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Abstract
This article provides an overview of recent advances, challenges, and opportunities in multiscale
computational modeling techniques for study and design of two-dimensional (2D) materials. We
discuss the role of computational modeling in understanding the structures and properties of 2D
materials, followed by a review of various length-scale models aiding in their synthesis. We present
an integration of multiscale computational techniques for study and design of 2D materials,
including density functional theory, molecular dynamics, phase-field modeling, continuum-based
molecular mechanics, and machine learning. The study focuses on recent advancements,
challenges, and future prospects in modeling techniques tailored for emerging 2D materials. Key
challenges include accurately capturing intricate behaviors across various scales and environments.
Conversely, opportunities lie in enhancing predictive capabilities to accelerate materials discovery
for applications spanning from electronics, photonics, energy storage, catalysis, and
nanomechanical devices. Through this comprehensive review, our aim is to provide a roadmap for
future research in multiscale computational modeling and simulation of 2D materials.

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2053-1583/ad63b6
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1583/ad63b6&domain=pdf&date_stamp=2024-9-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5164-6122
https://orcid.org/0000-0002-7928-4119
https://orcid.org/0000-0001-7040-237X
https://orcid.org/0000-0002-4066-1837
https://orcid.org/0000-0002-0778-6515
https://orcid.org/0000-0002-8723-9414
mailto:zaeem@mines.edu


2D Mater. 11 (2024) 042004 M Asle Zaeem et al

Contents

1. Introduction 3
2. Electronic scale calculations: DFT 3

2.1. A short background on DFT 3
2.2. DFT calculations for determining properties of 2D materials 5
2.3. DFT based study and design of 2D materials for different applications 10
2.4. DFT integration with large scale simulations 12

3. MD simulation 13
3.1. Mechanical behavior and properties of 2D materials 13
3.2. Thermal behavior and properties of 2D materials 16
3.3. Oxidation behavior 19
3.4. Desalination behavior 19

4. Lattice and continuum-based molecular mechanics modeling of 2D materials 20
4.1. Mechanical equivalence of atomic bonds and effective elastic moduli 22
4.2. Numerical results and comparative assessment of accuracy 24

5. Artificial intelligence and ML assisted study and design of 2D materials 25
5.1. ML-assisted potentials and force fields 26
5.2. Non-intrusive approaches for ML-assisted prediction of physical properties 26
5.3. Image-based computational mapping using ML 27
5.4. Exploiting ML for probabilistic analysis and uncertainty quantification 28
5.5. ML-based investigation of multi-layer 2D heterostructures 29

6. Multiscale modeling and synthesis of 2D materials 30
6.1. Experimental synthesis techniques 30
6.2. DFT colocations relevant to experimental synthesis of 2D materials 31
6.3. MD simulation facilitated synthesis techniques 34
6.4. Micro/meso scale: PF approach 37
6.5. Continuum modeling and ML in the synthesis of 2D materials 43

7. Evolving trends and future directions 45
7.1. Electronic scale calculations 45
7.2. MD simulations 45
7.3. Molecular mechanics 46
7.4. PF modeling and other microscale models 47
7.5. Artificial intelligent and ML 47

8. Concluding remarks 48
Data availability statement 48
References 48

2



2D Mater. 11 (2024) 042004 M Asle Zaeem et al

1. Introduction

Two-dimensional (2D) materials are single atomic or
molecular layered materials that exhibit remarkable
properties. There exist different 2D lattice structures
based on their atomic compositions and arrange-
ment of atoms with one atomic layer (graphene,
h-BN, RuC, BP, planar carbon allotropes, BCN,
etc), two-atomic layers (silicene, borophene, phos-
phorene, etc), and three-and more atomic layers
(MoS2, Ti2C MXenes, Ti2CF2, etc) [1]. The excep-
tional properties of 2D materials, including excel-
lent electrical conductivity, mechanical strength, and
optical transparency have positioned them as the
building blocks of next-generation of electronic
[2], optoelectronic [3], nanomechanical [4], and
thermoelectrical [5] devices. Several overview art-
icles exist which described the origin [6–8], synthesis
methods [9–12], characterization techniques [9, 13–
15], and applications [9, 15–17] of 2Dmaterials. This
present article aims to review the recent progress,
challenges, and future prospective of multiscale com-
putational modeling techniques in study and design
of 2D materials.

Computational models and simulations allow for
in-depth exploration of structures, properties, beha-
viors, and functionalities of materials across various
length and times scales. The atomistic scale simula-
tion models consider atoms as the building blocks
of the material and study how atoms and molecules
interact, move, and form structures. They employ
principles from quantum mechanics and molecular
dynamics (MD) to describe fundamental mechan-
isms which give rise to intrinsic material properties
[18–20]. Continuummodels, on the other hand, con-
sider the material as if it were a continuous homo-
geneous medium rather than discrete particles [21].
They are described by partial differential equations
derived from principles like conservation of mass,
momentum, and energy [22–24]. Continuum mech-
anics describes the material’s behavior at scales rel-
evant to the engineering and macroscopic processes
[21]. As a result, they fail to predict the complexit-
ies of material behavior that is rooted in the interplay
between localized chemical composition, environ-
mental/working conditions, and various microstruc-
tural features such as voids, cracks, phases, grains,
dislocations [25–31]. Mesoscale models are alternat-
ive techniques that bridge the timescale and length-
scale gaps that exist between atomistic and con-
tinuum models. There are different mesoscale mod-
eling techniques, including but not limited to Kinetic
Monte Carlo [32, 33], phase-field (PF) and PF crystal
models [34–40].

Computational modeling and simulations mostly
complement the experimental synthesis, characteriz-
ation and testing to accelerate the study and design

of materials, explain physics associated with materi-
als phenomena [41, 42], or calculate material prop-
erties which are hard, if not impossible, to determ-
ine by experiments [43, 44]. They are even capable
of designing and optimizing properties of materials
which have not been experimentally synthesized yet
[45]. Another advantage of computational model-
ing is the ability to efficiently explore a wide range
of structures and properties of materials, which may
be challenging, costly and time-consuming through
experiments alone [42, 46, 47]. Additionally, they
have the unique ability to isolate specific properties
or phenomena within complex experimental setup
where the limitations on the external factors, such as
temperature or humidity, affect the reproducibility
and reliability of the results.

The physics driven computational models have
proven their potential in predicting the relation-
ship among processing, nano/microstructure, and
mechanical properties [48–51]. However, they always
suffer from the high computational costs. Recent
advancements of data-driven computational models
[52–57] and deep learning techniques [58–61] have
facilitated acceleration of modeling predictions and
improved the computational performance in identi-
fying the specific compositions and nano/microstruc-
tures based on the processing methods and target
material properties.

In this comprehensive review, we first discuss the
role of computational modeling techniques in accel-
erating the understanding of structures and prop-
erties of 2D materials. Then, we will review differ-
ent length scale models that can help synthesis of
2D materials. Figure 1 shows a schematic integra-
tion of multiscale computational techniques that we
considered in this article, including, density func-
tional theory (DFT), ab-initio MD (AIMD), MD,
PF, PF crystal (PFC), continuum (continuum-based
molecular mechanics), and machine learning (ML).

2. Electronic scale calculations: DFT

DFT technique has emerged as one of the promising
tools for analyzing the structures and properties of
various classes of materials, including 2D materials.
Due to its solid mathematical foundation, DFT opens
up paths for material discovery and tailoring material
properties for specific applications.

2.1. A short background on DFT
Hohenberg and Kohn established the foundation of
DFT [62] which states that by knowing the electron
density, one can accurately determine the energy of
the ground state, i.e. E= E [n(r)]. Later, Kohn and
Sham [63] developed the mathematical formulation
of DFT using a set of equation, known as Kohn–
Sham (KS) equationswhich serve as the foundation of
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Figure 1. Overview of computational modeling techniques for study and design of 2D materials.

the DFT methodology. In this way, the KS equations
provide a bridge between the intricate many-electron
system and the quantum mechanics described by the
Schrödinger equation [64–66]. The key challenge of
solving the many-electron problems, which involves
addressing the Schrödinger equation through a self-
consistent approach [67] is then achieved through the
KS approach. In the self-consistent scheme, at first,
a tentative electron density n(r) is considered. This
density forms an electron cloud and plugs that in an
exchange correlation (XC) functional (Vxc) and even-
tually builds the effective potential Veff. This will sup-
ply the eigenvalues

(
εj
)
and eigenvectors

(
ϕ j

)
of the

KS equations. Having the eigenvectors
(
ϕ j

)
, a new

set of electron density n(r) can be achieved, and this
process is repeated until the convergence is reached
[67].More details onDFTmethodology can be found
elsewhere [68].

2.1.1. Role of XC functionals in calculating properties
by DFT
DFT, although formally exact, requires a series of
approximations for practical implementation in solv-
ing the KS equations. A series of XC functionals
such as local spin density approximation (LSDA or
LDA), generalized gradient approximation (GGA),
and meta-GGA approximation have been proposed
to build an exact DFT method. The LDA is well-
suited for computations involving ground-state prop-
erties like total energy, and lattice constants. However,
LSDA tends to underestimate certain properties, par-
ticularly those associated with electronic correlation.
The GGA approximation [69] is built from LDA and
is notable for its flexibility and is the most used

approach for predicting different properties of 2D
materials by balancing the quantitative prediction
and computational cost. Further, meta-GGA approx-
imation was introduced that improves upon GGA
functionals by introducing the KS kinetic energy as
a new component, in addition to the uniform spin
densities of an electron gas. The meta-GGA offers
enhanced accuracy for molecular properties such as
surface energies, reaction barriers and non-covalent
interactions [70, 71].

Although the commonly used semi-local LDA,
GGA or meta-GGA have been successful in the study
of non-magnetic (close shell) molecules and solids,
they may fail in systems which involve un-paired
and localized electrons due to delocalization error
[72], and often leads tomisleading prediction regard-
ing magnetic materials [73]. Recently, a hybrid func-
tional was proposed which holds remarkable success
in predicting the electronic and magnetic properties
of many magnetic systems, including 2D materials
[74]. For the electronic properties, this hybrid func-
tional helps overcoming the band-gap underestima-
tion of GGA functional. Studying strongly correlated
systems, such as d electrons in transition metal based
2D materials, necessitates the incorporation of auxil-
iary theories, such as the Hubbard U parameter [75].
The on-site Hubbard-corrected DFT + U approach
[75] accounts for d- and f - electron contributions of
transition metals-based 2D materials. This approach
can effectively remedy the excessive delocalization of
d and f electrons in standard LDA or GGA [76] and
leads to significant improvement of the description of
magnetic properties in 2Dmaterials likeMXenes con-
sisting of transition metal atoms such as Ti and V.
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Since a detailed understanding of thermal prop-
erties such as vibrational properties and heat capa-
city required the knowledge of anharmonic effects,
advanced methods beyond standard DFT, such as
density functional perturbation theory (DFPT) and
phonon calculations, are often employed [77, 78].
While DFT continues to be the primary method for
ab initio modeling of ground-state properties, the
cutting-edge approach for elucidating electronic and
optical excitations of 2D materials is presently the
many-body perturbation theory (MBPT) based on
Green’s function methodologies [79]. Band struc-
tures, incorporating quasi-particle (QP) corrections,
are derived using the GW (G: Green’s function, W:
Coulomb interaction) scheme [80], and absorption
spectra, encompassing excitonic effects, are com-
puted through the solution of the Bethe–Salpeter
equation (BSE) [81]. It should also be noted that
traditional DFT methods, which do not explicitly
include van der Waal’s (vdW) interactions, can lead
to inaccurate predictions of interlayer distances, bind-
ing energies, and other properties of 2D materials.
To overcome this limitation, vdW corrections can be
introduced into the DFT calculations to capture the
non-local, long-range correlation effects associated
with vdW forces [82, 83]. From the aforementioned
details, it is clear that selection of an ideal DFT func-
tional is important when considering different prop-
erties and diverse applications of 2D materials.

2.2. DFT calculations for determining properties of
2Dmaterials
2D materials, such as graphene [84], transition
metal dichalcogenides (TMDs) [85], and MXenes
[86], have garnered significant attention due to their
unique properties and characteristics [87]. DFT, as
a first-principles quantum mechanical approach, can
provide accurate prediction of ground-state proper-
ties and offer valuable insights into the diverse applic-
ations of 2D materials. In the following, we summar-
ize previous DFT calculations for determining differ-
ent properties of 2D materials, and in section 2.3 we
provide some insights into study and design of 2D
materials for different applications.

2.2.1. Stability of 2D structures
The stability analysis of 2D materials is crucial for
any type of applications. The structural arrangement
of atoms in a material directly influences its phys-
ical and chemical properties, and the ground state
energy from DFT gives first-hand information about
the most stable atomic configurations. By computing
the cohesive energy (EC), one can estimate the stabil-
ity of a structure, and this can be used as the first step
in designing 2Dmaterials. A higher (negative) cohes-
ive energy generally indicates stronger intermolecular
or interatomic forces, leading to more stable struc-
tures. EC of a 2D material containing two elements,

say A and B, can be calculated using this relation:

EC = (E2D − aEA − bEB)/(a+ b) (1)

where E2D is the total energy of the 2D simulation
cell, a and b are the number of atoms in A and B,
and EA and EB are the total energies of free A and B
atoms, respectively. Among 2D materials, graphene
is considered as the most stable one with EC in
this range 7.5–7.9 eV atom−1, which was calculated
by DFT using different functionals [88–90]. The EC
of some other important 2D materials were calcu-
lated by DFT, such as MoS2 (4.98 eV atom−1), RuC
(7.31 eV atom−1) [91], Si2BN (6.22 eV atom−1), and
phosphorene (3.30 eV atom−1) [92]. From the above
details it is evident that MoS2 possesses higher stabil-
ity compared to phosphorene, i.e. a higher EC indic-
ates the higher stability and feasibility of the material
for synthesis and further utilization. Since EC analysis
is the first step in establishing the structural stability
of amaterial, more detailed analysis based on phonon
andmechanical stability is also important and are dis-
cussed below.

Phonon analysis stands as a crucial criterion for assess-
ing the stability of 2D materials. In the equilib-
rium state, the potential energy of the system con-
sistently rises concerning any combination of atomic
movements. This characteristic allows us to lever-
age vibrational spectra as a filter to validate mater-
ial stability, with the presence of imaginary frequen-
cies implying that the material is unstable, as shown
in figure 2. It is noteworthy that the phonon filter
stands as the most widely employed method in the
stability analysis of 2D materials, and a wealth of
phonon spectra is now publicly accessible through
the Materials Cloud database [94]. Despite its wide-
spread use, phonon analysis alone is insufficient to
demonstrate the dynamic stability of a material [93].
This limitation arises from the fact that phonon ana-
lysis primarily deals with small atomic displacements,
rendering it incapable of capturing phase transitions
coupled with intricate lattice reconstructions [95].
However, to ensure dynamical stability, it is essen-
tial to demonstrate that a material, particularly at
the first-principles level, remains structurally stable
without undergoing energy-reducing changes. This
verification is typically achieved through AIMD sim-
ulations. To assess the dynamic stability of 2Dmateri-
als, AIMD simulations incorporating annealing steps
at a fixed temperature are employed. Various tem-
perature protocols, such as quenching steps, may
be utilized. Given that AIMD simulations are con-
strained by the limited size of modeled systems (typ-
ically a few hundred atoms), energy fluctuations can
overshadow those associated with structural changes.
Furthermore, DFT is instrumental in exploring phase
diagrams by predicting the thermodynamic stabil-
ity of different phases of a material under vary-
ing conditions of temperature and pressure [96, 97].
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Figure 2. Phonon dispersion relations of (a) Ca2C, (b) Ca2CF2, (c) Ca2CCl2, and (d) Ca2C(OH)2 MXenes computed using the
finite displacement method implying that the MXenes with F and OH terminations are dynamically unstable due to the presence
of imaginary mode. Optimized top and side geometries are also provided. Reprinted from [93], Copyright (2022), with
permission from Elsevier.

