	the	liquid	can	diffuse	across	the	wall,	but	the	particles	cannot.	For	the	particles	
to	explore	more	volume,	the	liquid	molecules	have	to	diffuse	into	the	side	where	particles	are.	If	
this	experiment	were	carried	out	in	the	zero-gravity	environment,	the	infusion	would	continue	
until	the	pure	liquid	is	depleted.	In	the	gravitational	field,	however,	the	infusion	stops	when	the	
pressure	in	the	solution	balances	the	tendency	of	the	infusion.	

Phases	of	a	pure	substance	

Empirical	facts	
Phases	.	A	pure	substance	consists	of	a	single	species	of	molecules,	and	can	form		three	
phases:	solid,	liquid,	and	gas.	(A	pure	substance	may	have	more	than	three	phases.	For	
example,	water	has	multiple	solid	phases.	For	the	time	being,	ignore	this	fact.)	In	each	phase,	
the	pure	substance	can	change	thermodynamic	state	by	changing	two	independent	
thermodynamic	properties,	such	as	temperature	and	pressure.		
	
In	the	solid	phase,	molecules	form	a	periodic	lattice,	called	a	crystal.	Many	small	grains	of	the	
crystal	form	a	bulk	solid.	Individual	molecules	vibrate	near	their	sites	in	the	lattice,	and	rarely	
jump	out	of	the	sites.	
	
In	the	liquid	phase,	molecules	still	touch	one	another,	but	do	not	form	a	periodic	lattice.	
Molecules	change	neighbors	readily.	
	
In	the	gas	phase,	molecules	on	average	are	far	apart.	They	fly,	collide,	and	separate.	
	
Thermodynamic	states	of	two	independent	variations	.	A	fixed	amount	of	a	pure	substance	
is	a	closed	system.	Its	thermodynamic	states	are	capable	of	two	independent	variations.	For	
example,	a	fixed	amount	of	a	pure	substance	can	be	an	isolated	system	of	a	fixed	volume	V	and	
a	fixed	energy	U.	The	isolated	system	has	a	certain	number	of	quantum	states.	Denote	the	

	



	

number	of	quantum	states	by	Ω(U,V),	and	write	S(U,V)	=	log	Ω(U,V).	Recall	the	identity	dS(U,V)	
=	(1/T)dU	+	(P/T)dV.	
	
Steam	tables	.	The	data	for	water	molecules	are	presented	by	tables,	called	the	steam	tables.	In	
constructing	the	steam	tables,	the	energy	and	entropy	of	the	liquid	at	the	triple	point	are	typically	
set	to	be	zero.	The	extensive	quantities,	S,	U,	V,	are	listed	as	values	per	unit	amount	of	the	
substance.		
	

	
Temperature-pressure	plane	.	Temperature	and	pressure	are	both	intensive	quantities.	Each	
point	on	the	temperature-pressure	plane	represents	a	pair	of	temperature	and	pressure.	In	the	
temperature-pressure	plane,	we	mark	triple	point	and	critical	point,	along	with	three	phase	
boundaries.	Such	a	diagram	is	called	a		phase	diagram		of	a	pure	substance.	See		phase	diagram	
of	water	.		The	experimental	significance	of	the	phase	diagram	is	explained	as	follows.	We	will	
ignore	many	phases	of	ice	at	high	pressure.	
	
Equilibrium	of	a	single	homogeneous	state	.	When	the	substance	equilibrates	in	a	
homogenous	state,	the	thermodynamic	state	corresponds	to	a	point	in	the	temperature-pressure	
plane.	In	the	vicinity	of	a	single	homogeneous	state	in	equilibrium,	the	thermodynamic	state	can	
change	continuously	by	independent	change	of	temperature	and	pressure.	The	steam	tables	
then	list	volume,	energy,	and	entropy	as	functions	of	two	independent	variables,	temperature	
and	pressure.		
	
For	example,	at	T	=	400	K	and	P	=	100	kPa,	water	molecules	form	a	gas,	with	specific	volume,	
specific	energy,	and	specific	entropy:	
	
u	=	2967.85	kJ/kg	
v	=	3.10263	m	3	/kg	
s	=	8.5434	kJ/kg/K	
	
Equilibrium	of	two	homogeneous	states	.	When	the	substance	equilibrates	as	a	mixture	of	
two	homogeneous	states,	they	have	the	same	temperature	and	the	same	pressure.	In	the	
temperature-pressure	plane,	all	thermodynamic	states	of	two	homogeneous	states	fall	on	a	
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curve,	called	a		phase	boundary	.		A	point	on	the	phase	boundary	represents	many	
thermodynamic	states;	each	thermodynamic	state	is	a	mixture	of	the	two	homogeneous	states	
of	some	proportion.	There	are	three	phase	boundaries:	gas-liquid,	liquid-solid,	and	solid-gas.	
For	such	a	phase	boundary,	given	a	pressure,	the	steam	tables	list	the	temperature,	as	well	as	
the	specific	volumes,	energy,	and	entropy	of	the	two	homogeneous	states.		
	
For	example,	at	P	=	100	kPa,	liquid	water	and	gaseous	water	equilibrate	at	temperature	99.62	
degree	Celsius.	The	specific	volumes,	energies,	and	entropies	of	the	two	phases	are	
	
u	f		=	417.33	kJ/kg,		u	g		=	2506.06	kJ/kg	
v	f		=	0.001043	m	

3	/kg,		v	g		=	1.69400	m	
3	/kg	

s	f		=	1.3025	kJ/kg/K,		s	g		=	7.3593	kJ/kg/K	
	
Equilibrium	of	three	homogenous	states	.When	the	substance	equilibrates	as	a	mixture	of	
three	homogeneous	states,	they	have	the	same	temperature	and	the	same	pressure.	In	the	
temperature-pressure	plane,	all	thermodynamic	states	of	three	homogeneous	states	collapse	to	
a	single	point,	called	the		triple	point	.	The	triple	point	represents	many	thermodynamic	states;	
each	thermodynamic	state	is	a	mixture	of	the	three	homogeneous	states	of	some	proportions.		
	
For	water	molecules,	the	triple	point	occurs	at		
	
T	=	273.16	K	
P=	611.657	Pa		
	
The	specific	volumes,	energies,	and	entropies	of	the	three	homogeneous	states	in	equilibrium	
are	listed	in	the	following	table.		
	

	 volume	
m	3	/kg	

energy	
kJ/kg	

entropy	
kJ/kg/K	

solid	 0.001091	 -334	 -1.2	

liquid	 0.001000	 0	 0	

gas	 206.132	 2375.33	 9.1562	

	
Critical	point	.		We	add	a	few	more	facts	of	the	phase	boundaries	in	the	temperature-pressure	
plane.		The	three	phase	boundaries	meet	at	the	triple	point.	The	liquid-solid	phase	boundary	
extends	indefinitely	as	the	pressure	increases.	The	gas-solid	phase	boundary	extends	as	
temperature	and	pressure	reduces,	but	must	terminate	when	temperature	approaches	absolute	
zero.		The	gas-liquid	phase	boundary	terminates	at	a	point,	called	the		critical	point	.	Thus,	a	
liquid	state	can	continuously	change	to	a	gaseous	state,	without	crossing	the	liquid-gas	phase	
boundary.	The	critical	point	is	a	thermodynamic	state.	

	



	

	
For	water	molecules	at	the	critical	point,	the	functions	of	state	take	the	following	values:		
	
T	=	374.1	degree	Celsius		
P	=	22.089	MPa	
u	=	2029.58	kJ/kg	
v	=	0.003155	m	3	/kg	
s	=	4.4297	kJ/kg/K	
	
No	equilibrium	of	four	or	more	homogeneous	states.		A	pure	substance	cannot	equilibrate	as	
a	mixture	of	four	or	more	homogeneous	states.	
	
Pressure-volume	plane	.	Pressure	is	an	intensive	variable,	but	volume	is	an	extensive	variable.	
We	use	the	specific	volume	v	as	the	horizontal	axis,	and	the	pressure	P	as	the	vertical	axis.	
Each	point	in	the	P-v	plane	corresponds	to	a	thermodynamic	state	of	a	unit	mass	of	a	pure	
substance,	say	water.	All	thermodynamic	states	of	a	fixed	temperature	correspond	to	a	curve	in	
the	P-v	plane,	called	an		isotherm	.		
	
Consider	an	isotherm	of	T	=	300	K.	At	a	high	pressure,	water	is	in	the	liquid	phase.	The	volume	
of	the	liquid	increases	as	the	pressure	drops.	

	
	
Temperature-entropy	plane	.	

	



	

	
Exercise	.	For	a	unit	mass	of	water	molecules,	a	thermodynamic	state	is	specified	by	two	of	
thermodynamic	properties	among	many,	such	as	temperature	T,	pressure	P,	specific	energy	u,	
specific	volume	v,	specific	entropy	s,	specific	enthalpy	h,	and	quality	x.	For	each	of	the	
thermodynamic	states	specified	below,	use	the	steam	tables	to	determine	the	other	
thermodynamic	properties.		
(a)	T	=	100	degrees	Celsius,	x	=	0.9.		
(b)	T	=	100	degrees	Celsius,	P	=	10	kPa.	
(c)	T	=	100	degrees	Celsius,	P	=	500	kPa.	
(d)	T	=	50	degrees	Celsius,	v	=	0.00050	m	2	/kg.	

Primitive	surfaces		
We	now	describe	the	thermodynamic	theory	of	phases	of	a	pure	substance	due	to	Gibbs	(1873).	
Before	Gibbs	developed	this	theory,	the	empirical	facts	of	pure	substances	described	above	
were	known.	They	were	so	numerous	and	called	for	a	theory.		
	
Energy,	volume,	and	entropy	are	extensive	properties.	Let	u,	v,	and	s	be	the	energy,	volume,	
and	entropy	of	the	substance	per	molecule.	The	variables	u,	v,	s	form	the	axes	of	a	
three-dimensional	space.		
	