However, relying solely on the potential energy pro-
file is inadequate as a criterion for dynamic stability.
Nonetheless, this analysis provides valuable insights
into the material’s stability, and the pace of material
development can be accelerated significantly, redu-
cing the time and cost associated with experimental
synthesis and characterization.

Mechanical property analysis is another key criterion
in establishing the stability of a 2D material. In 2D
materials, the high surface area [7, 98] leads to the
formation of strong in-plane bonds, providing excep-
tional structural features, including bond strength,
which contributes to the high mechanical strength
of most 2D materials [99]. In order to establish the
mechanical stability of a 2Dmaterial, the Born stabil-
ity criterion [100] can be utilized which forms a set
of necessary and sufficient conditions to determine
whether a given unstressed material is stable or not.
For the case of 2D materials, the mechanical stability
criterion is represented using the Voigt representation
as: C66 > 0 and C11C22 −C2

12 > 0 [101], whereas C11

and C22 are the in-plane elastic constants along the x
and y directions, and C12 is the shear strain along the
xy plane. In an study using DFT, the elastic properties
of 90 different 2D MXenes were determined, produ-
cing useful data with respect to mechanical stability
for the synthesis of 2DMXenes [102].DFThas proven
as a useful tool in predicting the tensile strength of
novel 2D materials, predicting similar strengths to
that of experiment [103–108]. Besides, to establish
the isotropic or anisotropic characteristics of a 2D
material, the angular dependent polar diagram can
be used. For example, figure 3, shows the results of a
previous study establishing that the BCN monolayer

possesses both isotropic (anisotropic) characteristics
and is evident in the circular (non-circular) behavior
of the polar diagram. Predictions of ideal strength
are made using variations of the DFT method, such
as DFPT to study phonons in 2D materials as the
material is strained [105]. Using DFT, 2D materials
can be systematically strained, observing the stability
of the phonons as strain is applied. When they grow
unstable, the material is considered to have reached
peak stress [105, 109, 110]. The prediction of strength
and strength trends among 2D materials is valuable
in the efforts of developing improved 2D materials,
and one of the important contributions that the DFT
method provides.

2.2.2. Influence of electronic scale defects
Like any other material, 2D materials contain crys-
talline imperfections in their structure, both native
defects and extrinsic defects, ranging from vacancies
and substitutions to interstitials. Point defects, such
as vacancies, emerge as omnipresent entities signific-
antly shaping the characteristics of crystalline mater-
ials, as shown in figure 4. For example, in the case of
MXenes, these defects originated from either the pre-
cursors (the bulk MAX phases) or during their pro-
cessing by chemical wet etching or exfoliation [113].
In contrast to non-planar 2Dmaterials like TMDs and
MXenes, planar 2D materials such as graphene, h-
BN, BCN, Si2BN, etc, exhibit a unique lattice prop-
erty which is the ability to reconstruct by form-
ing non-hexagonal rings, leading to the creation of
topological defects [114]. A notable example is the
Stone-Wales (SW)defect (see figures 4(b)–(e)), where
four hexagons transform into two pentagons and two
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Figure 3. (a) Young’s modulus and (b) Poisson’s ratio of BCN monolayer with 10% and 5% compressive (ε=−0.1 and
ε=−0.05) and tensile strain (ε=+0.1 and ε=+0.5) states along with the equilibrium strain state (ε= 0). Reprinted from
[111], Copyright (2020), with permission from Elsevier, and (c) the band structure of unstrained monolayer MoS2 in comparison
with a 2% biaxial tensile strain. Reproduced from [112], with permission from Springer Nature.

Figure 4. DFT optimized structures of pristine and defective (vacancies and Stone-Wales) BCN monolayer along with their
relative energy stability referencing to pristine one. The unit cell of BCN is marked using the red dashed rectangle and the peach,
grey, and blue balls denote B, C and N atoms, respectively. The Stone-Wales defected portion in the supercell is highlighted using
red color and the B, C, and N vacancies are highlighted using peach, grey, and blue colors, respectively. Reproduced from [117]
with permission from the Royal Society of Chemistry.

heptagons [SW (55–77) defect] through the rota-
tion of one C−C bond by 90◦, without any added
or removed atoms [115]. DFT provides a valuable
understanding of the effects of defects in 2D mater-
ials and elucidates how these defects influence their
structural, electronic, and optical properties. This
makes DFT an indispensable tool for interpreting
experimental results on the effects of defects, includ-
ing (magneto-)optical experiments [116]. However,
the complexity of defect calculations poses a major
challenge, even in low-throughput mode, involving
considerations of large supercells, local magnetic
moments, and electrostatic corrections. By analyzing
the vacancy formation energy (EVFE) [117–119], one
can establish the favorable formation of different 2D
materials with the presence of defects. The VFE can
be computed using this relation:

EVFE = Edefect − Eperfect + niµi (2)

where Edefect and Eperfect are the total energies of a
defective and pristine 2D surface, respectively. ni is
the total number of vacancies in the 2D material,
and µi is the chemical potential of the atoms present

in the system which are taken as the bulk energy of
their most stable state. As it is a common conven-
tion, most of the studies assumed that the chem-
ical potential is equal to the total energy of the
bulk systems. Although most DFT results are strictly
valid for the zero Kelvin case [120, 121], the ther-
modynamic associated properties including thermal
expansion and thermoelasticity at finite temperat-
ures within the DFT perspective can be estimated
from DFPT by using the quasiharmonic approxim-
ation (QHA) to account for the anharmonicity of
the lattice vibrations [122]. Comparing the forma-
tion energies of different defect types allows research-
ers to identify the most stable defects under specific
conditions. For example, in 2D Si2BN, it was repor-
ted that Si (3.25 eV) and B (2.27 eV) monovacancies
possess the highest and lowest formation energies,
respectively. However, these values indicate that they
are both lower than that of graphene (7.5–7.84 eV)
[114] and BCN monolayers (6–8 eV) [111], there-
fore both are thermodynamically favorable defects in
2D Si2BN. Since defects can introduce new energy
levels within the band structure, influencing electrical
conductivity and other electronic characteristics, a
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detailed and fundamental understanding of defects
becomes inevitable. DFT emerges as a powerful tool
for unraveling the intricate effects of defects.

2.2.3. Electronic properties and role of lattice strain
Due to the layered nature of 2D materials, quantum
confinement effects become prominent, leading to
electron accumulation at the surface, enabling effect-
ive tuning and control of electronic properties [123].
Band structure and density of states (DOS) are the
two important electronic properties obtained from
DFT calculations, providing fundamental insights
for designing electronic devices and understanding
transport properties. For most ground-state prop-
erties, GGA functionals, available in both ab initio
and semi-empirical variants, offer sufficient accuracy
[124]. Additionally, expensive hybrid functionals,
incorporating some exact Hartree–Fock exchange,
prove effective in describing the bandgap of materi-
als with experimental accuracy. However, the hybrid
functional is unsuitable for metals due to the unphys-
ical logarithmic singularity of Hartree–Fock band
energies at the Fermi level-the energy level that sep-
arates occupied from unoccupied states [125]. In
metals, where occupied states exist around the Fermi
level, this artifact leads to the generation of ficti-
tious charge and spin density waves [126]. The on-site
Hubbard-correctedDFT+Uapproach [75] accounts
for d- and f- electron contributions of transition
metals-based 2D materials. This approach can effect-
ively remedy the excessive delocalization of d and f
electrons in standard LDA or GGA [76] and leads
to significantly improve the description of electronic
properties in 2D materials like MXenes consists of
transition metal atoms such as Ti and V.

DFT + U represents a refined yet more cost-
effective version of the hybrid XC functional, intro-
ducing exact exchange only for localized open-shell
electrons, where the ‘self-interaction error’ (arising
from approximate exchange) is most significant, as
opposed to applying it to all electrons, as in hybrid
XC. Delocalized electrons are handled with standard
XC density functionals [127]. DFT+ U theory signi-
ficantly enhances the description of materials exhib-
iting this mixed type of electron distribution, par-
ticularly mid-to-late first-row transition metal oxides
and sulfides [128]. DFT remains a valuable tool for
studying electronic properties, providing insights that
are difficult or impossible to obtain experimentally.
Figure 5 represents the band structures of differ-
ent planar and buckled 2D materials such as metal-
lic NbSe2, semi-metallic graphene, semiconducting
TiS3, antimonene, phosphorene, SnS, MoS2, and
insulating h-BN [103] computed using the Perdew-
Burke-Ernzerhof (PBE) [69] functional. The PBE
functional implemented using GGA approach is the
most used approach for predicting different proper-
ties of 2Dmaterials by balancing the quantitative pre-
diction and computational cost.

A key factor affecting electronic properties is lat-
tice strain in 2D materials [111]. Unlike 3D tradi-
tional materials, 2D materials can withstand remark-
ably large mechanical strain, up to 10%. Tailoring
strain levels enables control over electronic, mech-
anical, and optical properties, making it essential
for applications in sensors, flexible electronics, and
strain-engineered devices. Our prior research using
PBE functional demonstrated that Young’s modulus
and Poisson’s ratio in a BCN monolayer exhibit sig-
nificant anisotropy under strain (see figures 4(a) and
(b)), showing an increase during compressive strain
and a decrease with tensile strain. This effect of strain
is also responsible for altering the direct equilibrium
bandgap of 2D materials, and an example for MoS2
is shown in figure 4(c). Peto et al used DFT to study
the band structure of monolayer MoS2 for with no
strain and under 2% biaxial tensile strain [112]. The
comparison reveals a reduction in the bandgap of
0.46 eV and a transition from a direct to an indir-
ect bandgap, as shown in figure 4(c). This shift is
attributed to the downward movement of bands near
the K point concerning the Fermi energy due to the
strain-induced modification of orbital overlaps. By
employing DFT calculations, López-Galán et al stud-
ied the electronic structure and transport proper-
ties of Van der Waals multilayer and multi/single-
layer of MoS2/MoSe2 and MoSe2/MoS2 heterostruc-
tures with a zigzag and chalcogen–chalcogen inter-
layer alignment [129]. This study shows that the shift
in bandgap at the interfaces is strongly related to the
interlayer coupling due to induced strain and sub-
sequent reallocation of metallic d-orbital and chal-
cogen orbitals in energy levels inside the band gap.
In an another case, it has been reported that the
compressive and tensile strains alter the direct equi-
librium bandgap in the BCN monolayer (1.18 eV)
to 0.59 eV and 1.53 eV along the zigzag direction
[111]. Corresponding variations in the armchair dir-
ection are 1.47 eV and 0.76 eV under compress-
ive and tensile strains, respectively. It is evident that
DFT can predict strain effects on electronic proper-
ties of 2D materials and identify critical points where
the material undergoes changes under specific strain
conditions.

2.2.4. Magnetic and optical properties
Themagnetism in 2Dmaterials has been an emerging
and rapidly growing research field. First-principles
DFT calculations, with or without considering spin-
orbit coupling (SOC) [130], is an efficient approach
in computing the magnetic parameters, such as
magnetic moment, exchange integral, Magnetic
Anisotropy Energy (MAE), and Curie temperature
(TC) of 2D magnetic materials. Furthermore, a com-
bination of DFT and Monte Carlo (MC) simulations
employing the Heisenberg model [131] allows for
the tracking of magnetization variation with tem-
perature, enabling the determination of the magnetic
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Figure 5. The crystalline lattice and band structures of different 2D materials computed using DFT and are arranged in order of
increasing bandgap (depicted by the pink shaded area). The materials shown include metallic (NbSe2), semi-metallic (graphene),
semiconducting (TiS3, antimonene, phosphorene, SnS, MoS2), and insulating (h-BN). Reproduced from [103] with permission
from the Royal Society of Chemistry.

transition temperature for 2Dmaterials. For instance,
DFT calculations [132–134] determined the ferro-
magnetic (FM) nature of 2D CrI3, and this behavior
was later experimentally verified [135]. The DFT
reported magnetic moment and Curie temperature
ranged from 3 to 3.44 µB per formula unit and 61–
107 K, respectively. Notably, the magnetic behaviors
of single- or few-layer sheets of α-RuCl3, VSe2, VTe2,
NbTe2, and CrGe(Si)Te3 have also been explored
through DFT calculations [136]. In addition, DFT
analysis can provide an in-depth understanding of
effects of dopants and defects on magnetic proper-
ties, and this can efficiently accelerate the screening
of 2D magnetic materials [45].

To accurately estimate the optical spectra of
materials, precise prediction of excited states is
essential. While DFT is the cornerstone for determ-
ining ground-state properties (as discussed in
section 2.2.1), themost advancedmethod for describ-
ing electronic and optical excitations relies on MBPT
based on Green’s function approaches [79]. Despite
its computational cost, MBPT is indispensable for
establishing the band gap in semiconductor sys-
tems, particularly when accounting for electron-
electron correlations through the GW approach. This
advanced theory, when integrated with DFT, unravels
photon absorption, electron-hole interactions, and

electron-photon scattering mechanisms in semicon-
ductors, including 2D materials.

By employing DFT simulations using GGA-PBE
functional, it was shown that the hydrogenated penta-
Pt2N4 monolayer significantly enhances the elec-
tronic bandgap from 1.10 eV to 2.70 eV. This study
also demonstrated that hydrogenated Pt2N4 displays
a weak and strong optical absorption in the visible
and ultraviolet regions, respectively [137]. In a separ-
ate work [138], the optical property analysis ofmono-
layer ZrS2 (bandgap: 2.8 eV) using the GW approach
sho two intense peaks formed by bound excitons with
large oscillator strengths, as shown in figure 6(a).
Here, the lowest-energy peak is observed at 2.68 eV,
and the k-space analysis of the excitons forming the
three main peaks is shown in figures 6(b)–(d). This
study also suggests that replacing the ZrS2 compon-
ent within the ZrS2/HfS2 heterostructure signific-
antly enhances the dissociation of intralayer excitons
in ZrS2, resulting in a higher photoelectron gener-
ation rate. Such quantitative analyses of electronic
and optical properties using DFT offer a compre-
hensive understanding of material properties, open-
ing avenues for next-generation optoelectronic device
applications [138].

The Moiré pattern, or Moiré superlattice, is
another key property of 2D materials, characterized
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Figure 6. (a) The optical spectra of ZrS2 monolayer plotted against the in-plane component of the imaginary part of the dielectric
function along with the oscillator strengths of the main excitons marked as blue vertical bars. (b)–(d) k-space analysis of the
excitons forming the three main peaks in (a) along with their relative weight of the electronic states contributing to the respective
excitation, based on the radius of the red circles. Reprinted figure with permission from [138], Copyright (2019) by the American
Physical Society.

by the overlapping of two analogous layers, result-
ing in a distinct periodicity [139]. Variations in lat-
tice constants, translational shifts, or twisted angles
between the layers can alter the periodicity of the
Moiré superlattice [140]. In the case of magnetic 2D
materials, these superlattices can significantly influ-
ence the magnetic properties of the system, such as
magnetic anisotropy, spin polarization, or magnetic
coupling between layers. By precisely controlling the
stacking configuration and interlayer interactions of
magnetic materials, these magnetic properties can be
effectively tuned through the manipulation of the
Moiré pattern. Notably, Ramos et al demonstrated
a rapid transition from a semiconductor state to a
metallic state of 2 H-MoS2 at approximately 10◦ of
rotation [141]. Additionally, their analysis of the band
structure within the range of 0◦ < θ < 90◦ revealed
a reversal state from metallic to semiconductor upon
rotation reaching 90◦.

2.3. DFT based study and design of 2Dmaterials
for different applications
Most promising applications of 2Dmaterials, includ-
ing batteries, catalysis, and sensing, belong to the cat-
egory of host-guest chemistry (HGC). Most types of
HGCs are governed by the physisorption of the guest
atoms or molecules on the surface of the 2D materi-
als, in which the adsorbates are held onto the surface
of the absorbent by weak Van der Waals forces. This
type of analysis is beneficial for many applications,
including alkali-ion battery electrodes [142], and bio
and gas sensing [143, 144]. On the other hand, during
chemisorption, the adsorbates are bound to the host
material by chemical bonds as mostly seen in catalysis
[145].