Because	the	thermodynamic	state	of	a	fixed	amount	of	a	pure	substance	has	two	independent	
variations,	once	the	substance	is	specified	in	a	state	by	the	values	of	energy	u	and	volume	v,	
the	value	of	entropy	s	is	fixed.	For	the	time	being,	let	us	represent	each	phase	by	its	own	
energy-volume-entropy	relation,	s(u,v),	corresponding	to	a	surface	in	the	
energy-volume-entropy	space.	The	three	phases	correspond	to	three	surfaces.	Gibbs	called	
them	the		primitive	surfaces	.	A	point	on	one	of	the	three	primitive	surfaces	corresponds	to	a	
homogeneous	state	of	the	substance.		

	



	

Rule	of	mixture	
Consider	two	homogeneous	states,	A	and	B,	which	can	be	two	points	either	on	one	primitive	
surface,	or	on	two	primitive	surfaces.		A	mixture	of	the	two	homogeneous	states	has	a	total	of	N	
molecules,	of	which	N	A		molecules	are	in	one	homogeneous	state,	and	N	B		molecules	are	in	the	
other	homogeneous	state.	Denote	the	number	fractions	of	the	molecules	by	y	A		=	N	A	/N	and	y	B		=	
N	B	/N.	The	total	number	of	molecules	in	the	mixture	is	conserved:	
	
N	=	N	A		+	N	B	.		
	
Divide	this	equation	by	N,	and	we	obtain	that	
	
y	A		+	y	B		=	1.	
	
Both	y	A		and	y	B		are	non-negative	numbers.	 	
	
Denote	the	energies,	volumes,	and	entropies	of	the	two	homogeneous	states	by	(u	A	,v	A	,s	A	)	and	
(u	B	,v	B	,s	B	).	Let	u,	v,	and	s	be	the	energy,	volume,	and	energy	of	the	mixture	divided	by	the	total	
number	of	molecules.	Energy	is	an	extensive	variable,	so	that	the	energy	of	the	mixture	is	the	
sum	of	the	energies	of	the	two	homogeneous	states:	
	
Nu	=	N	A	u	A		+	N	B	u	B	.	
	
Divide	this	equation	by	N,	and	we	obtain	that	
	
u	=	y	A	u	A		+	y	B	u	B	.	
	
The	same	rule	applies	to	volume	and	entropy:	
	
v	=	y	A	v	A		+	y	B	v	B	,	
s	=	y	A	s	A		+	y	B	s	B	.	
	
The	rules	of	mixture	have	a	graphic	interpretation	in	the	energy-volume-entropy	space.	The	two	
homogeneous	states,	(u	A	,v	A	,s	A	)	and	(u	B	,v	B	,s	B	),	are	two	points	on	one	or	two	primitive	surfaces.	
The	mixture,	(u,v,s),	is	a	point	on	the	line	joining	the	two	points	(u	A	,v	A	,s	A	)	and	(u	B	,v	B	,s	B	),	located	
at	the	center	of	gravity,	depending	on	the	fraction	of	molecules	y	A		and	y	B		allocated	to	the	two	
homogeneous	states.	In	general,	the	mixture	(u,v,s)	is	a	point	off	the	primitive	surfaces.		
	
We	can	generalize	the	rules	of	mixture	to	a	mixture	of	three	homogeneous	states.		A	pure	
substance	has	a	total	of	N	molecules,	of	which	N	A	,	N	B	,	and	N	C		molecules	are	in	the	three	
homogeneous	states.	Denote	the	number	fractions	by	y	A			=	N	A	/N,	y	B			=	N	B	/N,	and	y	C			=	N	C	/N.	
Here	y	A,		y	B		and	y	C		are	non-negative	numbers.	The	mixture	conserves	the	number	of	molecules:	

	



	

	
N	A		+	N	B		+	N	C		=	N.		
	
Divide	this	equation	by	N,	and	we	obtain	that	
	
y	A		+	y	B		+	y	C		=	1.	
	
The	three	homogeneous	states,	(u	A	,v	A	,s	A	),	(u	B	,v	B	,s	B	),	and	(u	C	,v	C	,s	C	),	are	three	points	on	one	or	
two	primitive	curves.	The	three	points	form	a	triangle	in	the	energy-volume-entropy	space.	The	
energy,	volume,	and	entropy	per	molecule	of	the	mixture	(u,v,s)	are	given	by	
	
u	=	y	A	u	A		+	y	B	u	B		+	y	C	u	C	,	
v	=	y	A	v	A		+	y	B	v	B		+	y	C	v	C	,	
s	=	y	A	s	A		+	y	B	s	B		+	y	C	s	C	.	
	
The	mixture,	(u,v,s),	is	a	point	in	the	energy-volume-entropy	space,	located	at	the	center	of	
gravity	in	the	triangle,	depending	on	the	fraction	of	molecules	y	A,		y	B		and	y	C		allocated	to	the	three	
homogeneous	states	at	the	vertices	of	the	triangle.	In	general,	the	mixture	(u,v,s)	is	a	point	off	
the	primitive	surfaces.	
	
We	can	further	generalize	the	rules	of	mixture	to	a	mixture	of	any	number	of	homogenous	
states.	Now	consider	all	possible	mixtures	of	arbitrary	numbers	of	homogeneous	states.		Given	
the	primitive	surfaces,	the	rules	of	mixture	create	a	set	of	points,	which	constitute	a	solid	figure	
in	the	energy-volume-entropy	space.	In	general,	each	point	in	the	solid	figure	represents	a	
mixture.		
	
In	the	language	of	convex	analysis,	the	energy-volume-entropy	space	is	called	a	vector	space,	
and	each	point	in	the	vector	space	is	called	a	vector.	All	the	homogeneous	states	on	the	
primitive	surfaces	form	a	set	of	vectors.	A	mixture	is	called	a		convex	combination		of	the	
homogenous	states,	and	the	set	of	all	mixtures	is	called	the		convex	hull		of	homogenous	states.	

Derived	surface		
Gibbs	called	the	upper-bound	surface	of	all	mixtures	the		derived	surface	.	This	surface	is	derived	
by	rolling	planes	tangent	to	the	primitive	surfaces.	In	the	energy-volume-entropy	space,	a	
tangent	plane	can	touch	the	primitive	surfaces	at	one,	two,	or	three	points,	but	not	four	or	more	
points.	
	
When	a	tangent	plane	touches	the	three	primitive	surfaces	at	three	points,	the	three	tangent	
points	are	the	vertex	of	a	triangle.		
	
From	each	edge	of	the	triangle	we	roll	out	the	tangent	plane	to	touch	two	primitive	surfaces	at	
two	points.	The	two	tangent	points	are	the	ends	of	a	straight-line	segment,	called	the	tie	line.		

	



	

	
From	each	vertex	of	the	triangle,	we	retain	a	convex	part	of	a	primitive	surface.	The	derived	
surface	has	a	single	sheet,	and	is	a		convex	surface	.	
	
So	far,	the	three	quantities—energy,	volume,	and	entropy—play	similar	roles.	All	we	have	
invoked	is	that	they	are	extensive	quantities.	We	next	isolate	a	fixed	amount	of	a	pure	
substance	by	fixing	energy	and	volume.	This	isolated	system	has	an	enormous	number	of	
internal	variables:	the	number	of	homogeneous	states,	the	location	of	each	homogeneous	state	
on	a	primitive	surface,	and	the	number	fraction	of	molecules	allocated	to	each	homogeneous	
state.	
	
When	a	fixed	amount	of	a	substance	is	isolated	with	a	fixed	energy	and	a	fixed	volume,	the	
substance	in	general	is	a	mixture,	corresponding	to	a	point	on	a	vertical	line.	Such	a	mixture	in	
general	is		not		in	a	thermodynamic	state.	The	isolated	system	reaches	equilibrium—that	is,	
reach	a	thermodynamic	state—at	the	point	where	the	vertical	line	intersects	the	derived	surface.		

Equilibrium	of	a	single	homogeneous	state	
If	a	plane	tangent	to	one	point	on	a	primitive	surface	does	not	cut	any	primitive	surfaces,	this	
point	of	the	primitive	surface	belongs	to	the	derived	surface.	The	poi	nt	corresponds	to	a	single	
homogenous	state	in	equilibrium.	Gibbs	called	the	set	of	all	such	points	the		surface	of	absolute	
stability	.	The	tangent	plane	can	roll	on	the	primitive	surface	to	change	the	two	slopes	of	the	
tangent	plane	independently.	The	slopes	of	the	tangent	plane	determines	the	temperature	and	
pressure	of	the	state.	Thus,	the	surface	of	absolute	stability	has	two	degrees	of	freedom.	

Equilibrium	of	two	homogeneous	states		
If	a	plane	tangent	to	two	points	on	the	primitive	surfaces	does	not	cut	any	primitive	surfaces,	the	
straight-line	segment	connecting	the	two	points	belongs	to	the	derived	surface.	The	straight-line	
segment	is	called	a	tie	line.	The	common	tangent	plane	can	roll	on	the	two	primitive	surfaces	to	
change	its	slope	by	a	single	degree	of	freedom.	As	the	common	tangent	plane	rolls,	the	tie	lines	
form	a	developable	surface,	and	the	two	tangent	points	trace	out	two	curves	on	the	primitive	
surfaces.	Gibbs	called	the	two	curves	the		limits	of	absolute	stability	.	

Equilibrium	of	three	homogeneous	states		
If	a	plane	tangent	to	three	points	on	the	primitive	surfaces	and	does	not	cut	any	primitive	
surfaces,	the	triangle	connecting	these	three	points	belongs	to	the	derived	surface.	The	tangent	
plane	has	no	degree	of	freedom	to	roll,	and	is	fixed	in	the	energy-volume-entropy	space.		

	



	

Critical	point		
Gibbs	(1873)	introduced	the	theory	of	critical	point.	He	cited	a	paper	by	Andrews	(1869),	which	
reported	the	experimental	observation	of	a	substance	changing	continuously	from	a	liquid	to	a	
gas.	Gibbs	then	wrote,	“...the	derived	surface	which	represents	a	compound	of	liquid	and	vapor	
is	terminated	as	follows:	as	the	tangent	plane	rolls	upon	the	primitive	surface,	the	two	points	of	
contact	approach	one	another	and	finally	fall	together.	The	rolling	of	the	double	tangent	plane	
necessarily	come	to	an	end.	the	point	where	the	two	points	of	contact	fall	together	is	the	critical	
point.”	
	
In	summary,	Gibbs	modeled	a	pure	substance	with	two	primitive	surfaces:	a	convex	surface	for	
the	solid	phase,	and	a	nonconvex	surface	for	the	liquid	and	gas	phases.	You	can	watch	a		video	
on	the	Gibbs	surface	.	

Metastability		
A	primitive	surface	may	contain	a	convex	part	and	a	non-convex	part.	The	curve	separating	the	
two	parts	is	called	the	limit	of	metastability.	If	a	convex	part	of	the	primitive	surface	lies	below	a	
tangent	plane	of	the	derived	surface,	the	part	of	the	primitive	surface	is	beyond	the	limit	of	
absolute	stability.	Each	point	of	this	part	of	the	primitive	surface	is	called	a	metastable	state.	
Gibbs	noted	that	such	a	state	is	stable	in	regard	to	continuous	changes	of	state,	but	is	unstable	
in	regard	to	discontinuous	changes	of	state.		

Energy-volume	plane		
Gibbs	projected	the	derived	surface	onto	the	volume-entropy	plane.	He	drew	the	triangle	for	the	
states	of	coexistence	three	phases,	limits	of	absolute	stability,	limits	of	metastability,	and	critical	
point.	He	did	not,	however,	draw	the	primitive	surfaces	and	the	derived	surface	in	the	
energy-volume-entropy	space.		
	
Maxwell	drew	the	surface	in	the	energy-volume-entropy	space	in	a	later	edition	of	his	textbook,	
Theory	of	Heat	.		
	
Planck	projected	the	derived	surface	on	the	energy-volume	plane	(Figure	4)	in	his	textbook,	
Treatise	on	Thermodynamics	.	Planck	made	a	mistake	of	adding	a	critical	point	for	the	
solid-liquid	transition.	Such	a	critical	point	does	not	exist.		
	
Here	I	sketch	the	projection	of	the	derived	surface	to	the	energy-volume	plane.	Both	energy	and	
volume	are	extensive	quantities,	so	that	each	thermodynamic	state	corresponds	to	a	distinct	
point	in	the	energy-volume	plane.	

	

https://www.youtube.com/watch?v=Pgxno-9hY1U
https://www.youtube.com/watch?v=Pgxno-9hY1U


	

	
Exercise	.	Find	the	data	for	to	draw	the	water-steam	dome	on	the	energy-volume	plane.	Include	
the	equilibrium	ice-water-steam	triangle,	the	critical	point,	and	several	tie	lines.	 	

Temperature	and	pressure		
In	the	above,	we	have	developed	the	entire	theory	using	only	three	functions	of	state:	energy,	
volume,	and	entropy.	Each	is	an	extensive	quantity,	and	obeys	the	rule	of	mixture.	We	next	
discuss	the	roles	of	the	other	two	functions	of	state:	temperature	and	pressure.	They	are	
intensive	quantities,	and	obey	different	mathematical	rules.	
	
Write	the	derived	surface	as	a	function	s(u,v).	Recall	the	meanings	for	the	slopes	of	the	surface	
s(u,v):	
	
1/T	=	∂s(u,v)/∂u,	
P/T	=	∂s(u,v)/∂v.	
	
When	the	substance	equilibrates	in	a	mixture	of	two	homogeneous	states,	a	tangent	plane	
contacts	the	primitive	surfaces	at	two	points,	(u	A	,v	A	,s	A	)	and	(u	B	,v	B	,s	B	).	The	tangent	plane	has	the	
same	slopes	at	the	two	points,	so	that	the	two	homogeneous	states	have	the	same	temperature	
and	pressure:	
	
1/T	=	∂s	A	(u	A	,v	A	)/∂u	A		=	∂s	B	(u	B	,v	B	)/∂u	B	,	
P/T	=	∂s	A	(u	A	,v	A	)/∂v	A		=	∂s	B	(u	B	,v	B	)/∂v	B	.	
	
The	tangent	plane	cuts	the	vertical	axis	of	entropy	at	some	point.	The	intercept	can	be	
calculated	using	the	quantities	at	either	the	state	(u	A	,v	A	,s	A	)	or	the	state	(u	B	,v	B	,s	B	),	so	that	
	
s	A		-	(1/T)u	A		-	(P/T)v	A		=	s	B		-	(1/T)u	B		-	(P/T)v	B	.	
	
The	above	equations	transcribe	the	geometrical	expressions	of	the	condition	of	equilibrium	into	
analytical	expressions.		
	

	



	

Exercise	.	We	have	described	the	conditions	of	the	equilibrium	of	three	homogeneous	states	in	
geometric	terms.	Transcribe	these	conditions	in	analytic	expressions.	

Alternative	independent	variables	

Entropy	S(U,V)	
We	have	so	far	used	energy	U	and	volume	V	as	independent	variables	to	specify	
thermodynamic	states	of	a	closed	system.	With	this	choice,	the	thermodynamics	of	a	closed	
system	is	characterized	by	the	function	S(U,V).		
	
The	other	two	functions	of	state—temperature	T(U,V)	and	pressure	P(U,V)—are	determined	
from	the	slopes:	
	
1/T	=	∂S(U,V)/∂U,	
P/T	=	∂S(U,V)/∂V.	
	
Thus,	once	the	function	S(U,V)	is	determined	by	experimental	measurement,	the	function	
T(U,V)	is	determined	by	calculation.	The	other	way	around	is	untrue.	Once	we	measure	the	
function	T(U,V),	the	function	T(U,V)	does	not	let	us	calculate	S(U,V).	The	function	S(U,V)	lets	us	
calculate	all	functions	defined	by	it,	including	temperature,	pressure,	thermal	capacity,	latent	
energy,	enthalpy,	compressibility,	and	many	more.	This	is	an	enormous	reduction	of	
experimental	work.	This	fact	reveals	the	long	arm	of	entropy.	
	
We	next	consider	other	choices	of	independent	variables.	The	mathematics	of	change	of	
variables	may	bring	convenience,	but	adds	no	new	physics.	

Energy	U(S,V)	
Recall	that	S(U,V)	is	an	increasing	function	with	respect	to	U.	We	can	thus	invert	this	function	to	
obtain	the	function	U(S,V).	This	inversion	is	purely	mathematical,	and	adds	or	loses	no	
information.	Both	functions	S(U,V)	and	U(S,V)	characterize	the	same	closed	system,	and	
correspond	to	the	same	surface	in	the	energy-volume-entropy	space.	
	
Rearrange	the	equation	dS	=	(1/T)dU	+	(P/T)dV	as	
	
dU	=	TdS	-	PdV.	
	
This	equation	interprets	the	partial	derivatives	of	the	function	U(S,V):	
	
T	=	∂U(S,V)/∂S,			-P	=	∂U(S,V)/∂V.	

	



	

	
One	partial	derivative	reproduces	the	definition	of	temperature,	and	the	other	partial	derivative	
comes	from	the	mechanics	of	adiabatic	process.	This	choice	of	independent	variables,	S	and	V,	
places	the	temperature	and	pressure	in	the	symmetric	roles	of	the	two	slopes	of	the	surface	
U(S,V).	The	choice	comes	from	Gibbs	(1873)	and	has	been	adopted	in	many	textbooks.	This	
choice	of	independent	variables	is	convenient	to	discuss	an	isentropic	process,	but	entropy	is	
rarely	used	as	an	independent	variable	in	experiments.	We	will	not	consider	this	choice	any	
further.	

Helmholtz	function	F(T,V)	
Many	experiments	choose	temperature	and	volume	as	independent	variables.	As	noted	before,	
we	can	set	the	temperature	of	a	system	as	an	independent	variable	by	bringing	the	closed	
system	in	thermal	contact	with	a	thermal	reservoir.		
	
Define	the	Helmholtz	function	by		
	
F	=	U	-	TS.	
	
Note	that		
	
dF	=	dU	-	TdS	-	SdT.	
	
This	equation,	together	with	the	equation	dS	=	(1/T)dU	+	(P/T)dV,	gives	
	
dF	=	-SdT	-	PdV.	
	
This	equation	suggests	that	the	Helmholtz	function	of	the	closed	system	should	be	a	function	of	
temperature	and	volume,	F(T,V),	with	partial	derivatives	
	
-S	=	∂F(T,V)/∂T,			-P	=	∂F(T,V)/∂V.	
	
Thus,	once	the	function	F(T,V)	is	known,	the	above	equations	determine	the	two	function	of	
states	S(T,V)	and	P(T,V).	
	
Maxwell	relation	.	For	a	function	of	two	independent	variables,	F(T,V),	recall	an	identity	in	
calculus:	
	
∂(∂F(T,V)/∂T)/∂V	=	∂(∂F(T,V)/∂V)/∂T.	
	
We	obtain	that	
	
∂S(T,V)/∂V	=	∂P(T,V)/∂T.	

	



	

	
This	equation	is	called	a	Maxwell	relation.	
	
Thermal	capacity	C	V	(T,V)	.	When	the	volume	of	a	closed	system	is	fixed,	the	closed	system	
becomes	a	thermal	system.	Recall	the	definition	of	the	thermal	capacity:		
	
C	V		=	∂U(T,V)/∂T.	
	
The	subscript	V	indicates	that	the	volume	is	fixed.	
	
Function	S(T,V)	.	We	have	just	regard	the	entropy	as	a	function	of	temperature	and	volume,	
S(T,V).	Recall	a	fact	in	calculus:	
	
dS	=	(∂S(T,V)/∂T)dT	+	(∂S(T,V)/∂V)dV	
	
Recall	the	definition	of	temperature:	dS	=	T	-1	dU	at	constant	volume.	Thus,	∂S(T,V)/∂T	=	
T	-1	∂U(T,V)/∂T	=	C	V	(T,V)/T.	This	relation,	along	with	the	Maxwell	relation	∂S(T,V)/∂V	=	∂P(T,V)/∂T,	
gives	that	
	
dS	=	(C	V	(T,V)/T)dT	+	(∂P(T,V)/∂T)dV.	
	
This	relation	indicates	that	we	can	determine	the	function	S(T,V)	by	measuring	the	two	functions	
U(T,V)	and	P(T,V).	
	
Function	U(T,V).		The	above	equation,	along	with	the	equation	dS	=	(1/T)dU	+	(P/T)dV,	gives	
that	
	
dU	=	C	V	(T,V)dT	+	(T∂P(T,V)/∂T	-	P)dV.	
	