The DFT is an ideal tool for estimating the
adsorption capability of a guest atom or molecule on
the surface of a 2Dmaterial by computing the adsorp-
tion energy using this relation:

Eads = E2D+guest −
(
E2D + Eguest

)
(3)

where E2D+guest is the total energy of the lowest energy
configuration of the 2D material with the adsorbed

guest entity, E2D is the total energy of the 2D struc-
tures without the adsorbed guest entity, and Eguest
is the total energy of the individual guest atom or
molecule. By analyzing the adsorption energy, one
can find the most stable geometries of the host-guest
configurations. According to equation (3), a negative
value of adsorption energy shows that the adsorption
process is spontaneous and exothermic, which is cru-
cial for deciding the feasibility of a hostmaterial for an
HGC application. DFT is the most suitable approach
in estimating the distinct adsorption behaviors of dif-
ferent types of guest atoms andmolecules on surfaces
of 2Dmaterials by analyzing the degree of chemisorp-
tion and physisorption, as well as different levels of
charge transfer, electronic properties, and host-guest
distance [142].

2.3.1. Metal ion batteries
DFT approach is widely used in estimating the prop-
erties of different materials for metal-ion battery
(MIB) electrode applications. In the case of 2Dmater-
ials for use in MIBs, the HGI occurs when guest alkali
atoms are absorbed onto the surface of a 2D mater-
ial, and DFT can determine the adsorption energy.
However, adsorption energy is not the sole determ-
inant for estimating the potential of a 2D mater-
ial in MIB applications. Charge transfer processes
between the electrode and electrolyte as well as elec-
trode and the metal-ions, essential for battery oper-
ation, can be studied through DFT by examining
electronic structure changes during charge and dis-
charge cycles. Additionally, DFTpredicts open-circuit
voltage by calculating the electrochemical potentials
of redox couples. The method also simulates volume
expansion upon ion intercalation, offering crucial
information about structural stability during cycling.
Moreover, DFT assesses the impact of defects, such
as vacancies, on the electronic and structural proper-
ties of 2D materials, contributing to a comprehensive
understanding of their performance in battery applic-
ations. DFT is instrumental in evaluating diffusion
barriers and the nudged elastic band (NEB) approach
ensures the proper understanding of the diffusion
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Figure 7. (a) All possible Li, N, and K diffusion pathways when considering Ca2C monolayer as an anode material. The diffusion
energy barriers of (b) Li, (c) Na, and (d) K atoms through the C→ C (Path 1), C→ Ca1 (Path 2), C→ Ca2 (Path 3), and
Ca→ Ca (Path 4) pathways are also provided. Reproduced from [146]. © IOP Publishing Ltd. All rights reserved. (e) Charge
density distribution (CDD) during the adsorption of COCl2 molecule on pristine and defective Ti2C(OH)2 MXene. Cyan and
yellow colors in CDD denote the charge depletion and accumulation, respectively. (f) Green, black, and red regions represent the
total density of states (TDOS) of the MXene surface with the adsorbed COCl2 molecule, TDOS of an isolated MXene, and the
TDOS of the isolated COCl2 molecule. The vertical black dashed line represents the Fermi level which is set to 0 eV. Reprinted
from [58], Copyright (2020), with permission from Elsevier.

properties of alkali atoms, and utilizing this capab-
ility, a previous study investigated the diffusion bar-
rier of Li/Na/K on Ca2C MXenes [146], as shown
in figure 7. This study considered all the possible
metal adatom diffusion kinetics pathways as shown
in figure 7(a) and revealed ultra-low diffusion barri-
ers of Li, Na, and K adatoms on Ca2CMXenes ensur-
ing superionic mobility. This can effectively reduce
the charging time and thus making Ca2C MXenes
to be potentially excellent anode materials for MIBs.
Studies also demonstrated that defects such as vacan-
cies, SW defects, and other topological defects in 2D
materials act as a potential trap with active sites for
the adsorption of alkali-metal atoms, thus enhan-
cing the metal-ion conduction, suitable for battery
performance [147]. In the case of 2D MXenes, the
vacancy defect can enhance the adsorption of Lithium
ion near the defective region [148]. In 2D BC3

monolayer, the SW defect incorporation provided an
enhanced capacity of 1287 mAhg−1, compared to its
pristine form (1144mAhg−1) [142] and conventional
MIB electrodes, such as graphite with a capacity of
372 mAhg−1 [149].

2.3.2. Gas and bio seniors
The gas and bio sensing applications of 2D mater-
ials are another notable area in which DFT can be
effectively used. The primary distinction between
sensing applications and battery technologies lies in
the specific property of interest that can enable effi-
cient sensing technologies. In sensing, the focus is
often on properties such as conductivity, resistivity, or
changes in electrical characteristics. The conductivity
of a material may change when exposed to certain
gases and calculation related to electronic structure,
energy levels, desorption time, and charge transport

properties are crucial in understanding and predict-
ing these changes for effective sensor design. On
the other hand, in battery technologies, the primary
property of interest is the electrochemical behavior
of 2D electrode materials. This involves calculations
related to energy storage capacity, redox potentials,
ion diffusion rates, and structural stability during
charge-discharge cycles. Understanding these proper-
ties is essential for designing batteries with optimal
energy density, charge/discharge rates, and cycle life.
The key entity for determining the capability of
2D materials for efficient sensing technology is the
adsorption energy. From the adsorption energy, the
desorption time or the recovery time of the gas
molecule can be completed, and a faster recovery
time indicates that the sensor can be used as a multi-
use sensor. There have been several studies which
used DFT calculations to study and design toxic
gas sensors. For example, Thomas and Asle Zaeem
[118] demonstrated that the interaction between both
the pristine and defective Ti2C(OH)2 sheet and the
COCl2 gas molecule is primarily governed by phys-
isorption with a stable adsorption energy, and there
is charge transfer from the molecule to the MXene,
which is desirable for superior sensing performance
(see figure 7(e)). This study also reported a notable
improvement of DOS contributions at the Fermi level
with the presence of COCl2 molecule adsorbed on
Ti2C(OH)2 MXenes, as shown in figure 7(f). These
DFT analyses show that the sensing mechanism of
the COCl2 molecule on a Ti2C(OH)2 sensor is influ-
enced by both defects and surface functional groups.
It should also be noticed that since diverse types of gas
molecules are present in the atmosphere, the adsorp-
tion properties of specific gas molecules can be influ-
enced, or not, by the presence of other molecules.
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The selective sensing aspect is crucial, particularly for
the accurate detection of specific target molecules.
Previous research indicated that the presence of water
molecules (humidity) and other gases might not sig-
nificantly impact the gas sensing properties of 2D
materials [150, 151]. Similar to gas sensing, DFT is
used to extract sensing performance of biomolecules
when interacting with 2D materials. In recent studies
[143, 144], new insights were provided about the
adsorption mechanism, charge transfer, and elec-
tronic properties of 2D layered double hydroxides
such as NiFe and NiCo for glucose and dopam-
ine selective sensing applications, respectively. The
insights obtained from DFT further provided valu-
able information to narrow down the experimental
efforts. These DFT studies clearly underscore the role
of fundamental analysis in designing 2Dmaterials for
sensing applications.

2.3.3. Catalysis
Heterogeneous catalysis is another criticalHGCprob-
lem involving the discovery and development of prac-
tical catalysts with excellent selectivity and activity
for various electrochemical reactions, including the
hydrogen evolution reaction (HER), oxygen evol-
ution reaction (OER), oxygen reduction reaction
(ORR), CO2 reduction reaction (CO2RR), nitro-
gen reduction reaction (NRR), and C-H activa-
tion, among others. DFT calculations can determ-
ine reaction pathways, predict active sites, delineate
the roles of reaction intermediates such as CO or
formate, and assess the overpotentials [152]. For C-
H Activation, DFT calculations provide a detailed
understanding of the role of various geometrical
and chemical descriptors such as vacancy formation
energy (VFE) and Bader charges for efficient cata-
lytic activity [153]. DFT calculations have been util-
ized to study a wide variety of 2D materials includ-
ing MXenes [154] for their HER catalytic capabilities
such as adsorption energies, Gibb’s free energy, and
surface reactivity. Among the many MXenes which
have never been synthesized in a laboratory setting
yet, DFT simulations revealed which MXenes were
viable without costly synthesis [155]. By employ-
ing DFT, Kumar et al studied the oxidative dehyd-
rogenation (ODH) of light alkanes such as ethane
(C2H6), propane (C3H8), and butane (C4H10) over
oxygen functionalized hexagonal boron nitride (h-
BN) [153]. In this work, the DFT helps to under-
stand the role of O functionalization, the reactiv-
ity of O atoms, electronic properties, and catalytic
descriptors such as Bader charge and O vacancies for
establishing the most selective catalyst. Previous DFT
studies also established that the presence of defects,
dopants, and large number of edges in 2D materi-
als, such as in graphene [156] and MoS2 [157], cre-
ate active sites for catalytic activities. For example, in

the case of OER, it is a complex multistep process,
initiated by a hydroxyl group (OH−) adsorption at
the catalytic site which is considered the activation
step. In view of this, understanding the catalyst activ-
ation step following OH− adsorption on the surface-
active site is crucial in providing detailed insights
into the catalytic activities. DFT was used in comput-
ing the OH− adoption energy, electronic properties,
and charge transfer of NiSe, NiTe, and NiSeTe slab
models to obtain their catalytic performance to sup-
port the experimental observations [145]. This study
provided new understanding of structure-property-
performance relationships of these catalysts for the
improved OER performance.

2.4. DFT integration with large scale simulations
While DFT and AIMD simulations supply accur-
ate insights, obtaining a quantitative understanding
compared to experiments can be challenging. This
is primarily due to the computational demands, sys-
tem size limitations, and the level of theory employed
for DFT and AIMD computations. Overcoming the
length-scale limitations of DFT is possible through
nano- and mesoscale atomistic simulations, includ-
ing MD and phase field (PF) simulations. The phys-
ical insights gained from DFT simulations, coupled
with relevant experimental data, can effectively aid
in developing and fine-tuning accurate empirical
potentials [158] for nano-scale MD simulations. The
significance of empirical interatomic potentials and
nano- and mesoscale simulations for modeling signi-
ficantly larger systems is discussed in section 3.

Despite their remarkable physical and chemical
properties, it should be noted that most 2D materi-
als own unique features that cannot be fully captured
using the standard DFT approach. This is associated
with the fundamental limitation of DFT that stems
from its mathematical foundation, which exclusively
addresses the ground state density. Consequently,
the exploration of excited states encounters obstacles
within this method, although alternative approaches
like time-dependent DFT (TDDFT) [159, 160] have
been proposed. Furthermore, despite being com-
monly interpreted as physical quantities, the KS
eigenvalues and eigenvectors do not formally corres-
pond to the energy levels and eigenstates of the sys-
tem. Similarly, as mentioned before, the hybrid DFT
calculations [161] have been employed for accurate
bandgap predictions, based on the specific mater-
ial of interest [162]. Besides, as DFT is inherently
a zero Kelvin approach, the incorporation of tem-
perature can be achieved through AIMD techniques.
However, certain critical material properties, like
thermal expansion, thermal conductivity, and tem-
perature effects on mechanical deformation, cannot
be accurately analyzed using AIMDdue to limitations
in system size with current DFT standards.
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3. MD simulation

MD simulation is based on classical mechanics and
Newton’s equation of motion. It is a powerful tool for
nanoscale understanding of themechanical and phys-
ical behaviors of materials and determining differ-
ent material properties. The typical procedure to pre-
form MD simulations includes defining the mater-
ial system, selecting or developing the appropriate
force field (i.e. interatomic potential), performing
energy minimization, integrating the equation of
motion, post-processing and visualization, validation
and/or uncertainty quantification, and result inter-
pretation. Amongst them, utilizing an appropriate
force field is a crucial component that directly affects
the accuracy and reliability of the simulation results.
Based on whether they explicitly account for chem-
ical reactions, the force field can be broadly categor-
ized into reactive and non-reactive ones. ForMD sim-
ulations of 2Dmaterials, some commonly used react-
ive potentials include ReaxFF [163] and the REBO
[164] potentials. In the context of non-reactive force
fields, empirical (e.g. Lennard-Jones potential [165])
and semi-empirical (e.g. Embedded Atom Method
(EAM) [166], and Tersoff Potential [167]) potentials
are commonly used to describe the structural and
thermodynamic properties of 2Dmaterials. In the fol-
lowing, we will briefly discuss the previous efforts in
determining the mechanical, thermal, oxidation, and
desalination properties of 2D materials by MD sim-
ulations and discuss some technical and/or physical
issues associated with these works that have affected
the reliability of the results. Also, we provide poten-
tial future directions in advancing MD simulations
for the study and design of 2D materials.

3.1. Mechanical behavior and properties of 2D
materials
MD simulations offer several advantages when it
comes to simulating the mechanical properties and
deformation behavior of 2D materials compared to
experimental or other numerical techniques. Asmen-
tioned before, 2D materials often have a layered
structure, which is essentially one atom or a few
atoms thick, and the individual layers are weakly
bound to each other. Such a unique structure endows
2D materials with exceptional mechanical flexibil-
ity, making them suitable for applications in flexible
electronics and coatings. Meanwhile, the thin layered
structure presents several challenges to experimental
studies including accurate determination of layer
thickness, defects characterization, limited interac-
tion cross-section, susceptibility to strain and mech-
anical stability, and in situ dynamic behavior char-
acterization. MD simulations can accurately capture
the interactions within and between layers, which is
essential for studying properties such as interlayer
sliding and stacking configurations. Additionally,

various defects can form in the synthesis of 2Dmater-
ials, and understanding the nature and impact of
these defects is crucial for tailoring the properties of
2D materials for specific applications.

3.1.1. Elasticity and strength
MD simulations are capable of calculating the elastic
properties (e.g. elastic modulus and Poisson’s ratio)
and strength of 2D materials by subjecting them to
different deformation conditions (e.g. uniaxial ten-
sion or nanoindentation) and observing their force-
displacement or stress-strain response. For example,
uniaxial tension simulations with Tersoff potential
was conducted to study the effect of point defects,
grain boundaries (GBs), and lattice defects on the
elasticity of single-layer and polycrystalline hexagonal
boron-nitride (h-BN) [168, 169]. Simulation res-
ults suggested that an extremely high tensile strength
of 80 GPa could be reached in polycrystalline h-
BN with grain sizes ranging from 5 nm to 10 nm.
Hence, it is speculated that the experimentally fabric-
ated polycrystalline h-BN films can exhibit ultra-high
elastic modulus and tensile strength. The revealed
failure mechanisms uniaxial tension, namely boron-
nitrogen bonds breaking leads to voids growth and
crack propagation along GBs, are similar to experi-
mental observations [170].

MD simulations were also applied to conduct
uniaxial tensile, tribological, nanoindentation, and
bending tests to study the fracture toughness, friction,
and wear reduction behavior of various 2Dmaterials,
such as graphene [171–173], h-BN [104, 169, 174],
MoS2 [175, 176], and MXenes [158, 177, 178]. Most
of the simulation results, such as elastic modulus,
hardness and failure mechanisms, agree well with the
experimental testing outputs and match the in-situ
TEM characterization of strengthening and toughen-
ing mechanisms.

Since MD calculations are based on classical
mechanics, the reliability and accuracy of the pre-
dicted mechanical properties and deformation beha-
viors rely on the accuracy of the force fields used. For
example, in the study of single crystalline MXenes,
different interatomic potentials were employed,
namely a combined EAM, LJ and Axilrod-Teller
(AT) potential [179], Charge Optimized Many Body
(COMB) potential [180], ReaxFF potential [181,
182], and Tersoff-style bond-order potential [158].
Through a comparison of failure modes, force-
displacement curves, and stress-strain curves in
figure 8, one can conclude that the selected force fields
directly affect the calculated mechanical properties
and deformation behaviors of MXenes. Therefore, it
is critical and essential to perform uncertainty quan-
tification and validate the MD simulation results to
ensure the reliability and accuracy of the simulated
outcomes.