This	equation	suggests	an	identity:	
	
∂U(T,V)/∂V	=	T∂P(T,V)/∂T	-	P.	

Enthalpy	H(S,P)	
Once	again	consider	a	half	cylinder	of	water.	A	weight	is	placed	on	top	of	the	piston,	and	the	
water	is	in	thermal	contact	with	a	fire.	
	
Constant-pressure	process	.	Let	P	be	the	pressure	inside	the	cylinder,	and	A	be	the	area	of	
the	piston.	The	piston	moves	without	friction.	The	pressure	in	the	cylinder	pushes	the	piston	up.	
The	balance	of	forces	requires	that	the	weight	above	the	piston	should	be	PA.	When	the	weight	
is	constant,	the	pressure	inside	the	cylinder	is	also	constant.		
	

	



	

When	the	weight	is	at	a	height	z,	the	volume	of	the	cylinder	is	V	=	Az,	and	the	potential	energy	
of	the	weight	is	PAz	=	PV.	The	water	and	the	weight	together	constitute	a	thermal	system.	The	
energy	of	the	composite	is	the	sum	of	the	internal	energy	of	the	water	molecules	in	the	cylinder,	
U,	and	the	potential	energy	of	the	weight,	PV:	
	
H	=	U	+	PV.	
	
The	quantity	H	is	called	the		enthalpy		of	the	water	molecules	in	the	cylinder.		
	
Thus,	the	same	experimental	setup	can	be	viewed	as	a	closed	system	or	a	thermal	system.	
Enthalpy	is	used	to	measure	energy	transfer	by	heat	to	a	closed	system	in	a	constant-pressure	
process.	
	
Function	H(S,P)	.	Now	let	the	pressure	P	be	an	independent	variable.	Recall	the	product	rule	in	
calculus,	and	we	obtain	that	
	
dH	=	dU	+	PdV	+	VdP.	
	
Combining	with	dS	=	(1/T)dU	+	(P/T)dV,	we	obtain	that	
	
dH	=	TdS	+	VdP.	
	
We	regard	the	enthalpy	as	a	function	of	entropy	and	pressure,	H(S,P).	The	above	equation	
interprets	the	partial	derivatives:	
	
T	=	∂H(S,P)/∂S,			V	=	∂H(S,P)/∂P.	
	
Entropy	is	rarely	used	as	an	independent	variable	in	practice,	so	the	function	H(S,P)	is	seldom	
useful.	

Gibbs	function	G(T,P)	
Gibbs	function	of	a	closed	system	.	The	half	cylinder	of	water	and	the	weight	above	the	piston	
together	constitute	a	thermal	system	of	energy	U	+	PV.	The	Helmholtz	function	of	this	thermal	
system	is		
	
G	=	U	+	PV	-	TS.	
	
This	quantity	is	called	the	Gibbs	function.	The	energy	U	has	an	arbitrary	additive	constant,	
which	also	appears	in	G.	The	Gibbs	function	is	an	extensive	quantity,	and	is	a	function	of	state.	
	
Partial	derivatives	of	the	Gibbs	function	.	Note	that		
	

	



	

dG	=	dU	+	PdV	+	VdP	-	TdS	-	SdT.	
	
Combining	with	dS	=	(1/T)dU	+	(P/T)dV,	we	obtain	that	
	
dG	=	-	SdT	+	VdP.	
	
We	regard	the	Gibbs	function	as	a	function	of	pressure	and	temperature,	G(T,P).	The	above	
equation	interprets	the	partial	derivatives:	
	
-S	=	∂G(T,P)/∂T,	V	=	∂G(T,P)/∂P.	
	
These	equations	suggest	a	Maxwell	relation:	
	
-∂S(T,P)/∂P	=	∂V(T,P)/∂T.	
	
Thermal	capacity	C	P	(T,P)	.	When	the	pressure	of	a	closed	system	is	fixed	by	a	weight,	the	
composite	of	the	closed	system	and	the	weight	becomes	a	thermal	system.	Define	the	enthalpy	
H	=	U	+	PV.	Recall	the	definition	of	the	thermal	capacity:		
	
C	P		=	∂H(T,P)/∂T.	
	
The	subscript	P	indicates	that	the	pressure	is	fixed.	
	
Function	S(T,P)	.	We	have	just	regard	the	entropy	as	a	function	of	temperature	and	pressure,	
S(T,P).	Recall	a	fact	in	calculus:	
	
dS	=	(∂S(T,P)/∂T)dT	+	(∂S(T,P)/∂P)dP	
	
Recall	the	definition	of	temperature:	dS	=	T	-1	dH	at	constant	pressure.	Thus,	∂S(T,P)/∂T	=	
T	-1	∂H(T,P)/∂T	=	C	P	(T,P)/T.	This	relation,	along	with	the	Maxwell	relation	∂S(T,P)/∂P	=	-	
∂V(T,P)/∂T,	gives	that	
	
dS	=	(C	P	(T,P)/T)dT	-	(∂V(T,P)/∂T)dP.	
	
This	relation	indicates	that	we	can	determine	the	function	S(T,P)	by	measuring	the	two	functions	
H(T,P)	and	V(T,P).	
	
Function	H(T,P).		The	above	equation,	along	with	the	equations	H	=	U	+	PV	and	dS	=	(1/T)dU	+	
(P/T)dV,	gives	that	
	
dH	=	C	P	(T,P)dT	+	(V	-	T∂V(T,P)/∂T)dP.	
	
This	equation	suggests	an	identity:	

	



	

	
∂H(T,P)/∂P	=	V	-	T∂V(T,P)/∂T.	

Constant-pressure	and	constant-temperature	process		
Consider	a	closed	system	with	an	internal	variable	x.	For	example,	the	closed	system	can	be	a	
half	cylinder	of	water	sealed	by	a	frictionless	piston,	and	the	internal	variable	can	be	the	number	
of	water	molecules	in	the	vapor	inside	the	cylinder.		
	
The	water	molecules	are	in	mechanical	equilibrium	with	the	weight	above	the	piston.		The	
weight	is	constant,	and	is	related	to	the	pressure	inside	the	cylinder	as	PA.	The	water	molecules	
are	in	thermal	equilibrium	with	a	thermal	reservoir	of	constant	temperature	T.	We	identify	the	
composite	of	the	water	molecules,	the	weight,	and	the	thermal	reservoir	as	an	isolated	system	
with		three	internal	variables:	the	internal	energy	of	the	water	molecules	U,	the	volume	enclosed	
by	the	cylinder	V,	and	x.		
	
The	energy	of	the	isolated	system	is	
	
U	composite		=	U	+	PV	+	U	R	.	
	
Here	U	is	the	internal	energy	of	the	water	molecules,	PV	is	the	potential	energy	of	the	weight,	
and	U	R		is	the	internal	energy	of	the	thermal	reservoir.	The	isolated	system	conserves	energy,	so	
that	U	composite		=	constant.	
	
The	water	molecules	constitute	a	closed	system,	characterized	by	a	function	S(U,V,x).	The	
entropy	of	the	weight	S	weight		is	constant	The	thermal	reservoir	reservoir	is	a	thermal	system	of	
constant	temperature	T,	characterized	by	a	function	S	R	(U	R	),	so	that	S	R	(U	R	)	=	S	R	(U	composite	)	+	(U	R		-	
U	composite	)/T.	The	entropy	of	the	composite	is	
	
S	composite		=	S(U,V,x)	+	S	weight		+	S	R	(U	composite	)	-	(U	+PV)/T.	
	
The	isolated	system	is	in	thermal	and	mechanical	equilibrium,	so	that	
	
∂S	composite	/∂U	=	0	and	∂S	composite	/∂V	=	0.	
	
When	pressure	P	and	temperature	T	are	constant,	the	two	conditions	recover	the	familiar	
conditions:	
	
1/T	=	∂S(U,V,	x)/∂U	and	P/T	=	∂S(U,V,	x)/∂V.	
	
Given	the	function	S(U,V,	x),	these	two	equations	solve	the	function	U(T,P,x)	and	V(T,P,x).	We	
can	also	write	the	entropy	as	a	function	S(T,P,x).	
	

	



	

Thus,	x	is	the	only	remaining	internal	variable.	The	basic	algorithm	requires	x	to	change	to	
increase	S	composite	,	or	equivalently,	to	increase	the	function	
	
Y	=	S	-	(U	+PV)/T.	
		
In	maximizing	this	function	Y(T,P,x),	T	and	P	are	fixed	by	the	thermal	reservoir	and	the	weight,	
and	only	x	is	variable.	Aside	from	additive	constants,	this	the	function	Y(T,P,x)	is	the	subset	
entropy	of	an	isolated	system:	the	composite	of	a	closed	system,	a	weight	that	fixes	the	
pressure	P,	and	a	thermal	reservoir	that	fixes	the	temperature	T.	
	
Both	the	function	J	=	S	-	U/T	and	the	function	Y	=	S	-	(U	+PV)/T	were	introduced	by	Massieu	
(1869),	and	the	function	Y	was	extensively	used	later	by	Planck.	We	will	call	J	the	Massieu	
function,	and	Y	the	Planck	function.	

Algorithm	of	thermodynamics	for	constant-pressure	and	
constant-temperature	process	
We	now	paraphrase	the	basic	algorithm	of	thermodynamics	for	a	constant-pressure	and	
constant-temperature	process.	
	

1. Construct	a	closed	system	with	an	internal	variable	x.		
2. Identify	the	function	Y(T,P,x).	
3. Equilibrium	.	Find	the	value	of	the	internal	variable	x	that	maximizes	the	function	Y(T,P,x).	
4. Irreversibility	.	Change	the	value	of	the	internal	variable	x	in	a	sequence	that	increases	

the	function	Y(T,P,x).	
	
Maximizing	the	Massieu	function	is	equivalent	to	minimizing	
	
U	+	PV	-	ST.	
	
This	is	the	Gibbs	function	G(T,P,x).	In	this	minimization,	T	and	P	are	constant,	and	x	is	variable.	
The	above	algorithm	can	be	paraphrased	in	terms	of	minimizing	G(T,P,x).		

Equilibrium	of	two	homogeneous	states	by	equating	the	Gibbs	
function	
Two	homogeneous	states	in	equilibrium	have	equal	values	of	temperature	T	and	pressure	P,	but	
have	different	values	of	energy,	volume,	and	entropy	per	molecule.	
	