In a recent review paper by Nayir et al [1],
the progress of ReaxFF force field developments

13



2D Mater. 11 (2024) 042004 M Asle Zaeem et al

Figure 8. A comparison of the atomic configurations and stress-strain or force-displacement curves of MXenes when simulated
using different potentials. (a)–(b) Ti3C2 under tension using combined EAM, LJ and AT potential. Reproduced from [179]. ©
IOP Publishing Ltd. All rights reserved, (c) stress-strain curves of Ti3C2 under tension using COMB potential. Reprinted from
[180], Copyright (2021), with permission from Elsevier. The red and black curves denote the armchair and zigzag directions,
respectively. Ti3C2 under (d)–(e) tension and (f)–(g) nanoindentation using Tersoff-style potential. Reprinted figure with
permission from [158], Copyright (2022) by the American Physical Society, and (h)–(i) Ti3C2O2 under nanoindentation using
ReaxFF potential. Reprinted from [182], Copyright (2019), with permission from Elsevier.

for 2D materials was extensively discussed. In the
current work, we focus on evaluating the influ-
ence of different potentials on material properties
and exploring their common applications. Several
commonly used validation approaches include dir-
ect comparison with experimental data, benchmark-
ing against theoretical prediction [183, 184], and
performing sensitivity analysis of key simulation
parameters [185]. Validation can not only help assess
the performance of the chosen force field but also
identify the discrepancies between simulation results
and experimental or theoretical data, which could
help in understanding the limitations of the simu-
lation approach. Reliable MD simulations can com-
plement experimental studies in providing a com-
prehensive understanding of the mechanical beha-
vior of 2D materials under various loading condi-
tions. However, it is worth recognizing the aspects of
agreement and disparity when validating MD sim-
ulation results against the experiment data. In gen-
eral, MD technique, when properly parameterized,
can capture the inherent material behavior, resulting

in agreement in the general trends of stress-strain
curves with experimental ones. However, there can
be quantitative differences in strength, toughness and
ductility between experimental and simulated results,
although the elastic modulus and hardness predicted
from MD simulation have been reported to be well
consistent with the experiment results [186, 187]. The
reasons behind inconsistencies include limited size
scale (∼nm), time scale (∼ps) and high strain rate
(>107 s−1) ofMD simulations, andmismatched tem-
perature and environmental conditions in simula-
tions and experimental setups. Additionally,MD sim-
ulations might oversimplify or misrepresent defects,
leading to different responses when compared to real-
world experiments.

3.1.2. Defects behavior
Fabrication of perfect single-layer sheets both at the
lab scale experiments and commercial scale is very
challenging because the produced materials by any
method consist of some specific defects [188]. Also,
defects can form during operation and use of 2D
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Figure 9. (a) Simulated STM image and structural information of the SW defect. Reprinted figure with permission from [189],
Copyright (2009) by the American Physical Society. (b) Atomic-resolution ADF-STEM images of graphene crystals with the GBs
outlined. Reproduced from [190], with permission from Springer Nature. (c) The structure of perfect graphene and SW-defected
graphene. Reprinted figure with permission from [189], Copyright (2009) by the American Physical Society. (d) Stress
distribution of the SW defective graphene with different rotations of C–C bond. The applied loading is along the armchair
direction. (e) The stress-strain curve of graphene with different SW defect orientations under tension along the armchair
direction. Reprinted from [191], Copyright (2014), with permission from Elsevier.

materials. The multiscale defects in 2D materials
include vacancies, interstitials, insertion of foreign
elements, edge distortions, and lattice deformation,
and twisting and bulking of sheets. They often deteri-
orate the uniqueness of materials and impact their
thermal, mechanical, electronic, photonic, and sur-
face properties. Considering the ultra-thin charac-
ter of 2D materials, studying the atomic or nano-
scale dynamic processes, such as the initiation and
propagation of defects, can be challenging in real-
time experiments.

MD technique has been extensively adopted to
investigate the formation of defects and their effects
on the mechanical properties of 2D materials. SW
lattice defects are often found in graphene, which is
characterized by a 90˚ rotation of a pair of atoms.
They are created when four hexagons are converted
into two heptagons and two pentagons, as shown
in figures 9(a)–(c) [189–191]. MD-simulation-based
studies have been conducted to inspect and analyze
the influence of SW defects and vacancies on the
mechanical and chemical features of graphene [192–
194], graphene/epoxy nanocomposites [195], and h-
BN [196]. SW defects were observed to annihilated
with increasing stress levels and strain rate, resulting
in an impairment of the strength of the 2D materials.
It was revealed that the orientation of the SW defect
with respect to the chirality governs the strength of
graphene while has negligible effect on the elastic
modulus, as exhibited in figures 9(d) and (e) [191].

The effect of GBs on the mechanical behavior of
2D materials, such as graphene [171], h-BN [169,
197], and MoS2 [198], was also investigated by MD
simulations. The elastic modulus and tensile strength
exhibited a decline with the growing number of

crystal grains, denoting an increased presence of GBs.
This trend contradicts the conventional Hall-Patch
relation commonly observed in bulk materials. GBs
in 2D h-BN were identified as primary sites for crack
initiation, demonstrating a higher sensitivity to the
number of boundaries rather than their respective
sizes [169, 197]. Additionally, MD simulations have
been have been applied to study the impact of point
defects on the mechanical properties of 2D materi-
als, such as graphene [199], h-BNs [200],MoS2 [176],
and MXenes [201]. Take MoS2 for instance, vacan-
cies exhibit various forms, with some occupying only
one sulfur site and others extending to occupy up to
six sulfur sites. These vacancies may also accommod-
ate alternative atomic species, such as a molybdenum
substitutional atom. MD simulations demonstrated
that the presence of single sulfur vacancy can increase
the failure strain due to phase transformation [176].
The atomistic capabilities of MD simulations enabled
exploration of specific sulfur vacancy compositions,
elucidating the intricate mechanisms governing the
observed alterations in properties.

3.1.3. Fatigue behavior
MD is also an integral tool in studying fatigue beha-
vior of 2D materials. MD simulations can provide a
deep understanding of nanoscale mechanisms gov-
erning fatigue, such as the evolution of dislocations,
crack initiation and propagation, and interactions
between defects. Moreover, it allows for the predic-
tion of fatigue behavior under conditions that may be
difficult to replicate in experiments. This knowledge
is crucial for designing fatigue-resistant 2D mater-
ials. Using AFM (figures 10(a)–(c)), graphene was
found to exhibit a fatigue life of more than 109 cycles
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Figure 10. (a) AFM fatigue testing set-up. (b)-(c) Fracture surfaces of graphene and graphene oxide. (d) TEM image of local
fatigue fracture zone for monolayer graphene oxide. (e) Progressive damage morphology of graphene oxide at different fatigue
cycles. (f) Stress profile during fatigue loading. Reproduced from [202], with permission from Springer Nature.

in uniaxial cyclic tensile loading, and this is higher
than any other materials so far. MD simulations with
ReaxFF potential were conducted to understand the
atomistic mechanisms underpinning the fatigue fail-
ure of graphene and graphene oxide [202]. Bond
reconfiguration was observed prior to catastrophic
failure, which is consistent with the observation from
TEM (figures 10(d)–(f)). MD simulations were also
performed to study the fatigue behavior of 2D MoS2
containing a crack under a uniaxial cycle tensile load-
ing. The strain range, strain ratio, initial crack length,
and temperature could significantly affect the fatigue
life of the material [203]. By employing models or
fatigue laws derived at a macroscopic scale to fit
MD simulation results, a surprising consistency was
observed, indicating the universal nature of the rela-
tions between fatigue life and the four influencing
factors. This study implies that fatigue behavior in
2D materials display specific features at the atomic
scale while concurrently sharing common character-
istics observed at the macroscopic scale.

It is worth discussing several shortcomings of
MD simulations in the study of the fatigue proper-
ties. First, the timescale achievable in MD simula-
tions may be insufficient to capture long-term fatigue
behavior. Second, MD simulations may overlook the
thermodynamic aspects of fatigue, such as temper-
ature effects and thermal fluctuations. Specifically,
in fatigue, the repetitive cycles of deformation and
relaxation cycles can induce heat generation, thereby
affecting the overall thermodynamic behavior of
materials. However, the classical force fields typically
work under the assumption of constant temperature.
Hence, MD simulations based on classical mechan-
ics might not capture these temperature effects and
thermal fluctuations accurately. In contrast, some

advanced simulation techniques, such as AIMD and
temperature-accelerated MD (TAMD), can address
these limitations by considering quantum mechan-
ical effects or by explicitly incorporating temperat-
ure changes. However, the use of these methodo-
logies is hindered by their computational demands,
leading to notable restrictions on the scale of the
simulation system. Besides, it is challenging to use
MD simulations to simulate large-scale systems that
represent real-world structures. The simplified mod-
els in MD simulations can potentially disregard the
presence of defects, impurities, or environmental
factors. Thus, more advanced modeling strategies,
such as utilizingmultiscale modeling or couplingMD
with other large -scale simulation methods, may be
necessary to address these limitations and provide a
more comprehensive understanding of fatigue prop-
erties of 2D materials.

3.2. Thermal behavior and properties of 2D
materials
MD simulation has emerged as a powerful tool
for predicting thermal behaviors and properties of
materials at the atomic scale including thermal con-
ductivity, interfacial thermal conductance, temperat-
ure distribution phonon dispersion relations, thermal
expansion coefficient, thermal diffusivity, and heat
capacity. In the following subsection, we will briefly
assess the role of MD simulations in advancing our
knowledge of the thermal properties of 2D materials.

3.2.1. Thermal conductivity
In MD simulations, thermal conductivity is calcu-
lated using either the Green-Kubo method [204] in
equilibriumMD (EMD) or the directmethod in non-
equilibrium MD (NEMD) [205]. The Green-Kubo
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method calculates thermal conductivity (κ) from the
integral of the heat current autocorrelation function
during the equilibrium phase of the MD simulation
with respect to a given correlation time t [206]:

κ=
V

(3KBT2)

ˆ ∞

0
⟨J(0) · J(t)⟩dt (4)

where V is the system volume, KB is the Boltzmann’s
constant, and T is the system temperature. The term
within the brackets represents the heat flux autocor-
relation and are represented as:

J=
1

V

(∑
i

eivi −
∑
i

Sivi

)
(5)

where ei is the total energy of atom i and vi is the
velocity vector. Si is the per atom stress tensor. This
EMD method provides a detailed understanding of
the contribution of different types of interactions to
thermal conductivity [207]. However, it requires a
long equilibration time, which can be computation-
ally expensive.

On the other hand, the direct method used in
NEMD involves creating a non-equilibrium state by
adding and subtracting equal amounts of energy, res-
ulting in a steady linear temperature profile in the
intervening region. The NEMD can be implemented
in two distinct manners: by generating a temperature
gradient across the two ends of the system (T-NEMD)
or by maintaining a constant heat flux (Q-NEMD).
In T-NEMD, the temperatures of the hot and cold
reservoirs are designated as T + ∆T/2 and T–∆T/2,
respectively, where T is the equilibrium temperature
and∆T is the temperature difference. After reaching
a stable temperature gradient, the thermal conductiv-
ity is determined by applying the Fourier’s law of heat
conduction [208]:

κMD =− J

(dTMD/dz)
(6)

where dTMD/dz is the temperature gradient along
the nanowire longitudinal axis. The Q-NEMD closely
resembles the T-NEMDmethod, differing only in the
boundary conditions. T-NEMD utilizes the Dirichlet
boundary condition, specifying temperatures at the
cold and hot reservoirs, whereas Q-NEMD employs
the Neumann boundary condition, specifying added
and removed heat flux in the hot and cold reservoirs.
Although the NEMD method can be more efficient
than EMD, it demands a substantial perturbation
to manifest a discernible response, thereby introdu-
cing additional complexities. A noteworthy benefit of
EMD lies in its decreased sensitivity to size effect com-
pared to NEMD. Both methods have advantages and
disadvantages, and the choice between them depends
on the specific requirements of the simulation.

Furthermore, it is essential to select an appropri-
ate potential to ensure the reliability of the obtained

thermal conductivity. Take graphene for instance, Si
et al [209] conducted non-equilibriumMD (NEMD)
simulations to examine the applicability of four
potential models, i.e. Tersoff, REBO, opt-Tersoff and
AIREBO, in study the thermal transport of graphene.
It was found that the Tersoff, REBO and AIREBO
potentials greatly underestimated the thermal con-
ductivity of single-layer graphene. While, the Opt-
Tersoff potential was noted to be the most suitable
one in predicting the thermal properties of graphene,
and it has been demonstrated to be able to well repro-
duce the experimental results. The thermal conduct-
ivities, phonon spectrum and phonon dispersion pre-
dicted by these four types of potential are compared
in figure 11. Tersoff, REBO, and AIREBO force fields
are found to significantly underestimate the thermal
conductivities of single-layer graphene, although
they qualitatively capture the temperature-dependent
trend, as indicated in figure 11(a). Conversely, the
opt-Tersoff potential outperforms in providing more
accurate thermal conductivities and effectively rep-
resents phonon scattering in multi-layer graphene,
as demonstrated in figures 11(b) and (c). Table 1
provides a comprehensive summary of the thermal
transport properties of graphene utilizing differ-
ent potentials and methods. The considerable dis-
crepancies in thermal properties observed, which
underscores the importance of a cautious selection
of potential in calculations to ensure precision in
reflecting the thermal properties and behavior of 2D
materials.

3.2.2. Phonon dispersion
Phonon localization has a great potential for improv-
ing the existing energy applications including ther-
moelectric materials and thermal barriers by redu-
cing thermal conductivity. According to the theory
of Anderson localization [223], the electrons in 3D
systems are only partially localized while those in
2D systems can be entirely localized. Inspired by
this deduction, NEMD and EMD simulations with
Tersoff potential were conducted to investigate the
effects of dimensionality on phonon localization in
graphene/h-BN superlattice [224]. It was found that
the 2D system exhibits more prominent phonon loc-
alization behavior than the 3D system. Moreover,
stronger phonon localization was observed in ran-
dommultilayer (RML) model when compared to the
superlattice (SL) model, as illustrated in figure 12.
When studying phonon transport, atomistic and
time-dependent simulations naturally incorporate
phonon anharmonicity using semi-empirical para-
meters that can be derived from ab-initio methods
[225], all within systems constrained to thousands
of atoms. Moreover, the computational load is sig-
nificantly increased when the phonon dispersion is
implemented in anharmonicity [226]. The accur-
acy of phonon dispersion relations can be impacted
by the size of the simulated system, particularly
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Figure 11. (a) Thermal conductivities, (b) phonon spectrum and (c) phonon dispersion of graphene predicted by REBO,
AIREBO, Tersoff, and opt-Tersoff potentials. Reprinted from [209], Copyright (2017), with permission from Elsevier.

Table 1. Thermal transport properties predicted using different types of potentials. Reprinted from [209], Copyright (2017), with
permission from Elsevier.