The	phase	boundary	between	two	phases	of	a	pure	substance	has	a	single	degree	of	freedom.	
We	can	regard	T	as	the	independent	variable.	Along	the	phase	boundary,	P,	s	A	,	s	B	,	u	A	,	u	B	,	v	A	,	
and	v	B		are	functions	of	T.		

	



	

	
Let	the	Gibbs	function	per	molecule	in	homogeneous	state	A	be	
	
g	A	(T,P)	=	u	A		+	Pv	A		-	Ts	A	.	
	
Let	the	Gibbs	function	per	molecule	in	homogeneous	state	B	be	
	
g	B	(T,P)	=	u	B		+	Pv	B		-	Ts	B	.	
	
The	Gibbs	function	per	molecule	of	a	mixture	of	the	two	homogeneous	states	is	
	
g	=	y	A	g	A	(T,P)	+	y	B	g	B	(T,P).	
	
The	change	of	phase	is	modeled	as	a	process	of	constant	temperature	and	constant	pressure.	
Recall	that	y	A		+	y	B		=	1.	The	fraction	of	molecules	in	one	homogenous	state,	y	A	,	is	the	
independent	internal	variable,	which	is	varied	to	minimize	the	Gibbs	function	of	the	mixture.	The	
condition	of	equilibrium	is	
	
g	A	(T,P)	=	g	B	(T,P)	
	
This	equation	is	the	same	as	
	
u	A		+	Pv	A		-	Ts	A		=	u	B		+	Pv	B		-	Ts	B	.	
	
This	condition	reproduces	what	we	have	obtained	by	maximizing	entropy.		

Clapeyron	equation	
Recall	the	identities:		
	
dg	A		=	-s	A	dT	+	v	A	dP,	
dg	B		=	-s	B	dT	+	v	B	dP.	
	
Along	the	phase	boundary,	the	two	phases	have	the	equal	value	of	the	Gibbs	function,	so	that	
dg	A		=	dg	B	.	Thus,	
	
-s	A	dT	+	v	A	dP	=	-s	B	dT	+	v	B	dP.	
	
Rearranging,	we	obtain	that	
	
dP/dT	=	(s	B		-	s	A	)/(v	B		-	v	A	).	
	
This	result	is	called	the		Clapeyron	equation	.		

	



	

	
Liquid-solid	phase	boundary	.	The	right	side	of	the	equation	is	approximately	independent	of	
temperature.	Thus,	the	liquid-solid	phase	boundary	is	approximately	a	straight	line,	with	the	
slope	given	by	the	right	side	of	the	Clapyron	equation.	For	water	molecules,	the	specific	volume	
is	smaller	in	liquid	water	than	in	ice,	
	
v	l		-	v	s		=	-	0.09	m	

3	/kg.	
	
The	specific	entropy	is	larger	in	liquid	water	than	in	ice:	
	
s	l		-	s	s		=	0.09	kJ/K/kg.	
	
Inserting	these	values	into	the	Clapyron	equation,	we	obtain	the	slope	for	the	ice-water	phase	
boundary:	
	
dP/dT	=	13	MPa/K.	
	
Liquid-gas	and	solid-gas	phase	boundaries	.		

Regelation	

Van	der	Waals	model	of	liquid-gas	phase	transition	
The	ideal	gas	model	represents	real	gases	well	at	high	temperatures	and	low	pressures,	when	
individual	molecules	are	far	apart	on	average.	However,	at	low	temperatures	and	high	
pressures,	when	the	molecules	are	near	condensation,	the	ideal	gas	model	greatly	deviates	
from	the	behavior	of	real	gases.	
	
We	now	describe	an	equation	of	state	due	to	van	der	Waals	(1873):		
	
(P	+	aN	2	/V	2	)(V	-	Nb)	=	NkT,	
	
where	a	and	b	are	constants	for	a	given	substance.	When	a	=	0	and	b	=	0,	the	van	der	Waals	
equation	reduces	to	the	equation	of	ideal	gases.	We	next	examine	the	physical	significance	of	
the	two	modifications.	

	



	

	

(Figure	taken	from	the	Wikipedia	page	on		van	der	Waals	equation	)	

Isotherms	
Write	the	van	der	Waals	equation	as	
	
P	=	NkT/(V	-	Nb)	-	aN	2	/V	2	.	
	
For	a	fixed	number	of	molecules	N	and	a	constant	temperature	T,	this	equation	corresponds	to	a	
curve	on	the	pressure-volume	plane.	The	curve	is	called	an		isotherm	.	An	isotherm	at	a	high	
temperature	is	a	monotonic	cure.	An	isothermal	at	a	low	temperature	has	a	minimum	and	a	
maximum.	

Critical	point	
The	critical	point	takes	place	on	the	isotherm	where	the	minimum	and	the	maximum	collide,	so	
that	
	
∂P(T,V)/∂V	=	0,	∂	2	P(T,V)/∂V	2		=	0.	
	
Thus,	the	critical	point	satisfy	three	equations:		
	
P	=	NkT/(V	-	Nb)	-	aN	2	/V	2	,	
-	NkT/(V	-	Nb)	2		+	2aN	2	/V	3		=	0,	
2NkT/(V	-	Nb)	3		-	6aN	2	/V	4		=	0.	
	
Solving	these	three	equations,	we	obtain	that	

	

https://en.wikipedia.org/wiki/Van_der_Waals_equation


	

	
V	c		=	3Nb,	kT	c		=	8a/(27b),	P	c		=	a/(27b	

2	).	
	
These	equations	express	the	critical	volume,	temperature,	and	pressure	in	terms	of	the	
constants	a	and	b.	

Energy	
Recall	an	identity	for	a	closed	system:	∂U(T,V)/∂V	=	T∂P(T,V)/∂T	-	P.	We	obtain	that	
	
∂U(T,V)/∂V	=	aN	2	/V	2	.	
	
Integrating,	we	obtain	that		
	
U(T,V)	=	-	aN	2	/V	+	Nu(T).	
	
Here	u(T)	is	the	same	as	the	thermal	energy	per	molecule	for	an	ideal	gas.		The	term	aN	2	/V	
represents	the	effect	of	cohesion	between	the	molecules.	The	van	der	Waals	model	assumes	
that	the	cohesion	reduces	the	thermal	energy	by	an	amount	proportional	to	the	number	density	
of	the	molecules.	This	seems	to	be	a	reasonable	first-order	approximation.		
	
In	the	van	der	Waals	model,	the	thermal	capacity	is	independent	of	volume:	
	
C	V		=	∂U(T,V)/∂T	=	Ndu(T)dT	=	Nc	V	(T),	
	
where	c	V	(T)	is	the	same	as	the	thermal	capacity	per	molecule	in	an	ideal	gas.	

Entropy	
Recall	another	identity	for	a	closed	system:	dS	=	(C	V	(T,V)/T)dT	+	(∂P(T,V)/∂T)dV.	For	the	van	
der	Waals	model,	this	equation	reduces	to	
	
dS	=	(Nc	V	(T)/T)dT	+	(kN/(V-Nb))dV.	
	
The	term	Nb	represents	the	effect	of	finite	volume	of	the	molecules.	At	a	fixed	temperature,	the	
number	of	quantum	states	is	proportional	to	(V	-	Nb)	N	.	
	
In	the	above,	we	have	started	from	the	van	der	Waals	equation,	and	examined	its	
consequences	for	energy	and	entropy.	Since	the	physical	interpretation	of	the	two	terms	aN	2	/V	
and	Nb	are	quite	reasonable,	we	may	as	well	use	them	as	a	starting	point	to	derive	the	van	der	
Waals	equation.	

	



	

Entropy-energy	competition		
A	fixed	number	of	molecules	forms	a	closed	system,	which	we	characterize	using	the	Helmholtz	
function	F(T,V).	Recall	that		
	
dF	=	-SdT	-	PdV.		
	
At	a	fixed	temperature,	the	Helmholtz	function	is	a	function	of	volume,	F(V).	Plot	the	function	
F(V)	as	a	curve	in	the	plane	with	V	as	the	horizontal	axis	and	F	as	the	vertical	axis.	When	the	
volume	change	by	dV,	the	Helmholtz	function	changes	by	
	
dF	=	-	PdV.	
	
Thus,	-P	is	the	slope	of	the	curve	F(V).	Because	P	is	positive,	F	decreases	as	V	increases.	 	
	
When	the	pressure	decreases	as	the	volume	increases,	the	curve	F(V)	is	convex	downward.	
When	the	pressure	increases	as	the	volume	increases,	the	curve	F(V)	is	convex	upward.	That	
is,	a	nonmonotonic	P(V)	curve	corresponds	to	a	nonconvex	F(V)	curve	
	
How	does	the	van	der	Waals	model	produce	a	nonconvex	Helmholtz	function?	Recall	the	
definition	of	the	Helmholtz	function,	F	=	U	-	TS.	For	the	van	der	Waals	model,	the	Helmholtz	
function	takes	the	form	
	
F(V)	=	-	aN	2	/V	-	NkT	log(V	-	Nb).	
	
Here	we	have	dropped	additive	terms	which	are	purely	functions	of	T.		
	
Entropy	and	energy	compete	to	bend	the	curve	F(V).	The	second	term	comes	from	the	entropy	
of	the	molecules,	and	is	convex	downward,	which	stabilizes	a	homogeneous	state.	The	first	
term	comes	from	the	cohesion	of	the	molecules,	and	is	convex	upward,	which	destabilizes	a	
homogeneous	state.	The	entropy	tends	to	disperse	molecules,	but	the	energy	tends	to	attract	
molecules	together.		
	
At	a	high	temperature,	the	entropy	prevails	for	all	values	of	volume,	so	that	the	entire	curve	F(V)	
is	convex	downward,	and	the	entire	curve	P(V)	is	monotonic.		
	
At	a	low	temperature,	the	entropy	prevails	for	small	and	large	values	of	volume,	so	that	only	
these	parts	of	the	curve	F(V)	is	convex	downward,	and	only	these	parts	of	the	curve	P(V)	is	
monotonic.	