Type
References
and years

Thermal
conductivity
(W m−1 K−1) Typical size Potential model Methodology

Single-layer
graphene

[210] (2009) ∼1300 1.5× 5.7 nm2 REBO NEMD
[211] (2011) ∼2900 2.4× 2.5 nm2 Opt-REBO EMD
[212] (2011) 77.3 10.2× 10.2 nm2 AIREBO NEMD
[213] (2012) 53.6 2.2× 10.2 nm2 AIREBO NEMD
[214] (2012) 400∼ 1600 5.2× (45∼ 2280) nm2 Opt-Tersoff NEMD
[215] (2012) 78 2.13× 10.5 nm2 AIREBO NEMD
[216] (2012) 3200∼ 5200 (9∼ 27)× (4∼ 18) nm2 AIREBO NEMD
[217] (2013) 370∼ 580 10.4× (100∼ 650) nm2 Tersoff NEMD
[218] (2014) 400∼ 1800 5× (0.2∼ 15) nm2 Opt-Tersoff NEMD
[219] (2016) 910∼ 1655 (10∼ 300)× 5.2 nm2 Opt-Tersoff NEMD
[220] (2016) 128.4 11.9× 18.2 nm2 REBO NEMD

Multi-layer
graphene

[221] (2011) 580∼ 880 5× (7.5∼ 20) nm2 × (1∼ 5)
layers

Tersoff-LJ NEMD

[222] (2012) 200∼ 1100 (1∼ 10)× (10∼ 20)
nm2 × (1∼ 5) layers

Tersoff-LJ NEMD

for low-frequency modes. Long-wavelength phon-
ons may not be fully sampled due to finite size
issues [227]. Numerous improvements to themethod
have been proposed thus far [228]. A novel method,
utilizing the energy density of the phonon spectrum,

has been formulated and evaluated to directly estim-
ate phonon dispersion relations and lifetimes based
on atomic velocities in a crystal [228]. It is also sugges-
ted to employ methodologies that go beyond classical
MD to accurately incorporate quantum phenomena,
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Figure 12. (a), (b) Atomic structures of SL and RML models, respectively. Phonon dispersion relations and participation ratios
for (c) 3D SL, (d) 3D RML, (e) 2D SL, and (f) 2D RML. Reproduced from [224]. © IOP Publishing Ltd. All rights reserved.

such as path integral MD or quantum Monte Carlo
techniques.

3.3. Oxidation behavior
The vulnerability of 2D materials to oxidation upon
exposure to air, characterized by a chemical reaction
involving electron loss and the introduction of oxy-
gen, has a profound impact on their functional prop-
erties and the performance of devices utilizing 2D
materials [229]. It is crucial to unravel the intric-
ate dynamics of oxidation at the atomic scale, but
this is challenging for experiments. MD simulations
can provide insights into the oxidation characterist-
ics, such as the rate of oxygen adsorption and charge
distribution [230]. ReaxFF potentials are commonly
used for oxidation simulations since they are able to
simulate bondbreaking and reforming. The oxidation
behavior of a range of 2D materials, encompassing
graphene, TMD,MXenes, and h-BN, has been extens-
ively reviewed in a recent paper leveraging the ReaxFF
[1]. This work, we use 2D MXenes as a model to
illustrate the capabilities of MD in studying material
oxidation behavior. Employing the ReaxFF potential,
the interactions of Ti3C2Tx MXene layers with inter-
calated pure water and metal ions was first studied
[231]. Thereafter, Lotfi et al employed ReaxFF MD
simulations to investigate the oxidation behavior of
MXenes under different environments, in terms of
humidity and temperature, as shown in figure 13(a)
[230]. They revealed that by increasing the temper-
ature, the oxidation rate increases, and depending on
the oxidant the rate is in the order of: H2O2 > wet
air > dry air. Recently, a neural network potential
(NNP) was developed to study the oxidation beha-
vior of the V2CO2 MXenes in aqueous environment
[232]. The entire oxidation process can be approx-
imately divided into two stages: H2O adsorption and
proton release, as shown in figure 13(b). The energy
predicted by MD is almost equivalent to that cal-
culated by DFT, demonstrating the effectiveness of

the NNP. Besides, MD simulation revealed that free
protons and oxides greatly inhibit oxidation reac-
tions, leading to the degradation of oxidation, which
is consistent with the oxidation rate measured from
experiment.

Conducting MD simulations for oxidation reac-
tions can be computationally intensive because of the
strict demand for specific potentials, particularly such
as the ReaxFF. If simplified potentials were adopted, it
may result in inaccuracies, especially when attempt-
ing to capture the intricate chemistry of oxidation.
Despite existing challenges, ongoing progress in force
field development, simulation methodologies, and
computational capacities offers the potential to signi-
ficantly improve the precision and utility of MD sim-
ulations in elucidating the intricate dynamics of oxid-
ation in 2D materials.

3.4. Desalination behavior
Desalination, a crucial process in combating global
water scarcity, has recently witnessed the investiga-
tion of novel materials, with a focus on 2D mater-
ials, to enhance overall performance. The desalin-
ation procedure typically consist of two stages: the
extraction of pure water from saline water and the
recovery of the draw solution, which separate the
pure water from the diluted draw solution [233].
With their atomically thin structure, substantial sur-
face area, and mechanical robustness, 2D materi-
als like graphene and MXenes are being explored
as viable options for replacing existing membrane
materials in desalination and water purification
[234]. By employing MD simulations, researchers
can explore the dynamics of ion transport within
2D materials, gaining important insights into the
mechanisms underpinning desalination processes.
The water desalination behavior through hydro-
gen or hydroxyl functionalized nanoporous graphene
membranes were investigated by MD simulations, as
shown in figures 14(a) and (b) [235]. The results show
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Figure 13. (a) The oxidated MXenes configurations at the three different environments: dry air, wet air and H2O2. Reproduced
from [230] with permission from the Royal Society of Chemistry. (b) A comparison of the energy during oxidation calculated by
DFT and MD. [232] John Wiley & Sons. © 2023 Wiley-VCH GmbH.

that external pressure facilitates the water desalina-
tion. The functionalized graphene membrane exhib-
its excellent performance for both salt rejection and
water transport. This study provides a microscopic
insight into water desalination and reveals govern-
ing mechanisms for water flux. In a recent study,
Priya et al developed a ML model by training it
with approximately 260 results fromMD simulations,
enabling the prediction of desalination performance,
in terms of maximum water flux and salt rejection
rates, for 2D membranes documented in existing lit-
erature. It is found that the presence of a trans-
ition metal around the pore can increase the aver-
age salt rejection rates, while nonmetals like halo-
gens and chalcogens are prone to enhance the average
water flux. The effective desalination potential is fore-
seen in 2D transition metal oxides, carbides, nitrides
(MXenes), and their complexes. Therefore, one may
conclude that well-validated statistical frameworks
can serve as valuable tools for directing experiments
within the domain of functional materials for various
applications.

4. Lattice and continuum-based molecular
mechanics modeling of 2Dmaterials

Hexagonal lattice-like structural forms are present
in the nano-structures of several 2D materials [236–
238]. The effective mechanical properties of these
materials can be expressed on the basis of an equival-
ent continuum-based assumption. Though, in prin-
ciple, a range of other physical properties can be

explored based on the efficient continuum-based
analyses (as discussed later in this section briefly), the
main focus in the literature has been the exploration
of effective elastic properties. We focus on nano-scale
analysis of the structures of these 2D materials based
on an efficient generalized analytical approach that
leads to closed-form formulae for the elastic moduli.
Two different classes of single-layer materials from
a structural point of view, monoplanar [237] and
multiplanar [239, 240] as shown in figure 15(a), are
considered to demonstrate the results using these ana-
lytical formulae. The physics-based high-fidelity ana-
lytical models discussed in this section are capable
of obtaining the elastic properties of single-layer 2D
materials in a computationally efficient manner for
a wide range of materials with hexagonal nanostruc-
tures. We have further demonstrated an approach to
extend such efficient continuum-based approaches
for characterizing the elasticmoduli ofmulti-layer 2D
heterostructures, as shown in figure 16(b).

From a structural viewpoint, single-layer nano-
structures can be of either monoplanar (where all
the atoms are in a single plane such as graphene and
hBN) or multi-planar (where the constituent atoms
lie in multiple planes such as stanene and MoS2)
configuration. Further, from the atomic configura-
tion viewpoint the 2D materials could be homogen-
eous or heterogeneous based on the atoms that con-
stitute the nano-lattices. For example, graphene con-
sists of only carbon atoms to form a honeycomb like
hexagonal lattice in a single plane, while hBN consists
of boron and nitrogen atoms to form the hexagonal
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Figure 14. The (a) schematic diagram and (b) MD model of water desalination through functionalized nanoporous graphene
membranes. Reprinted from [235], Copyright (2017), with permission from Elsevier.

lattice in a single plane. Similarly, stanene consists
of only Sn atoms that stay in multiple planes, while
MoS2 consists of two different atoms (Mo and S) rest-
ing at different planes. Thus there could eventually
be four different classes of single layer 2D materials
[241]. Figure 15(b)I shows the top and side views of
single-layer hexagonal nanostructures where all the
constituent atoms are same and they are in a single
plane (e.g. graphene [242]). Figure 15(b)II shows the
top and side views of single-layer hexagonal nano-
structures where the constituent atoms are not same
but they are in a single plane (e.g. hBN [243], BCN
[244]). Figure 15(b)III shows the top and side views
of single-layer hexagonal nanostructures where the
constituent atoms are same but they are in two dif-
ferent planes (e.g. silicone [245], germanene [246],
phosphorene [247], stanene [248], borophene [249]).
And, figure 15(b)IV shows the top and side views of
single-layer hexagonal nanostructures where the con-
stituent atoms are not same and they are in two dif-
ferent planes (e.g. MoS2 [250], WS2 [251], MoSe2
[252], WSe2 [253], MoTe2 [254]). The generic struc-
tural configuration of a 2D multi-planar nano-lattice
is shown in figures 15(a) and (b)V, where depending
on the value of out-of-plane angle α and the nature

of the atoms (same or different), all the above four
classes of 2D material nanostructures can be realized.

For understanding the structural performance
of 2D material nanostructures from a mechanical
strength and stiffness viewpoint, intended for use as
nanoelectromechanical systems such as resonators or
nanosensors, it is of utmost importance to evaluate
their Young’s moduli, in-plane shear modulus and
Poisson’s ratios [241]. The common computational
approaches to investigate 2D nanomaterials are first
principle studies/ ab-initio [105, 255–259],MD [260]
and molecular mechanics [261–263], which are cap-
able of reproducing the results of experimental ana-
lysis. First principles studies and ab-initio and MD-
based material characterization approaches are nor-
mally expensive and time-consuming. The molecu-
lar mechanics-based analytical approach of evaluat-
ing elastic moduli is computationally very efficient,
yet it produces accurate results.

In this section, we present molecular mechanics
based closed-form analytical formulae for Young’s
moduli, in-plane shear modulus and Poisson’s
ratios of monoplanar and multiplanar 2D materials.
Further, similar continuum-based idealizations are
discussed for nano-heterostructures. Here we collate
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Figure 15. (a) Generic structural configuration of a single-layer hexagonal 2D material (b) (I)–(IV) Four different classifications
of 2D materials based on nanostructural configurations considering monoplanar/ multiplanar structures and
homogeneous/heterogeneous molecular distribution. Figure b(V) shows the in-plane and out-of-plane angles of a generic 2D
hexagonal nanostructure. (c) Normal and shear stresses concerning Young’s moduli and shear modulus [25, 241]. Reproduced
from [25] with permission from the Royal Society of Chemistry.

and review the analytical formulae from existing lit-
erature with a brief description of the philosophy
behind their derivation [25, 26, 241]. The elastic
moduli are obtained using a unit cell-based approach,
wherein the mechanical equivalence of the atomic
bonds is exploited in the form of a beam element.
Two different materials, graphene and MoS2 (along
with their multi-layer heterostructures), are chosen
to present the numerical results that fall in the two
categories ofmonoplanar andmultiplanar structures,
respectively.

4.1. Mechanical equivalence of atomic bonds and
effective elastic moduli
As discussed in the preceding section, the single
layer 2D materials can be broadly classified into four
classes. However, from a mechanics point-of-view,
two separate categories are required to be recognized:
monoplanar structures and multiplanar structures.
This is because of the fact that the equivalent prop-
erties of the bonds are important in evaluating the
elastic properties of materials, rather than the sim-
ilarity or dissimilarity of two adjacent atoms. It can

be noted in this context that the monoplanar struc-
tural form can be treated as a special case of mul-
tiplanar structures. The top view and side view of
a general multi- planar hexagonal nanostructure are
shown in figure 16(a). From this figure, it is evident
that a multiplanar structure reduces to monoplanar
form when the out-of-plane angle becomes zero
(i.e. α= 0).

For atomic level behavior of nano-scale mater-
ials, the effective interatomic potential energy can
be evaluated as a sum of various individual energy
components related to bonding and non-bonding
interactions [261]. Total strain energy consists of
the contributions from bending of bonds, bond
stretching, torsion of bonds and energies associated
with non-bonded terms such as the van der Waals
attraction, the core repulsions and the coulombic
energy. However, among all the energy components,
effect of bending and stretching are predominant
in case of small deformation [264, 265]. For mul-
tiplanar hexagonal nanostructures (such as stanene
and MoS2), the strain energy pertaining to bending
consists of two components: in-plane component
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Figure 16. (a) Nanostructural configurations, molecular mechanics and energy components (in-plane and out-of-plane)
associated with the deformation of single-layer 2D materials [25, 241] (b) Schematic representation of four different
nano-heterostructures with mono-planar and multi-planar 2D material layers (c) Equivalent continuum based framework for
evaluating the effective elastic properties of nano-heterostructures [25, 26]. Reproduced from [25] with permission from the
Royal Society of Chemistry.

and out-of-plane component. The predominant
deformation mechanisms for a multiplanar nano-
structure are depicted in figure 16(a). It can be noted
that the out-of-plane component becomes zero for
monoplanar nanostructures such as graphene and
hBN.

The force constants concerning the atomic bonds,
kr and kθ (for bond stretching and bending respect-
ively) can be idealized as beams (having length
l, cross-sectional area A, second moment of area

I and Young’s modulus E) with equivalent bend-
ing and axial stiffness [241] (i.e. structural equival-
ence), as: kθ = EI/l and Kr = EA/l. On the basis
of the established mechanical equivalence between
the molecular mechanics parameters (kr and kθ) and
structural mechanics parameters (EA and EI), the
effective elastic moduli (two Young’s moduli, two
poisson’s ratios and shear modulus [266, 267]) of
monolayer 2D nanostructures can be obtained in
closed form [241]:
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E1 =
cosψ

t(1+ sinψ )
(

l2

12kθ
(sin2ψ + cos2ψ sin2α)+ cos2ψ cos2α

kr

) (7)

E2 =
1+ sinψ

tcosψ
(

l2

12kθ
(cos2ψ + sin2ψ sin2α+ 2sin2α)+ cos2α

kr
(sin2ψ + 2)

) (8)

ν12 =
sinψ cos2ψ cos2αl2

12kθ (1+ sinψ )
(

l2

12kθ
(sin2ψ + cos2ψ sin2α)+ cos2ψ cos2α

kr

) (9)

ν21 =
sinψ (1+ sinψ )cos2αl2

12kθ
(

l2

12kθ
(cos2ψ + sin2ψ sin2α+ 2sin2α)+ cos2α

kr
(sin2ψ + 2)

) (10)

G12 =
krkθcosψ (1+ sinψ )

t
(
kθsinψ (1+ sinψ )

2cosα+ krl2

6 cos2ψ (cosα+ 2)
) (11)

In the presented expressions of elastic moduli ψ =
90− θ

2 , as shown in figure 16(a), and t is the single
layer thickness of a 2Dmaterial. In the special case for
the hexagonal nanostructures with monoplanar con-
figuration (e.g. graphene and hBN) α becomes 0.

The expressions for elastic moduli of single-
layer 2D materials can be extended to derive closed-
form expressions for nano-heterostructures, which
are applicable for any stacking sequence of the

constituent single layers and any 2D material (refer
to figure 16(b)). Such heterostructures essentially
open up an entire domain of research with an excep-
tional promise of multi-functional nano-material
invention. Based on a continuum-based layer-wise
idealization [25–27], as presented in figure 16(c), the
equivalent effective elastic properties of a generic n-
layer configuration of nano-heterostructure can be
obtained as

E1 =
1

t

n∑
i=1

cosψ i

(1+ sinψ i)
(

l2i
12kθi

(sin2ψ i + cos2ψ isin2αi)+
cos2ψ icos2αi

kri

) (12)

E2 =
1

t

n∑
i=1

1+ sinψ i

cosψ i

(
l2i

12kθi
(cos2ψ i + sin2ψ isin2αi + 2sin2αi)+

cos2αi
kri

(sin2ψ i + 2)
) (13)

ν12 =

∑n
i=1

cosψ i

(1+sinψ i)

(
l2
i

12kθi
(sin2ψ i+cos2ψ isin2αi)+

cos2ψ icos
2αi

kri

)
∑n

i=1
12kθi

sinψ icosψ icos2αil2i

(14)

ν21 =

∑n
i=1

1+sinψ i

cosψ i

(
l2
i

12kkθi
(cos2ψ i+sin2ψ isin2αi+2sin2αi)+

cos2αi
kri

(sin2ψ i+2)

)
∑n

i=1
12kθi

sinψ icosψ icos2αil2i

(15)

G12 =
1

t

n∑
i=1

krikθicosψ i (1+ sinψ i)(
kθisinψ i(1+ sinψ i)

2cosαi +
kril2i
6 cos2ψ i (cosαi + 2)

) (16)

In the above equations, t denotes the total thick-
ness of the heterostructure, and the subscript i
is used as an index for a particular 2D material
layer.

4.2. Numerical results and comparative assessment
of accuracy
The expressions of elastic moduli can be adop-
ted to readily obtain the elastic moduli of both
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Table 2. Results for two Young’s moduli (E1 and E2, in TPa) and two in-plane Poisson’s ratios (ν12 and ν21) of graphene-MoS2 (G–M)
heterostructures with different stacking sequences and the respective mono-layers. The thickness of single layer graphene and MoS2 are
considered as 0.34 nm and 0.6033 nm, respectively. The results obtained using separate MD simulations are from [26].

Continuum results Continuum results

Configuration E1 E2 References (E1 = E2) ν12 ν21 References (ν12 = ν21)

G 1.0419 1.0419 1.05 [255] 1± 0.1 [275] 0.2942 0.2942 0.34 [276], 0.195 [277]
G/G 1.0419 1.0419 1.06 [255], 1.04± 0.1 [278] 0.2942 0.2942 0.2798 [26]
M 0.1778 0.3549 0.16 [255], 0.27± 0.1 [279] 0.0690 0.1376 0.1376 [26], 0.21 [280]
M/M 0.1778 0.3549 0.27 [255], 0.2± 0.1 [279] 0.0690 0.1376 0.1018 [26]
G/M 0.4893 0.6025 0.53 [255], 0.49± 0.05 [256] 0.1672 0.2059 0.2153 [26]
G/M/G 0.6357 0.7189 0.68 [255], 0.56 [105] 0.2058 0.2328 0.1805 [26]
M/G/M 0.3678 0.5059 0.45 [255] 0.1318 0.1813 0.1859 [26]

Table 3. Results for shear modulus (G12, in TPa) of graphene-MoS2 (G–M) heterostructures with different stacking sequences and the
respective mono-layers. The thickness of single layer of graphene and MoS2 are considered as 0.34 nm and 0.6033 nm, respectively. The
results obtained using separate MD simulations are from [20].

Configuration Continuum results Reference results

G 0.3689 0.28± 0.036 [281], 0.493 [282]
G/G 0.3689 0.3730 [25]
M 0.1192 0.1310 [25]
M/M 0.1192 0.1205 [25]
G/M 0.2092 0.2400 [25]
G/M/G 0.2515 0.2430 [25]
M/G/M 0.1741 [25]

monoplanar and multiplanar 2D nanostructures,
and their heterostructural forms. Two different 2D
materials with hexagonal nano-structures are con-
sidered (graphene and MoS2) here for showing the
effectiveness of the closed-form formulae. Graphene
belongs to the monoplanar configuration, wherein
all the atoms are carbon, and they are in a single
plane. The molecular mechanics parameters kr and
kθ can be obtained from literature using AMBER
force field [268] as kr = 6.52 × 10−7 Nnm−1

and kθ = 8.76 × 10−10 Nnm rad−2. The out-
of-plane angle for graphene is α = 0 and the
bond angle is θ = 120◦ (i.e. ψ = 30◦), while
bond length and thickness of single layer graphene
can be obtained from literature as 0.142 nm and
0.34 nm, respectively [262]. MoS2 belongs to the
multiplanar configuration, wherein two different
atoms Mo and S form the 2D material nanostruc-
ture and they are in different planes. The molecu-
lar mechanics parameters kr and kθ can be obtained
from literature as kr = 1.646 × 10−7 Nnm−1 and
kθ = 1.677 × 10−9 Nnm rad−2, and the out-of-
plane angle, bond angle, bond length and thickness of
single layer of MoS2 are α = 48.15◦, θ = 82.92◦ (i.e.
ψ = 48.54◦), 0.242 nm and 0.6033 nm, respectively
[269–274].

The elastic moduli of mono-layer and multi-
layered 2D nanostructures predicted by the analyt-
ical formulae are compared with previous studies
reported in scientific literature. Tables 2 and 3 show
that the results obtained based on the computation-
ally efficient molecular mechanics-based closed-form

formulae are well-aligned with the results available in
literature, establishing the accuracy of this approach.

In summary, generalized closed-form molecular
mechanics based analytical formulae for the elastic
moduli of hexagonal mono- planar and multiplanar
2D nano-structures are discussed in this section. The
dependence of the elastic moduli on length, angles
and stiffness parameters of atomic bonds are expli-
citly demonstrated. Subsequently, it is also shown
that an efficient continuum-based framework can be
developed for the effective elastic properties of multi-
layer heterostructures. This method’s accuracy aligns
with experimental and literature data, proving its
efficacy in predicting mechanical properties critical
for applications in nanoelectromechanical systems.
Future research will likely focus on hybrid multiscale
simulation approaches to comprehensively investig-
ate the mechanical, thermal, and electrical proper-
ties of 2D materials, addressing the need for effective
property mapping across different length scales and
exploring properties defined at molecular, atomistic,
and electronic levels.

5. Artificial intelligence andML assisted
study and design of 2Dmaterials

With tremendous recent progress in the field of
ML and artificial intelligence (AI), the materi-
als science community has developed a legitimate
interest in integrating the physics-based computa-
tional approaches with data-driven approaches for
achieving computational efficiency and to explore
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previously unexplored design domains. The field
of 2D materials, with the vast scope of combining
their different variants with numerous possibilities
of stacking sequences along with design parameters
like twisting angle, strains, introduced defects and
translations [283], has embraced such data-driven
approaches for identifying target combinations of the
parameter space that would be impossible to explore
solely using conventionalmethods of simulations and
experiments. Besides efficient prediction, the emer-
ging ML and AI algorithms can be useful in feature
identification, sensitivity analysis, optimum design
for multi-objective goals and uncertainty quantific-
ation. In this section, we have discussed the recent
trends of adopting ML for analyzing and design-
ing 2D materials (including the development of ML
potential and characterization of different internal
and external influencing parameters of 2D materi-
als and their heterostructures) along with prospective
future directions.

5.1. ML-assisted potentials and force fields
For MD simulations, interatomic potentials such as
AIREBO [164], REAX [285], Tersoff [286] and asso-
ciate LJ potential have been very successful in predict-
ing various physical, chemical, and electronic prop-
erties of graphene and different 2D heterostructures.
Gaussian approximation potential (GAP) method
was utilized to construct a ML potential for graphene
[287], which was trained using energies, forces, and
virial stresses calculated using high-quality van der
Waals (vdW) inclusive DFT calculations. While the
GAP model quantitatively predicts specific proper-
ties of graphene, it falls short compared to the pre-
dictive capabilities of REBO/AIREBOpotential across
a comprehensive range. However, GAP-based ML
potential has a significant advantage over AIMD
simulations [287] as it enables fasterMD simulations.

ML has also been used to construct force-fields
for other 2D materials other than graphene, such as
Mxenes [288], Stanene [289], MoS2 heterostructures
[289], Hexagonal Boron Nitride [290, 291] and their
heterostructures. In short, these works (and other
related reports) involve designing strategies for effi-
cient parameter optimization for thermal, mechan-
ical, and other physical properties. Also, MD simula-
tion utilizing ML-based potentials can also be used in
combination with ML-based data analysis and exper-
iments for achieving better prediction accuracy. For
example, a combination of ML with MD simula-
tions and in-situ high-resolution transmission elec-
tron microscopy was able to explore the evolution
of defects in TMDs, where ML provided inform-
ation for structural optimization and evolution of
defects to help understand the structural transition
in 2D TMDs [201]. Figure 17 demonstrates that ML
potential (MLP) can be used to accurately predict
classical interatomic potential. Figure 17(a) shows
MLP’s strong correlation with DFT reference energies

in training and testing datasets. Figure 17(b) indic-
ates that the majority of errors in both datasets were
within target accuracy. Figure 17(c) demonstrates
MLP’s effective prediction ofmetastable atomic struc-
tures with minimal deviation. Figure 17(d) illustrates
energy conservation in MD simulations of graphene,
with minor energy fluctuations, except for a slight
drift in longer time steps.

A practicalmethod to explore hybrid 2Dmaterials
was developed by couplingMLwith DFT calculations
[292]. The structural and electronic properties of dif-
ferent hybrid 2Dmaterials were provided and various
parameters for vdW heterostructures were screened.
A ML model with force-field-inspired descriptors in
material screening for complex systems was intro-
duced to discover exfoliated 2D-layered materials
[292]. In another work, an artificial neural net-
work for titanium dioxide systems was trained based
on a DFT calculated database, where a novel quasi
2D titanium dioxide structure was revealed [293].
Similarly, new 2D materials with high magnetic
moments were found using a ML model trained by
first-principles data [294]. ML methods have also
been used to aid the development of force fields
for classical simulations of materials. For instance,
a force field for classical simulations of stanene was
developed using a ML method trained by data sets
from ab-initio results to calculate the mechanical and
thermal properties of stanine [259].

5.2. Non-intrusive approaches for ML-assisted
prediction of physical properties
Several ML based models have been developed to
study the mechanical properties, electronic prop-
erties, and chemical properties of 2D materials.
Support Vector Mechanics (SVM) were used to study
the fracture strength of graphene [295, 296], MoS2
[297], and MoSe2 [298]. The mechanical proper-
ties of WS2 [299], Graphene Oxides [300], hBN
[301] were evaluated using a Random Forest (RF)
regression algorithm. Other ML algorithms that have
been implemented in the context of different 2D
materials for understanding mechanical properties
inlcude least absolute shrinkage and selection oper-
ator (LASSO) [302], recursive feature elimination
(RFE) [303], extreme gradient boosting (XGBoost)
[298, 301], long short-term memory (LSTM) [298],
and feed forward neural network (FFNN) [298].
The underlying ideas of all above mentioned ML
approaches are comparable to each other. In the
above-mentioned works, the general approach for
investigating the mechanical properties is the follow-
ing. In the first step, sufficient training data for ML
needs to be obtained by performing uniaxial tensile
tests usingMD simulations under various conditions.
This data can be also complied with available experi-
mental data as well. The input conditions (e.g. chiral-
ity, strain rate, and density of defects) of the MD sim-
ulations and the corresponding outputs (e.g. fracture
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Figure 17. (a) Correlation of artificial neural network (ANN) energies with training and testing data set with DFT energies (b)
Histogram of energy error distribution for training and testing datasets (c) Potential energy fluctuations for different
configurations for ANN and DFT simulations (d) Effect of different time steps on potential energy. Reprinted from [284],
Copyright (2023), with permission from Elsevier.

strain, strength, and Young’s modulus) serve as input
features and labeled outputs, respectively. At the
next stage, a computational mapping is established
between the set of input and output features using
a suitable ML algorithm. The predictive capability
of the constructed ML model is verified thoroughly
based on unseen data points using several meas-
ures such as Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and scatter plots. If the error is within
acceptable limits, the ML model can be further util-
ized for prediction corresponding to any combina-
tion of the input features within specified bounds.
The application of these ML algorithms in under-
standing electronic properties follows a very sim-
ilar approach. ML has been employed utilizing ker-
nel ridge (KRR), support vector (SVR), Gaussian
process (GPR), and bootstrap aggregating regression
algorithms to extract band gaps of 2D Mxenes [304].

5.3. Image-based computational mapping using
ML
The training data for ML can also be image-
represented objects. Problems such as defects,

dislocations, and vacancies can be studied using deep
convolutional neural network (CNN). CNN has been
implemented in studying the mechanical properties
of h-BN [307]. The input for CNN can be a set of
RGB images rendered from atomistic modelling for
the subject material. The output of the neural net-
work is a number predicting either Young’s modu-
lus or strength (while studying mechanical proper-
ties). As CNN is a kind of network architecture for
deep learning algorithms and is specifically used for
image recognition and tasks that involve the pro-
cessing of pixel data, it is beneficial to supplement
results available from electron microscopy for 2D
materials [308, 309]. Sterbentz et al [305] presented
an image processing ML program, as demonstrated
in figure 18, which advances image segmentation by
utilizing unsupervised clustering algorithms to auto-
matically discern the thickness of 2D materials in
optical microscopy images with ∼95% pixel accur-
acy. This approach maintains all three RGB color
channels and applies Gaussian mixture models to
cluster analysis, enhancing generality across various
substrates. Figure 18 depicts the process from initial
image cropping and optical contrast-based thickness
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Figure 18. (a)–(j) A multi-stage machine learning-based image segmentation workflow for identifying the thickness of
two-dimensional materials using optical microscopy. Reprinted from [305], Copyright (2023), with permission from Elsevier. (k)
The outline of a workflow for predicting the properties of van der Waals (vdW) bilayer 2D materials using machine learning. It
starts with the selection of monolayer materials from a database, followed by feature engineering that incorporates 2D material
characteristics, stacking configurations, labelling target properties (such as electronic and crystal structures), and training
machine learning model for prediction and understanding of vdW structure properties. Reproduced with permission from [306].

labeling (figure 18(a)) to noise reduction and cluster
differentiation (figures 18(c) and (d)). Cluster centers
are pinpointed via mean shift and density-based clus-
tering, with Gaussian mixture models further defin-
ing cluster traits (figures 18(e) and (f)). Amaster cata-
log correlating these clusters to known thicknesses is
then created and tested against new images for thick-
ness verification (figures 18(g)–(j)), showcasing the
program’s efficacy in assigning layer thicknesses and

promising universal applicability for different mater-
ials and substrates.

5.4. ExploitingML for probabilistic analysis and
uncertainty quantification
Recently the efficient predictive capabilities of ML
have been exploited in simulation-extensive analyses
such as uncertainty quantification and sensitivity
analysis concerning different influencing factors in
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the mechanical responses of 2D materials [60, 287,
310, 311]. For example, the reliability of the res-
ults derived from MD simulations depends on the
adopted interatomic potential, which is mathematic-
ally fitted to the data obtained from first principles
approaches or experiments. There exists a significant
scope of uncertainty associated with the interatomic
potential parameters. Such internal uncertainties,
together with the effect of stochastic external para-
meters like temperature and strain rate can trigger an
augmented random deviation in the output mech-
anical responses [284, 312, 313]. With the aim of
developing an inclusive analysis and design paradigm,
the effect of uncertainties associated with the internal
parameters (Tersoff interatomic potential paramet-
ers) and external parameters (temperature and strain
rate) along with their respective sensitivity was quan-
tified on themechanical properties of graphene [312].

In establishing the complete probabilistic descrip-
tions of the response quantities corresponding to
different levels of source uncertainties, a coupled
ML-based Monte Carlo simulation approach was
shown to achieve significant computational efficiency
without compromising the accuracy of the results. A
similar approach was extended further by coupling
artificial neural networks, MD andMonte Carlo sim-
ulations for probing the stochastic fracture behavior
of twisted bilayer graphene [315]. Further, the effects
of intrinsic defects and doping on the stochastic
mechanical properties of graphene were investig-
ated based on ML assisted MD simulations [316].
A Gaussian process based ML approach in con-
junction with MD simulations has been proposed
to investigate the high-velocity ballistics of twisted
bilayer graphene under stochastic disorder [314].
Notably, the stochastic analysis and uncertainty quan-
tification concerning 2D materials following the ML
approach, as discussed here, follow a non-intrusive
approach, rather than developing the potential for
MD simulations.