	



	

Maxwell	rule	
A	convex-upward	part	of	the	F(V)	curve	corresponds	to	a	phase	transition.	Draw	a	line	tangent	
to	the	F(V)	curve	at	two	points	A	and	B.	The	two	points	correspond	to	two	homogeneous	states	
in	equilibrium	at	the	same	pressure,	P	satu	.	This	pressure	corresponds	to	the	slope	of	the	tangent	
line:	
	
F	A		-	F	B		=	P	satu	(V	B		-	V	A	).	
	
This	equation	can	be	interpreted	on	the	pressure-volume	plane:	F	A		-	F	B		is	the	area	under	the	
curve	P(V)	between	states	A	and	B,	and	P	satu	(V	B		-	V	A	)	is	the	area	of	a	rectangle.	The	equality	of	
the	two	areas	requires	that	P	satu		be	placed	at	the	level	that	equate	the	two	shaded	areas.	This	
construction	is	called	the		Maxwell	rule	.	
	
Of	the	total	of	N	molecules,	N	A		molecules	are	in	homogeneous	state	A,	and	N	B		molecules	are	in	
homogeneous	state	B.	The	mixture	of	the	two	homogeneous	states	correspond	to	a	point	on	the	
tangent	line,	located	at	the	center	of	gravity	according	to	N	A		and	N	B	.	

	

	



	

Open	system	
Now	enters	another	supporting	role—the	number	of	a	species	of	molecules.	In	thermodynamics,	
the	number	of	a	species	of	molecules,	energy,	and	volume	play	analogous	supporting	roles.	

A	family	of	isolated	systems	of	many	independent	variations		
An	open	system	and	its	surroundings	transfer	energy,	volume,	and	molecules.		The	molecules	
can	be	of	many	species.	To	illustrate	basic	ideas,	consider	that	only	two	species	of	molecules,	1	
and	2,	transfer	between	the	open	system	and	its	surroundings.	All	other	species	of	molecules	
are	blocked.		
	
Let	the	energy	be	U,	volume	be	V,	the	number	of	molecular	species	1	be	N	1	,	and	the	number	of	
molecular	species	2	be	N	2	.	When	U,	V,	N	1	,	N	2		are	fixed,	the	open	system	becomes	an	isolated	
system.	Denote	the	number	of	quantum	states	of	this	isolated	system	by	Ω(U,V,	N	1	,	N	2	).	As	U,	
V,	N	1	,	N	2		vary,	the	function	Ω(U,V,N	1	,N	2	),	or	its	equivalent,	S(U,V,N	1	,N	2	)	=	log	Ω(U,V,N	1	,N	2	),	
characterizes	the	open	system	as	a	family	of	isolated	systems.	The	family	of	isolated	systems	
has	four	independent	variations,	U,	V,	N	1	,	N	2	.	

Definition	of	chemical	potentials	
For	the	function	of	four	variables,	S(U,V,N	1	,N	2	),	recall	a	fact	of	calculus:	
	
dS=	(∂S(U,V,N	1	,N	2	)/∂U)dU	+	(∂S(U,V,N	1	,N	2	)/∂V)dV	+	(∂S(U,V,N	1	,N	2	)/∂N	1	)dN	1		+	
(∂S(U,V,N	1	,N	2	)/∂N	2	)dN	2	.	
	
When	we	block	the	transfer	of	the	molecules	between	the	open	system	and	its	surroundings,	
but	allow	the	transfer	of	energy	and	volume,	the	open	system	becomes	a	closed	system.	We	
have	already	related	two	partial	derivatives	to	experimentally	measurable	quantities:	
	
1/T	=	∂S(U,V,N	1	,N	2	)/∂U,		P/T	=	∂S(U,V,N	1	,N	2	)/∂V.	
	
The	other	two	partial	derivatives	are	used	to	define	the		chemical	potentials	:	
		
-	µ	1	/T	=	∂S(U,V,N	1	,N	2	)/∂N	1	,	
-	µ	2	/T	=	∂S(U,V,N	1	,N	2	)/∂N	2	.	
	
The	ratio	µ	1	/T	is	the	child	of	the	union	of	the	entropy	and	the	number	of	molecular	species	1,	
and	the	ratio	µ	2	/T	is	the	child	of	the	union	of	the	entropy	and	the	number	of	molecular	species	2,	
just	as	the	temperature	is	the	child	of	the	union	of	entropy	and	energy,	and	as	the	ratio	P/T	is	

	



	

the	child	of	the	union	of	entropy	and	volume.	The	chemical	potentials	are	intensive	functions	of	
state.	
	
Write	
	
dS	=	(1/T)dU	+	(P/T)dV	-	(µ	1	/T)dN	1		-	(µ	2	/T)dN	2	.	
	
Flexibility	in	defining	chemical	potentials	.	We	have	already	mentioned	the	flexibility	in	
defining	temperature:	any	monotonically	decreasing	function	of	the	derivative	∂S(U,V,N	1	,N	2	)/∂U	
can	be	used	to	define	temperature.	This	enormous	flexibility	comes	about	because	temperature	
has	no	definition	outside	thermodynamics.	The	choice	adopted	here,	1/T	=	∂S(U,V,N	1	,N	2	)/∂U,	is	
a	historical	accident.	
	
We	do	not	have	any	flexibility	in	defining	pressure;	we	insist	that	the	definition	of	pressure	
should	recover	that	in	mechanics,	force/area.	We	have	shown	that	P/T	=	∂S(U,V,N	1	,N	2	)/∂V.	
	
In	defining	chemical	potentials,	once	again	we	have	enormous	flexibility,	because	chemical	
potentials	have	no	definition	outside	thermodynamics.		
	
What	really	matters	is	that	the	derivatives	∂S(U,V,N	1	,N	2	)/∂U,	∂S(U,V,N	1	,N	2	)/∂V,	
∂S(U,V,N	1	,N	2	)/∂N	1	,	and	∂S(U,V,N	1	,N	2	)/∂N	2		play	analogous	roles.	All	these	partial	derivatives	are	
equally	significant	because	thermodynamics	is	a	play	of	maximization.	Even	if	we	choose	not	to	
call	these	derivatives	by	any	name,	we	will	still	be	doing	the	same	experiment	and	the	same	
calculation.	
	
The	particular	definition	of	chemical	potentials	adopted	here	comes	from	Gibbs	(1875),	and	is	
just	a	name	given	to	a	partial	derivative.	We	do	not	need	any	reason	to	give	a	particular	name	to	
a	child.	For	this	definition	of	chemical	potential,	we	will	find	a	reason	for	the	presence	of	the	
negative	sign,	but	we	cannot	find	any	reason	for	the	presence	of	temperature.		
	
Note	that	∂S(U,V,N	1	,N	2	)/∂N	1		is	a	pure	number.	The	number	means	the	increase	of	the	number	of	
quantum	states	associated	with	adding	one	molecule	of	species	1,	while	keeping	the	energy,	
volume,	and	number	of	molecules	of	species	2	fixed.	The	quantity	has	clear	significance.	Gibbs	
twisted	this	number	into	a	quantity	to	have	the	unit	of	energy/amount.	He	was	perhaps	too	
enamored	with	the	supporting	actor,	energy.	His	reason	was	twisted,	but	his	definition	has	stuck.	
	
Usage	of	words	.	When	we	speak	of	a	chemical	potential,	we	should	name	both	the	molecule	
species	and	the	open	system.	For	example,	we	speak	of	the	chemical	potential	of	water	
molecules	in	a	piece	of	cheese,	or	the	chemical	potential	of	water	molecules	in	a	glass	of	wine.	
We	also	speak	of	the	chemical	potential	of	carbon	dioxide	in	a	bottle	of	Coca	Cola.	We	denote	
the	chemical	potential	of	molecular	species	1	in	open	system	A	by	µ	1,A	.		
	

	



	

When	we	speak	of	temperature,	we	only	need	to	name	the	place.		For	example,	we	speak	of	the	
temperature	of	a	piece	of	cheese,	or	the	temperature	of	a	glass	of	wine.		
	
This	difference	in	usage	comes	from	something	basic:	the	world	has	many	species	of	
molecules,	but	only	one	species	of	energy.	

Two	open	systems	in	contact	
Two	open	systems,	A	and	B,	exchange	energy,	volume,	and	two	molecular	species,	1	and	2.	
The	open	system	A	is	characterized	by	a	function	S	A	(U	A	,V	A	,N	1,A	,N	2,A	),	and	the	system	B	is	
characterized	by	another	function	S	B	(U	B	,V	B	,N	1,B	,N	2,B	).	Note	that	N	1,A		denotes	the	number	of	
molecules	of	species	1	in	system	A.	
	
We	make	the	composite	of	the	two	open	systems	into	an	isolated	system.	The	principles	of	
conservation	require	that	
	
U	A		+	U	B		=	constant,	
V	A		+	V	B		=	constant,	
N	1,A		+	N	1,B		=	constant,	
N	2,A		+	N	2,B		=	constant.	
	
Here	we	assume	that	the	two	species	of	molecules	do	not	undergo	a	chemical	reaction,	so	that	
the	number	of	molecules	in	each	species	is	conserved.	The	composite	is	an	isolated	system	of	
four	independent	internal	variables,	U	A	,	V	A	,	N	1,A	,	N	2,A	.		
	
When	the	internal	variables	are	fixed	at	particular	values,	the	isolated	system	can	only	flip	in	a	
subset	of	the	sample	space.	Denote	the	subset	entropy	by	S	composite	(U	A	,V	A	,N	1,A	,N	2,A	).	Entropy	is	
an	extensive	quantity,	so	that	
	
S	composite	(U	A	,V	A	,N	1,A	,N	2,A	)	=	S	A	(U	A	,V	A	,N	1,A	,N	2,A	)	+	S	B	(U	B	,V	B	,N	1,B	,N	2,B	).	
	
When	the	internal	variables	change	by	dU	A	,	dV	A	,	dN	1,A	,	dN	1,B	,	the	subset	entropy	changes	by	
	
dS	composite		=	(1/T	A		-	1/T	B	)dU	A		+	(P	A	/T	A		-	P	B	/T	B	)dV	A			+	(-	µ	1,A	/T	A		+	µ	1,B	/T	B	)dN	1,A		+	(-	µ	2,A	/T	A		+	
µ	2,B	/T	B	)dN	2,A	.	
	