5.5. ML-based investigation of multi-layer 2D
heterostructures
The data-orientated AI/ML-based approach can
present an unprecedented opportunity and flexib-
ility to test existing as well as hypothetical materials.
The heterostructures of these single-layer materials
(obtained by stacking different 2Dmaterials on top of
each other) are often even more interesting from the
multi-functionality viewpoint than the single-layer
2Dmaterials. Strong covalent bonds provide in-plane
stability of 2D crystals, whereas relatively weak, van-
der-Waals-like forces are sufficient to keep the stack
together. The possibility of making multilayer van
der Waals heterostructures was demonstrated exper-
imentally, leading to various extraordinary physical,
chemical, optical properties [317].

Unlike traditional heterostructures, vdW het-
erostructures are not limited by lattice mismatch.

Their properties may be strongly influenced by the
interlayer twist angle and stacking order, which can
provide a large material design space. Given the
growing number of 2D monolayers, the vdW het-
erostructures space grows exponentially. Fabrication
and characterization of vdW heterostructures via
trial-and-error become an increasingly difficult
task, as well as resource-intensive. Even high-
throughput first-principles approaches become
extremely expensive. Scalability is also another issue
in first principle calculations, as the number of atoms
that can be considered for each simulation is limited
to around 100 atoms. Recently, ML methods have
been applied to circumvent this problem. Tawfik
et al [292] constructed 267 bilayers out of 53 dif-
ferent monolayers and trained ML models to pre-
dict the interlayer distance and band gap by using
the property-labeled materials-fragments (PLMF)
descriptors. Their best-performing models achieve
a testing R2 score of 0.96 and a mean-squared error
(MSE) of 0.005Å2 for predicting the interlayer dis-
tance using 267 training data. Choudhary et al [318]
leveraged a 2D material database in the JARVIS-DFT
[319] library to predict the band edges and work
function of monolayers by using classical force-field
inspired descriptors (CFID). Their model predicts
the monolayer valence band maximum (VBM) and
conduction band minimum (CBM) with a mean-
absolute-error of 0.67 eV and 0.62 eV, respectively.
Dong et al [320] recently proposed a low-costmethod
of obtaining the electronic band structure of bilayers
via band-folding. They applied their model to 703
vdW bilayer heterostructures based on 1 T and 2 H
prototype structures and performed a comprehens-
ive analysis of their electronic structures. A recentML
based model developed by Willhelm et al [306] pre-
dicts the atomic and electronic structure of vdW het-
erostructures of nearly 4000 unique bilayer structures
from seven different hexagonal monolayer proto-
types. The developed ML models were found to pre-
dict the bilayer bang-gap, interlayer binding energy,
interlayer distance etc. with low error, providing a
valuable tool for screening the vast vdW heterostruc-
ture material space with a significantly reduced com-
putational cost for a wide range of optoelectronic
applications. In general, such studies establishes the
fact that it is highly desirable to establish accurate
ML models that can predict a rich set of material
properties for a large number of vdW heterostruc-
tures with a variety of stacking configurations and
prototype structures from the existing 2D material
database. This would lead to the identification of
optimum heterostructure configurations efficiently
(based on thousands of realizations which would
have been otherwise impossible using experiments or
traditional simulation techniques) that can possess
application-specific multi-objective capabilities.

Overall the idea of ML-based models has been
shown in figure 18(k) [306]. First, material data and
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ground-state crystal structures are mined from 2D
material databases or obtained suitably using con-
ventional simulation or experimental methods. The
ground-state monolayer structures are stacked vertic-
ally to create a large material design space of unique
heterostructures. We then sample the vdW hetero-
structure design space, and the corresponding phys-
ical properties are calculated using high-throughput
DFT calculations, experiments, or MD simulations.
In the next stage, the ML models are constructed
based on a suitable algorithm ensuring adequate pre-
diction accuracy through a series of measures. In the
literature, ML has been also used to predict band gaps
concerning several heterostructures such as HfS2-
MoTe2, HfS2-WTe2, MoSe2-TiS2, MoTe2-HfS2, HfS2-
WTe2, TiS2-WSe2, TiS2-ZnO, and TiSe2-WTe2 [292].

In this section, we discussed some of the recent
progress in applying ML approaches for study and
design of 2Dmaterials. After development of predict-
ive and computationally efficient ML models for 2D
materials and their heterostructures, the natural pro-
gression is to exploit those for identifying optimum
configurations for achieving multiple, often conflict-
ing objectives. In doing so, the notion of inher-
ent uncertainty, direct image-to-image correlations,
reinforcement learning, and Bayesian approaches
are being pursued actively [267, 321, 322]. The
future trajectory of 2D materials research is poised
for an exciting convergence with physics-based ML
methodologies [323, 324]. Integrating physics prin-
ciples into ML models is anticipated to revolutionize
material science by fostering a deeper understanding
of the fundamental physics governing 2D materials.

6. Multiscale modeling and synthesis of 2D
materials

6.1. Experimental synthesis techniques
The synthesis strategies of 2D materials are divided
into two main classes, known as top-down and
bottom-up methods. Mechanical/liquid exfoliation
and etching are well-known techniques based on the
top-down approach in which the three-dimensional
(3D) crystal is isolated into single- or multi- atomic
layers. Depending on their robust geometric and
bonding criteria, there are various 3D materials that
appear layered and have the potential to be synthes-
ized by top-down methods. Materials such as MoS2
[325], h-BN [326], WS2 [325] and graphene [327],
consist of layers connected with weak van der Waals
(vdW) forces (shown in figure 19(a)). Thesematerials
are mostly manufactured by exfoliation techniques.
The strong three-dimensional covalent/ionic bond-
ing makes top-down approaches such as mechan-
ical exfoliation a highly unlikely synthesis method.
Hence, most of the strategies employed for the 2D
synthesis of these materials are bottom-up methods.
However, in a very recent approach Puthirath Ballan

et al [328] showed non-layered (non-vdW) materi-
als such as metal oxides [329] with ionic bonds can
also be exfoliated. They used the concept of cleavage
planes along which intrinsic isotropic covalent/ionic
crystals tend to be unstable [330, 331]. The bottom-
up synthesis method is a scalable approach building
the material atom by atom. This technique facilitates
achieving high levels of thickness uniformity, which
makes this method a suitable choice for manufactur-
ing electronics and optoelectronics materials [332].

6.1.1. Top-bottom method: mechanical and liquid
exfoliation and etching
Exfoliation synthesis method can be divided into two
main categories: mechanical and liquid exfoliation.
As shown in the schematic representations of liquid
exfoliation in figure 19(b), ultrasound or electrical
current helps overcoming the binding energy between
the atomic layers [333–335]. In ultrasonic liquid exfo-
liation, the bulkmaterial is placed into organic solvent
or water and ultrasonic waves are applied to the
system [336]. The high-frequency sound waves and
the resulting intense shear forces break the interlayer
bonds and form individual layers from bulk material.
Similar to ultrasonic liquid exfoliation, electrochem-
ical liquid exfoliation starts from placing the bulk
layered material inside a liquid medium. An electric
potential is applied across the dispersion that causes
ionic intercalation within the layers of bulk material.
This induces force that weakens the interlayer forces
[336, 337].

The sticky tape is the traditional mechanical exfo-
liation approach, where the peeling or pulling of an
adhesive taped on top of bulkmaterial separates some
layers from bulk material [338]. Wedge technique
is an advanced variation of mechanical exfoliation
which used a sharp wedge-shaped object to separate
a thin layer from the bulk material [339]. Ball milling
is a relatively simple and scalable approach for exfo-
liating 2D material [340]. This method places bulk
material into a milling container filled with balls. The
rotating container creates the mechanical shear force
needed to exfoliate individual layers. Another group
of 2D materials known as MXenes [341] are tern-
ary carbides and nitrides with a layered, hexagonal
structure.MXenes are obtained from 3DMAXphases
[342], where M is an early transition metal, A is an A-
group (mostly IIIA and IVA) element and X is either
carbon and/or nitrogen. The transformation of a 3D
MAX phase into a 2D layered MXene is performed
via the top-bottom chemical wet etching method, as
shown in figure 19(b) [343, 344].

6.1.2. Bottom-up method: chemical and physical vapor
depositions
The basis for describing the surface morphology and
studying the dynamics of bottom-up growth of 2D
material is by creatin steps, as shown in figure 19(c).
Steps separate different height terraces, and they
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Figure 19. (a) Atomic structures of a layered vdW and non-vdWmaterial (b) schematic representation of top-down synthesis
methods (c) schematic of kink, step, and terrace sites for crystal growth (d) Growth mechanism involved in the CVD and PVD of
a 2D material layer on a suitable substrate (e) schematic representation of bottom-up synthesis methods.

provide kink sites for the incorporation of new atoms
into the crystal. As the atoms adsorb onto the surface
of the growing crystal, they move across the surface
via diffusion seeking for the most energetically favor-
able position. Given by figure 19(d), the diffusion and
attachment of adatoms can result crystal growth by (i)
nucleation and growth of new steps, or (ii) advance-
ment of existing steps, or (iii) annihilation of steps
by merging of islands and terraces. As the layer thick-
ness increases, the substratewill also be coveredwhich
will hinder further deposition of layers. Chemical
vapor deposition (CVD) and physical vapor depos-
ition (PVD) techniques, as shown in figure 19(e), are
two popular bottom-up synthesis. CVD produces a
thin film by a chemical reaction between the pre-
cursor gases that contains the required elements. The
desired material is a product of this chemical reac-
tion and is deposited on the substrate. CVD has been
widely used to produce various 2D materials, includ-
ing graphene [345], h-BN [346], and TMDs [347].
However, during the PVD, the vaporized form of the
desired material enters the chamber and is condensed
on the substrate forming thin films. In this paper we
mainly focus on the applications of different compu-
tational approaches to investigate 2D material syn-
thesis, and the details of each synthesis technique are
not covered here, and they are described in detail in
other works [9–12]. Figure 20 summarizes the com-
putational methods used to study each bottom-up
and top-down synthesis technique.

6.2. DFT colocations relevant to experimental
synthesis of 2Dmaterials
2D materials research has garnered considerable
attention, notably following the successful exfoliation
of single-layer graphene from its bulk graphite coun-
terpart through the scotch tape method [327]. In
theoretical work, it has become customary to des-
ignate 2D compounds as single freestanding layers.
However, it is crucial to recognize that while some
2Dmaterials like phosphorene [348, 349], h-BN [350,
351], and MoS2 [352], can be exfoliated as freestand-
ing single layers, many others like silicene [353] can
only adopt a 2D structure when cultivated on a sub-
strate or possessing a substantial thickness. Previous
experimental studies have reported that silicene can
only be stabilized on a specific substrate, and all
attempts to stabilize it as a freestanding 2D layer
were unsuccessful [353]. Since the formation of a
2D material involves breaking weak interlayer vdW
bonds present in the bulk compound, in the case
of 2D materials on a substrate, the substrate acts as
a stabilizing agent, often fostering chemical bond-
ing between the substrate and the 2D material [354].
Thus, if the isolation energy of the 2D material sur-
passes a specific threshold, achieving the compound
in a freestanding form becomes less probable [355].

Given the predominantly Edisonian (trial and
error) approach in the experimental synthesis of
2D materials, first-principles DFT calculations
have made notable contributions to the field.
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Figure 20. Overview of computational methods used for studying the bottom-up and top-down synthesis methods of 2D
materials.

These studies involve exploring the properties of
already synthesized materials and making theoret-
ical predictions for a myriad of new 2D materials.
DFT calculations offer insights into a material’s ener-
getic stability at absolute zero temperature [356].
This method is commonly employed as an initial step
in predicting the feasibility of experimental synthesis.
The DFT energy of a compound, along with that of its
competing phases in a compositional system, allows
for the determination of formation energies. At a spe-
cific composition, the formation energy of the con-
vex hull represents the lowest linear combination of
energies from competing phases [357]. The disparity
between the formation energy of a given compound
and that of the convex hull is termed the energy above
the convex hull (Ehull). This parameter characterizes
the material’s zero-kelvin thermodynamic stability,
where lower Ehull values indicate greater stability
[357]. Several research efforts have not only iden-
tified numerous potential new 2D compounds but
have also catalyzed the creation of comprehensive
open-access databases like the Computational 2D
Materials Database (C2DB) [86, 358], 2D Materials
Encyclopedia (2DMatPedia) [359], the MaterialsWeb
[360], and the Materials Cloud 2D crystals database
[45]. Additionally, specialized high-throughput col-
lections have been developed to explore magnetic
properties [361] and spin splitting [362] of 2Dmater-
ials. Despite these advancements, a notable portion
of current theoretical investigations on 2D materials
remains centered on manually crafted compounds,

lacking corresponding bulk analogs, and often lack-
ing discussions on their feasibility.

Furthermore, advancements in theoretical stud-
ies employing DFT have provided structure-property
understanding of different 2Dmaterials. For example,
DFT provided a fresh perspective on the morpho-
logical aspects of MoS2 [363]. Notably, findings
by Byskov et al propose that fully sulfided MoS2
structures may exhibit a preference for 1010 Mo
edges under certain conditions, while 1010 S edges
become favored under more reducing conditions
[364]. Besides, Schweiger et al [365] computed and
reported the anticipated shape of MoS2 clusters
under varying conditions. These DFT insights help to
understand the formation of highly dispersed single-
layerMoS2 nanoclusters with an average side length of
a fewnanometers. ThisDFT achievementwas realized
through the high-temperature sulfidation of initially
deposited Mo on a pristine Au (111) single-crystal
surface, maintained in a fully sulfiding atmosphere
of H2S [366]. Further, through a comprehensive ana-
lysis that involves comparing the atomic-scale scan-
ning tunneling microscope (STM) images with sim-
ulated STM images based on DFT calculations of
MoS2 edges, Lauritsen et al reported the structural
intricacies of the MoS2 nanoclusters and establish a
connection between their stability and the specific
thermodynamic parameters governing their exist-
ence. HRTEM and molecular modeling studies of the
MoS2–Co9S8 interface reveal the formation of open
latent vacancy sites onMo atoms interacting with Co,
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Figure 21. (a) The atomic schematics depict the CVD process employed in the synthesis of graphene and the nucleation
mechanism involved in graphene formation. (b) Presents the free-energy change associated with the nucleation process of 2D
materials. Reprinted with permission from [370]. Copyright (2021) American Chemical Society. (c) Explores the energetics of
small carbon clusters with the number of carbon atoms (N) less than 24. (c) and (d) Showcase atomic models representing C14

clusters, with (c) exhibiting a chain structure and (d) displaying a sp2 network structure. The corresponding formation energies
for the C14 chain and sp2 network are also provided. [118] John Wiley & Sons.© 2021 Wiley-VCH GmbH.

as well as the creation of direct Co–Mo bonds [367].
Additionally, strong electron donation fromCo toMo
occurs through the intermediate sulfur atom bon-
ded to both metals, resulting in an enhanced metallic
character. These alterations in coordination and elec-
tronic properties are anticipated to promote a syner-
gistic effect between Co andMo at the localized inter-
face region between the two bulk MoS2 and Co9S8
phases, for enhancing the catalytic performance.

In 2D crystals, the electron beam can induce dam-
age to the surface and edges of the extended sheets,
resulting in irregular edges or holes caused by high
electron beam penetration. However, the mechan-
isms of radiation damage are highly dependent on
the environment and, consequently, the conditions
of the radiation exposure [368]. Garcia et al conduc-
ted an analysis of electron beam damage on exfoliated
MoS2 using aberration-corrected scanning transmis-
sion electron microscopy (STEM) with a high angle
annular dark field (HAADF) detector. This study also
demonstrated that damage to the MoS2 sheets can
be controlled at 80 kV, in accordance with theoret-
ical calculations based on the inelastic scattering of
electrons involved in the electron–matter interaction
[368].