Equilibrium	.	The	four	internal	variables	U	A	,V	A	,N	1,A	,N	2,A		can	change	independently.	In	
equilibrium,	the	subset	entropy	maximizes,	dS	composite		=	0,	so	that	
	
T	A		=	T	B	,	
P	A		=	P	B	,	
µ	1,A		=	µ	1,B	,	
µ	2,A		=	µ	2,B	.	

	



	

	
Irreversibility.		Out	of	equilibrium,	the	subset	entropy	increases	in	time,	dS	composite	(U	A	,V	A	,N	A	)	>	0.	
Consider	a	situation	where	the	two	open	systems	are	in	partial	equilibrium,	T	A		=	T	B	,	P	A		=	P	B	,	µ	1,A	
=	µ	1,B	,	but	not	in	equilibrium	with	respect	to	the	transfer	of	molecular	species	2.	The	inequality	
dS	composite	(U	A	,V	A	,N	A	)	>	0	reduces	to	
	
(-	µ	2,A		+	µ	2,B	)dN	2,A		>	0.	
	
Thus,	molecular	species	2	transfer	from	the	system	of	high	chemical	potential	to	the	system	of	
low	chemical	potential.	The	presence	of	the	negative	sign	in	the	definition	of	chemical	potential	
leads	to	this	verbal	convenience.	

Experimental	determination	of	the	chemical	potential	of	a	species	
of	molecules	in	a	complex	system	
How	do	we	experimentally	measure	the	chemical	potential	of	a	species	of	molecules	in	a	
complex	system?	When	two	systems	can	exchange	energy	and	a	species	of	molecules,	the	
fundamental	postulate	dictates	that	the	two	systems	reach	equilibrium	when	they	have	the	same	
temperature	and	the	same	chemical	potential	of	the	species	of	molecules.	Consequently,	once	
the	chemical	potential	of	a	species	of	molecules	in	one	system	is	determined,	the	system	can	
be	used	to	determine	the	chemical	potential	of	the	same	species	of	molecules	in	other	systems.	
	
For	example,	we	can	determine	the	chemical	potential	of	water	molecules	in	a	flask	containing	a	
pure	water	vapor	as	a	function	of	temperature	and	pressure,	µ(T,P).	We	now	wish	to	measure	
the	chemical	potential	of	water	molecules	in	a	glass	of	wine.	We	can	bring	the	wine	into	contact	
with	a	flask	of	water	vapor.	The	contact	is	made	with	a	semipermeable	membrane	that	allows	
water	molecules	to	go	through,	but	blocks	all	other	species	of	molecules.	We	then	allow	the	
wine	to	equilibrate	with	the	water	vapor	in	the	flask,	so	that	both	energy	and	water	molecules	
stop	exchanging	between	the	wine	and	the	flask.	The	two	systems	have	the	same	temperature	
and	the	same	chemical	potential.	A	reading	of	the	chemical	potential	of	water	in	the	flask	gives	
the	chemical	potential	of	water	in	the	wine.	
	
Molecular	reservoir	.	We	can	fix	the	chemical	potential	of	a	species	of	molecules	in	a	system	by	
letting	it	transfers	the	species	of	molecules	to	a	molecular	reservoir.	The	situation	is	analogous	
to	fixing	temperature.	The	molecular	reservoir	has	a	fixed	chemical	potential	of	the	species	of	
molecules.	For	example,	a	large	tank	of	an	aqueous	solution	of	salt	is	a	molecular	reservoir	of	
water.	A	small	amount	of	water	molecules	can	go	in	and	out	of	the	tank,	though	the	vapor.	The	
salt	evaporates	negligibly.	The	chemical	potential	of	water	in	the	solution	is	fixed.	 	

	



	

Extensibility	
In	mathematics,	a	function	Z(X,Y)	is	called	a		homogeneous	function		if	for	any	number	a	the	
following	relation	holds:	
	
aZ(X,Y)	=	Z(aX,aY).	
	
Take	derivative	with	respective	to	a,	and	we	obtain	that	
	
Z(X,Y)	=	X∂Z(X,Y)/∂X	+	Y∂Z(X,Y)/∂Y.	
	
This	mathematical	identity	holds	for	any	homogeneous	function.		
	
We	next	apply	this	mathematical	identity	to	an	open	system	of	two	species	of	molecules,	
characterized	by	the	function	S(U,V,N	1	,N	2	).	Note	that	S,	U,	V,	N	1	,	N	2		are	extensive	properties.	If	
we	amplify	every	extensive	property	by	a	factor	of	a,	the	characteristic	function	obeys	the	
relation:	
	
aS(U,V,N	1	,N	2	)	=	S(aU,aV,aN	1	,aN	2	).	
	
Thus,	the	characteristic	function	S(U,V,N	1	,N	2	)	is	a	homogeneous	function	of	four	independent	
variables.		
	
Take	derivative	with	respective	to	a,	and	we	obtain	that	
	
S	=	U/T	+	PV/T	-	N	1	µ	1	/T	-	N	2	µ	2	/T.	
	
The	four	partial	derivatives	of	the	function	S(U,V,N	1	,N	2	)	define	four	intensive	properties.	When	
we	amplify	every	extensive	property	by	a	factor	of	a,	the	open	system	increases	size	
proportionally,	but	all	the	intensive	properties	remain	unchanged.	

Gibbs	function	
Recall	the	definition	of	the	Gibbs	function:		
	
G	=	U	-	TS	+	PV.		
	
Of	the	five	quantities	on	the	right-hand	side	of	the	above	equation,	only	energy	U	has	an	
arbitrary	additive	constant.	The	same	additive	constant	appears	in	the	Gibbs	function.	
	
The	definition	of	the	Gibbs	function,	along	with	the	equation	dS	=	(1/T)dU	+	(P/T)dV	-	(µ	1	/T)dN	1		-	
(µ	2	/T)dN	2	,	gives	that	

	



	

	
dG	=	-SdT	+	VdP	+	µ	1	dN	1		+	µ	2	dN	2	.	
	
This	equation	suggests	that	the	Gibbs	function	be	regarded	as	a	function	G(T,P,N	1	,N	2	),	with	the	
partial	derivatives		
	
-S	=	∂G(T,P,N	1	,N	2	)/∂T,		
V	=	∂G(T,P,N	1	,N	2	)/∂P,		
µ	1		=	∂G(T,P,N	1	,N	2	)/∂N	1	,		
µ	2		=	∂G(T,P,N	1	,N	2	)/∂N	2	.	

Gibbs-Duhem	relation	
For	an	open	system	of	four	extensible	variables,	U,	V,	N	1	,	N	2	,	once	the	size	of	the	system	(i,e.,	
the	total	number	of	molecules)	is	fixed,	the	system	has	only	three	independent	variations.	Thus,	
the	four	intensive	quantities,	T,	P,	µ	1	,	µ	2	,	cannot	be	independent	variables.	We	next	derive	a	
relation	among	the	four	intensive	quantities.	
	
The	definition	of	the	Gibbs	function,	G	=	U	-	TS	+	PV,	along	with	the	equation	S	=	U/T	+	PV/T	-	
N	1	µ	1	/T	-	N	2	µ	2	/T,	gives	that	
	
G	=	µ	1	N	1		+	µ	2	N	2	.	
	
Taking	derivative,	we	obtain	that	
	
dG	=	µ	1	dN	1		+	µ	2	dN	2		+	N	1	dµ	1		+	N	2	dµ	2	.	
	
This	equation,	along	with	the	equation	dG	=	-SdT	+	VdP	+	µ	1	dN	1		+	µ	2	dN	2	,	gives	that	
	
-SdT	+	VdP	-	N	1	dµ	1		-	N	2	dµ	2		=	0.	
	
This	equation,	called	the		Gibbs-Duhem	relation	,	relates	the	changes	in	the	four	intensive	
quantities,	T,	P,	µ	1	,	µ	2	.	

Chemical	potential	of	a	species	of	molecules	in	a	
pure	substance	
Chemical	potential	is	an	intensive	property.	We	have	specified	a	thermodynamic	state	of	a	pure	
substance	by	two	intensive	properties,	temperature	and	pressure.	Thus,	for	a	pure	substance,	
the	three	intensive	properties,	chemical	potential,	temperature,	and	pressure,	are	not	
independent	properties.	We	now	derive	a	relation	between	them.		

	



	

	
We	model	a	piece	of	a	pure	substance	as	an	open	system	of	a	characteristic	function	S(U,V,N).	
Thus,	
	
dS	=	(1/T)dU	+	(P/T)dV	-	(µ/T)dN	
	
This	equation	defines	the	temperature	T,	the	pressure	P,	and	the	chemical	potential	µ.		
	
We	can	increase	the	number	of	molecules	the	piece	without	changing	the	functions	of	state	per	
molecule,	u,	v,	s,	and	without	changing	T	and	P.	When	we	add	dN	number	of	molecules	to	the	
piece,	the	extensive	functions	of	state	change	by	dS	=	sdN,	dU	=	udN,	and	dV	=	vdN.	The	
equation	dS	=	(1/T)dU	+	(P/T)dV	-	(µ/T)dN	becomes		
	
s	=	(1/T)u	+	(P/T)v	-	(µ/T).		
	
Rearranging,	we	find	that	
	
µ	=	u	+	Pv	−Ts.		
	
This	equation	shows	that	the	chemical	potential	of	a	species	of	molecules	in	a	pure	substance	
equals	the	Gibbs	function	per	molecule	of	the	pure	substance.		
	
We	have	already	learned	how	to	measure	the	function	s(u,v)	for	a	pure	substance	
experimentally.	Once	s(u,v)	is	determined,	so	is	the	chemical	potential.	Of	the	five	quantities	on	
the	right-hand	side	of	the	above	equation,	only	energy	u	has	an	arbitrary	additive	constant.	The	
same	additive	constant	appears	in	the	chemical	potential	of	the	molecular	species	in	the	pure	
substance.	
	
Recall	that	ds	=	(1/T)du	+	(P/T)dv.	This	equation,	along	with	µ	=	u	+	Pv	−Ts,	gives	that	
	
dµ	=	−sdT	+	vdP.		
	
This	equation	suggests	that	we	regard	the	chemical	potential	as	a	function	of	temperature	and	
pressure,	µ(T,P),	with	the	partial	derivatives	
	
∂µ(T,P)/∂T	=	−s,		∂µ(T,P)/∂P	=	v.	
	
These	results	recover	the	similar	equations	when	we	regard	the	chemical	potential	of	a	species	
of	molecules	in	a	pure	substance	as	the	Gibbs	function	per	molecule	of	the	substance.	

	



	

Chemical	potential	of	a	species	of	molecules	in	an	ideal	gas		
An	ideal	gas,	of	N	number	of	a	single	species	of	molecules	in	a	flask	of	volume	V,	is	subject	to	
pressure	P	and	temperature	T.	Recall	the	equations	of	the	ideal	gas	model:	
	
PV	=	NkT.		
dU	=	Nc	V	(T)dT	
dS	=	(Nc	V	(T)/T)dT	+	(Nk/V)dV.	
	
The	chemical	potential	µ	=	u	+	Pv	−Ts	can	be	written	as	
	
µ(T,P)	=	µ(T,P	0	)	+	kT	log(P/P	0	).	
	
Here	P	0		is	an	arbitrary	pressure.	At	a	fixed	temperature,	this	expression	determines	the	
chemical	potential	of	a	species	of	molecules	in	an	ideal	gas	up	to	an	additive	constant.	

Humidity	
At	a	given	temperature,	when	a	moist	air	is	in	equilibrium	with	the	liquid	water,	we	say	that	the	
air	is	saturated	with	water.	If	air	contains	fewer	water	molecules	than	the	saturated	air	does,	the	
number	of	water	molecules	in	the	air	divided	by	the	number	of	water	molecules	in	the	saturated	
air	is	called	the		relative	humidity	.	Write		
	
RH	=	N/N	satu	.	
	
When	the	vapor	is	modeled	as	an	ideal	gas,	the	relative	humidity	is	also	given	by	
	
RH	=	P/P	satu	,	
	
where	P	is	the		partial	pressure		of	water	in	the	unsaturated	gas,	P	<	P	satu	.	
	
Write	the	chemical	potential	of	water	in	the	air	as	
	
µ	=	kT	log(P/P	satu	)	=	kT	log(RH),	
	
with	the	understanding	that	the	chemical	potential	is	relative	to	that	of	the	water	molecules	in	a	
saturated	water	at	the	same	temperature.	
	
The	lung	is	always	saturated	with	water	vapor	at	the	body	temperature	(37C),	but	the	
atmospheric	air	may	not	be.	In	winter,	the	cold	air	outside	has	low	water	content	even	at	100%	
relative	humidity.	When	the	cold	air	enters	a	warm	room,	the	relative	humidity	in	the	room	will	

	



	

reduce	below	100%	at	room	temperature.	We	will	feel	uncomfortable.	Also,	water	inside	the	
warm	room	will	condense	on	cold	window	panes.	

Incompressible	pure	substance	
In	many	applications	of	liquids,	the	pressure	is	small,	so	that	the	volume	per	molecule	in	the	
liquid,	v,	is	taken	to	be	independent	of	the	pressure,	and	the	liquid	is	called		incompressible	.		
	
Recall	the	chemical	potential	for	a	pure	substance,	µ	=	u	+	Pv	−Ts.	For	an	incompressible	
substance,	u,	v,	and	s	are	functions	of	T,	and	are	independent	of	P.	We	obtain	that	
	
µ(T,P)	=	u(T)	-	Ts(T)	+	Pv(T).	
	
The	chemical	potential	of	a	species	of	molecules	in	an	incompressible	liquid	is	linear	in	
pressure.	Often,	we	assume	that	the	specific	volume	is	also	independent	of	temperature.	

The	ascent	of	sap	
How	does	a	tree	transport	liquid	water	from	the	ground	to	the	top?	Unlike	an	animal,	the	tree	
does	not	have	a	heart	to	pump	liquid.	The	tree	does	have	a	system	of	tubes,	called	xylums,	to	
conduct	liquid	water.		
	
The	tensile	stress	.	Let	us	view	a	column	of	water	as	a	free	body.	Let	A	be	the	cross-sectional	
area	of	the	column.	The	pressure	in	the	water	at	the	top	of	the	tree,	P	top	,	exerts	a	force	AP	top	.	
The	pressure	in	the	water	at	the	bottom	of	the	tree,	P	bottom	,	exerts	a	force	AP	bottom	.	The	column	of	
water	weighs	ρghA,	where	ρ	is	the	mass	density,	g	is	the	acceleration	of	gravity,	and	h	is	the	
height	of	the	tree.	The	balance	of	the	three	forces	requires	that	
	
P	top		=	P	bottom		-	ρgh.	
	
The	bottom	of	the	tree	is	taken	to	equilibrate	with	the	water	in	the	soil	through	the	roots	of	the	
tree.	Assume	that	the	soil	is	saturated	with	water,	so	that		
	
P	bottom		=	P	satu	.	
	
We	estimate	the	other	term	for	a	100	m	tall	tree.	
	
ρgh	=	(1000	kg/m	3	)(10	m/s	2	)(100	m)	=	1	MPa.	
	
The	pressure	at	the	top	of	the	tree	is	enormous	and	negative:	
	
P	top		=	-	0.9	MPa.	
	

	



	

A	negative	pressure	means	a	tensile	stress.	Thus,	the	water	rises	by	a	tensile	force	applied	at	
the	top	of	the	tree.		
	
What	applies	the	tensile	stress?		The	low	humidity!	At	the	top	of	the	tree,	the	chemical	
potential	of	water	in	the	liquid	inside	the	tree	is		
	
µ	=	(P	top		-	P	satu	)v.	
	
The	chemical	potential	of	water	molecules	in	the	air	is	
	
µ	=	kT	log	(RH).	
	
When	the	liquid	water	equilibrates	with	the	gaseous	water	in	the	air,	the	two	chemical	potentials	
are	equal,	so	that	
	
ρgh	=	-	(kT/v)	log	(RH).	
	
The	volume	per	water	molecule	is	v	=	.	At	temperature	T	=	300K,	kT	=	1.38	.	thus,	kT/v	=	…	

Mixture	of	ideal	gases	
	

Chemical	reaction	

Stoichiometric	coefficients	
At	atmospheric	pressure,	above	100	degree	Celsius,	water	molecules	form	a	gas.	At	this	
pressure	and	temperature,	oxygen	molecules	also	form	a	gas,	so	do	hydrogen	molecules.	
When	the	three	species	of	molecules	are	enclosed	in	the	same	container,	molecules	fly	and	
collide.	After	collision,	two	molecules	separate	on	some	occasions,	but	form	new	molecules	on	
other	occasions.	Let	us	focus	on	the	chemical	reaction	
	
O	2		+	2H	2		=	2H	2	O.		
	
Each	oxygen	molecule	consists	of	two	oxygen	atoms,	each	hydrogen	molecule	consists	of	two	
hydrogen	atoms,	and	each	water	molecule	consists	of	two	hydrogen	atoms	and	one	oxygen	
atom.	In	this	reaction,	the	oxygen	molecules	and	hydrogen	molecules	are	called	the		reactants	,	
and	the	water	molecules	are	called	the		reaction	products	.		
	

	



	

A	chemical	reaction	recombine	atoms	from	one	set	of	molecules,	the	reactants,	to	another	set	of	
molecules,	the	reaction	products.	The	reaction	conserves	the	number	of	each	species	of	atoms,	
but	changes	the	number	of	each	species	of	molecules.		
	
One	oxygen	molecule	and	two	hydrogen	molecules	react	to	form	two	water	molecules.	The	
coefficients	in	front	of	the	molecules	ensure	that	every	species	of	atoms	is	conserved.	These	
coefficients	are	called	the		stoichiometric	coefficients	.		
	
Once	atomic	composition	of	every	molecule	is	known,	the	stoichiometric	coefficients	are	
determined	by	conserving	every	species	of	atoms.	
	
Exercise	.	A	reaction	fundamental	to	life	on	Earth	is	photosynthesis.	Plants	absorb	carbon	
dioxide	and	water	to	produce	glucose.	Determine	the	stoichiometric	coefficients	of	the	reaction.		

Degree	of	reaction	
Consider	a	reaction	of	four	species	of	molecules,	A,	B,	C,	and	D:	
	
2A	+	3B	=	5C	+	7D.	
	
The	equation	indicates	the	stoichiometric	coefficients	of	the	reaction.		
	
Denote	the		degree	of	reaction		by	dx,	such	that	the	numbers	of	the	four	species	of	molecules	A,	
B,	C,	and	D	change	by		
	
dN	A		=	-2dx,		dN	B	=	-3dx,		dN	C		=	5dx,		dN	D		=	7dx.		

Chemical	equilibrium		
We	assume	that	the	reaction	takes	place	in	a	cylinder	sealed	with	a	piston,	so	that	both	the	
temperature	T	and	the	pressure	P	are	fixed	as	the	reaction	proceeds.		Let	the	Gibbs	function	be	
G(T,P,N	A	,N	B	,N	C	,N	D	).		
	
When	the	reaction	advances	by	dx	under	the	condition	of	constant	temperature	and	constant	
pressure,	the	Gibbs	function	changes	by	
	
dG	=	(5µ	C		+	7µ	D		-	2µ	A		-	3µ	B	)dx.	
	
Reaction	goes	in	the	direction	that	reduces	the	Gibbs	function.	Thus,	the	reaction	moves	
toward,	dx	>	0,	when		
	
2µ	A		+	3µ	B		>	5µ	C		+	7µ	D	.	
	

	



	

The	reaction	moves	backward,	dx	<	0,	when		
	
2µ	A		+	3µ	B		<	5µ	C		+	7µ	D	.	
	
The	reaction	reaches	equilibrium	when	
	
2µ	A		+	3µ	B		=	5µ	C		+	7µ	D	.	

Reaction	of	ideal	gases	
When	all	species	of	molecules	form	ideal	gases,	each	species	obeys	the	ideal	gas	law:	
	
P	A		=	c	A	kT,	
	
where	c	A		=	N	A	/V	is	the	concentration	of	species	A.	The	chemical	potential	of	species	in	the	
cylinder	is	
	
µ(T,P	A	)	=	µ(T,P	0	)	+	kT	log(P	A	/P	0	).	
	
(c	C	
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7	)/(c	A	
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3	)	=	K.	

	