Among the different synthesizing techniques,
CVD is extensively used to produce different classes of
2Dmaterials [332]. In 2012, Artyukov et al conducted
first-principles calculations on vapor-phase graphene
synthesis [369]. Using a step-flow crystal growth
model, they investigated carbon atom migration to
the nickel catalyst surface and their integration into
the lattice. The study elucidated the graphene growth
process sequence by calculating energies of interme-
diate states, highlighting edge attachment, and min-
imized defect formation in the presence of substrates.
This DFT analysis provided key insights into the
anisotropic growth, kinetics, and island morphology,

shedding light on experimental results, including car-
bon nanotube synthesis. The electron localization
function (ELF) analysis using DFT can help in identi-
fying the regions of charge localization in the system
and thus help in gaining insights on inter-material
interactions during synthesis. Furthermore, in most
CVD experiments, a multitude of 2D crystals form
on a substrate. Subsequent growth of these crystals
results in their coalescence. Research indicates that
the attainment of large-sized single-crystalline 2D
materials involves the seamless coalescence of uni-
directionally aligned 2D crystals, contrasting with the
formation of polycrystals frommisaligned 2D crystals
[370]. Clearly, comprehending the mechanisms gov-
erning the alignment and coalescence of 2D crystals
on substrates is essential for ensuring the quality of
CVD-grown 2D material films [371]. The CVD pro-
cess and nucleationmechanism of graphene synthesis
is shown in figure 21. So, theoretical studies can play
an important role in providing strategies to improve
the reliability and robustness of synthesismethods for
2Dmaterials andmore details can be found elsewhere
[332].

Although DFT calculations provide insights into
the thermodynamic and kinetic barriers during the
synthesis of 2D materials, they lack the capability to
simulate the explicit temporal evolution of a system.
In contrast, kinetic Monte Carlo (kMC) simulations,
founded on probabilistic principles, offer the oppor-
tunity to explore growth kinetics over extended time
scales, spanning minutes to hours [372]. However,
whether conducted on a lattice or in an off-lattice
manner, kMC simulations consider a finite number
of plausible reaction or diffusion events, relying on
rates determined through DFT calculations or fitting
to experimental data. Moreover, AIMD simulations
leverage first-principles potential energy surfaces to
calculate forces and atomic velocities, integrating
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Figure 22.MD simulations of CVD process of 2D materials. (a) MD simulated configurations of the CVD growth of graphene on
copper surface with the time. The pink, black and yellow balls represent the original carbon source molecules, active carbon
atoms, and copper atoms, respectively. (b) The stress-strain curves of the graphene films synthesized at different temperatures.
Reprinted from [377], Copyright (2017), with permission from Elsevier. (c) The effect of carbon concentrations on the formed
graphene structures. Reprinted with permission from [381]. Copyright (2012) American Chemical Society. The number of source
carbon atoms displayed beneath the pictures. (d) Side views of the CVD performance on different Ni surfaces. Reprinted from
[383], Copyright (2015), with permission from Elsevier. (e) The h-BN formation on Ni substrates under temperatures of 900 K
and 1500 K. Reprinted with permission from [384]. Copyright (2017) American Chemical Society. (f) The configurations of
graphene formed on SiC substrates under temperature of 2000 K and 2600 K. Reprinted with permission from [379]. Copyright
(2020) American Chemical Society.

atomic motion and entropic effects. Despite their
computational demands, AIMD simulations provide
a detailed understanding. Alternatively, classical MD
simulations employing empirical interatomic poten-
tials have been investigated for simulating chem-
ical reactions, offering increased computational speed
albeit with lower accuracy compared to AIMD
simulations [373].

6.3. MD simulation facilitated synthesis techniques
MD simulations exhibit promising capabilities in
streamlining the synthesis and characterization pro-
cesses of 2Dmaterials. Optimizing the synthesis of 2D
materials through the complex CVD process requires
a comprehensive understanding of the underlying
mechanisms, which are influenced by factors such
as temperature, pressure, carrier gas flow rate, and
vapor-phase composition. Theoretical insights into
the CVD growth of 2D materials have been obtained
through the utilization ofMD simulations [374, 375],
as well as complementary tools like DFT [45] and
kinetic Monte Carlo (KMC) simulations [376]. For
example, to explore the mechanisms during the CVD

process, the growth of single layer graphene films
on copper surface was investigated by MD simula-
tions, as shown in figure 22(a) [377]. In that study,
a hybrid potential, which combines AIREBO for the
interaction of C2 atoms [164], EAM potential for
the interaction between Cu atoms, and Lennard-
Jones potential for the Cu-C interaction [378], was
employed. A graphene domain comprising approx-
imately 300 carbon atoms was successfully achieved.
It enabled a thorough examination of the influences
of CVD parameters, specifically temperature and gas
flow rate, on graphene films. Examining the traject-
ories of graphene growth reveals a consistent pres-
ence of branched structures, where the side chains
play a pivotal role in processes such as ring formation,
defect healing, and the amalgamation of graphene
nuclei. It is anticipated that the insights obtained from
computational modeling will provide guidance for
the synthesis of high-quality graphene in CVD exper-
iments. Furthermore, the simulation results indic-
ate that a more fully formed single-layer graphene
(SLG) film can be attained at elevated temperatures
or with a slower cooling rate, and the tensile strength
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of SLG films rises with increasing temperature (see
figure 22(b)).

Despite the previous efforts, it was claimed
that empirical potentials may lack the capability to
comprehensively investigate the CVD process [379].
Alternatively, reactive MD simulation is a promising
tool for simulating the complicated chemical reac-
tions that occur during CVD. Since the development
of the ReaxFF force field for hydrocarbons in 2001
[380], it has been successfully employed to study the
growth of various 2D materials. The pioneer reactive
MD studies in this realm can be tracked back to 2012,
when Meng et al [381] investigated the evolution of
carbon structures and the growth kinetics of graphene
on Ni (111) surface under different temperature con-
ditions, as displayed in figure 22(c). Utilizing the
ReaxFF potential specifically parameterized for C-Ni
system [382], simulations were carried out, incorpor-
ating a maximum of 320 atoms. The study demon-
strated a substantial influence of carbon atom con-
centration on graphene quality, with low concen-
trations leading to carbon atom dissolution into
nickel, and high concentrations fostering the form-
ation of graphene islands. Additionally, the substan-
tial improvement in the quality of graphene islands
can be achieved through efficient defect anneal-
ing at the optimal temperature of around 1000 K.
This work provided insight into the CVD growth of
graphene. In 2015, Lu and Yang [383] tried to use
naphthalene/fluorene as carbon sources to study the
formation and growth of graphene on nickle sur-
faces. MD simulations, employing the same ReaxFF
potential [382], were carried out with a maximum
total number of atoms reaching 954 for all models.
Fundamental mechanisms were unraveled, includ-
ing surface-assisted dehydrogenation reaction and
coalescence reaction of activemolecular species. They
also compared the CVD performance on three dif-
ferent Ni surfaces and concluded that Ni (111) pro-
motes the best formation and growth of high-quality
graphene-like structure, as shown in figure 22(d).
Following this work, Liu et al [384] utilized ReaxFF
to explore the growth of h-BN on Ni substrates
(figure 22(e)). They observed that nucleation begins
with the growth of linear BN chains, and this
structural evolution was confirmed by DFT calcula-
tions. Additionally, they revealed that the continuous,
atomically thin h-BN favors forming at high temper-
ature. In 2020, Zhang and van Duin performed MD
simulations to study the growth of graphene on sil-
icon carbide (SiC) substrate (figure 22(f)) [379]. A
new Si/H/Graphene ReaxFF potential was paramet-
rized and used in these simulations. A temperature
range of 2000 K < T < 3000 K was identified to be
suitable for formation of high-quality graphene.

MD simulations are applied to unravel the atom-
istic details regarding the exfoliation of 2D materials,

assisting in refining experimental conditions and act-
ively contributing to the design of innovative mater-
ials with tailored properties. A recently published
review article [385] extensively covered the mechan-
isms involved in the exfoliation of 2D materials. This
paper, on the other hand, places a specific focus on
the use of MD simulation techniques, emphasizing
their significance in comprehending the dynamics of
exfoliation. Mechanical exfoliation, as illustrated in
figure 23(a), is the one of the most successful tech-
niques to obtain high quality single or multi-layer 2D
materials from the substrate for growth. This process
usually involves interfacial peeling and intralayer tear-
ing. Gao et al [386] conducted both theoretical ana-
lysis and coarse-grainedMD (CGMD) simulations to
investigate the peeling and tearing behaviors of 2D
materials from a solid substrate. The study revealed
that the most influential factors for controlling the
peeling process are the peeling angle and adhesive
strength, both of which can be readily adjusted in
experimental setups (see figures 23(b) and (c)). It
is worth emphasizing that CGMD offers a notable
improvement in computational efficiency when com-
pared to reactiveMD and classicalMD. This improve-
ment is demonstrated by its capacity to simulate
models of a considerable scale, reaching 6 × 6 µm2

and represented by 17 200 CG beads [386]. In another
work utilizing theGraFF forcefield [387], Sinclair et al
[388] simulated the process of using stick tape to
mechanically exfoliate graphene (see figure 23(d)).
Depending on the chosen polymer-adhesive, they
uncovered a peeling mechanism that involves a com-
bination of shearing and normalmodes. Additionally,
a mathematical model for the repeated exfoliation of
graphite was deliberated. The MD simulation find-
ings indicate that for enhanced graphene produc-
tion, the use of rigid and viscous substrates is recom-
mended. Moreover, the peeling mechanics of mul-
tilayer graphene stacks was studied by classical MD
[389] with registry-dependent interlayer potential,
i.e. REBO potential [390]. The study underscored
the substantial role of corrugation energy in shap-
ing intricate sliding patterns and intralayer shears, as
shown in figures 23(e)–(g). Notably, it was observed
that peeling proceeds smoothly on a large scale, while
smaller scales exhibit complex sliding patterns. This
finding suggests that the interplay of peeling and kink
formations has the capacity to induce alterations in
stacking order, consequently affecting the electronic
structure of multilayer solids.

Furthermore, liquid-phase exfoliation emerges as
a widely adopted and promising approach for the
large-scale synthesis of 2D layered materials. Zhou
et al [391] examined the exfoliation process of MoS2
nanosheet in a mixture of water and isopropanol,
featuring cavitation bubbles, as schematically out-
lined in figure 23(h). Leveraging a hybrid force
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Figure 23.MD simulations of mechanical exfoliation of 2D materials. (a) Schematic illustration of the mechanical exfoliation
process. (b) The peeling front and edges, obtained from CGMD. (c) Schematic illustration of a 2D sheet peeled off from a rough
substrate. Reprinted from [386], Copyright (2018), with permission from Elsevier. (d) The process of mechanical exfoliation of
graphene using stick tape. Reproduced from [388] with permission from the Royal Society of Chemistry. (e) A zigzag stacked
multilayer graphene is peeled by pulling down the carbon atoms. Color represents the Kolmogorov and Crespi (KC) energy.
(f)–(g) Corrugation potential surface area for graphene sliding in the zigzag and armchair direction, respectively. Reprinted figure
with permission from [389], Copyright (2015) by the American Physical Society. (h) The initial setup of the exfoliation
simulation and the velocity streamlines of the nanojet resulting from the bubble collapse. (i) The initial and final exfoliated
configurations after the nanojet impact. Reproduced from [391], with permission from Springer Nature.

field that integrates TIP4P/2005 potential [392] for
water, REBO potential [393] forMoS2, and OPLS-AA
potential [394] for isopropanol, multimillion-atom
MD simulations were conducted to investigate the
shock-induced collapse of cavitation bubbles and the
subsequent exfoliation process ofMoS2, as showcased
in figure 23(i). Through the simulation, it was elu-
cidated that the collapse of cavitation bubbles res-
ults in high-speed nanojets and shock waves, exerting
substantial shear stress on MoS2 surfaces. This intric-
ate process acts as the driving force for initiating and
enhancing exfoliation. The simulation results serve
as a valuable resource for experimentalists seeking to
optimize and scale the yield of exfoliation.

Furthermore, MD simulations was utilized to
study the electrochemical exfoliation of 2D mater-
ials, such as MoS2, as illustrated in figure 24(a)
[395]. Ethylene carbonate (EC) and propylene car-
bonate (PC) are the most common electrolytes for
lithium-ion batteries, with different working temper-
ature ranges. MD simulations was employed to study

the exfoliation of electrolyte-intercalated graphene
sheets, as shown in figure 24(b) [396]. Their results
suggested that the exfoliation diffusion coefficient of
the graphene sheet with PC intercalant is∼200 times
larger than that with EC intercalant. The MD pre-
dicted dynamic properties of graphene in two differ-
ent electrolytes can be used for designing new anode
materials with better performance. It is noteworthy
that there is a scarcity of MD simulation studies
on electrochemical exfoliation of 2D materials com-
pared to the abundance of research on mechanical
exfoliation.

MD simulations play an important role in advan-
cing providing fundamental information for guid-
ing the synthesis of 2D materials by elucidating
the dynamics of growth processes, providing crucial
information about the formation of atomic struc-
tures, nucleation, and mechanisms behind material
growth. This information is of paramount import-
ance for tailoring material properties and design-
ing novel materials with specific characteristics. With
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Figure 24. (a) Schematic illustration of the mechanism of electrochemical exfoliation of bulk MoS2 crystals. Reproduced from
[395] with permission from the Royal Society of Chemistry. (b) The exfoliation of electrolyte-intercalated graphene sheets [396].
Reprinted with permission from [396]. Copyright (2015) American Chemical Society.

ongoing developments in algorithms, computational
power, and force field accuracy, MD simulations
are anticipated to offer even more realistic and reli-
able predictions of atomic-scale interactions during
synthesis.

6.4. Micro/meso scale: PF approach
PF method is a computational approach for simulat-
ing and studying the evolution of nano/microstruc-
tures and phase transformation [397–401]. It adopts
the diffuse interface concept utilizing continuous
order parameters for representing phase evolutions
without explicitly tracking the interfaces between dif-
ferent phases. The PF model (PFM) uses a scaler field
(shown in figure 25(a)) that takes a constant value
in each phase and rapidly changes from the value
in one phase to another value in the other phase
across the diffusive interface [402, 403]. The PF crys-
tal (PFC) model is the extension of PFM to atom-
istic length scale while maintaining the diffusive time
scale; PFC lies between the standard PFM and atomic
simulations. As shown in figure 26(a), the crystalline
(phase 1) and non-crystalline (phase 2) states in PFC
are represented by periodic function of the density
field and a constant density value, respectively [404].
PFM and PFC focus on different aspects of mater-
ial behaviors and have distinct applications. PFM is
mostly used to simulate the domain evolution or
phase transformation on a microscale to study the

complex interactions between different phases and
their boundaries and to understand material’s struc-
tural evolution. While PFC focuses on the dynamics
and structure of atomic arrangements, and it can sim-
ulate the behavior of crystalline materials at atomic
level such as the nucleation and growth of crystals
and defects, without direct investigation of individual
atoms [403].

6.4.1. A brief background of PF modeling
The Ginzburg-Landau based free energy in PFM
is described by a set of conserved {ci} and non-
conserved {φ i} field variables that vary continuously
across the diffusive interface. The free energy func-
tion contains the thermodynamic and kinetic driv-
ing forces that govern microstructure evolution, and
it has the following form [403]:

F=

ˆ
d⃗r

[
f0 (c1, . . . , cn,φ 1, . . . ,φm)+

n∑
k=1

αk(∇ck)
2

+
3∑

i,j=1

m∑
k=1

βij∇iφ k∇jφ k

 (17)

First term, f0, is the local free energy density of equi-
librium phases. The two terms containing gradient
of conserved and non-conserved field variables are
associated with the excess free energy due to their
inhomogeneity across the interface with αk and βij
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Figure 25. (a) The atomic density plot representing a crystalline phase 1, disordered phase 2, and the diffusive interface in PFC.
Reproduced from [404], with permission from Springer Nature. (b) Phase diagram for the graphene-hydrogen system. The grey
lines indicate coexistence tie lines for the solid (A) and disordered (B) phases. Reproduced with permission from [405] (c) Optical
microscopic images of dendritic graphene flakes (light color) growing on copper substrates (dark color). The flow of
carbon-carrying methane was kept at CH4 = 1 sccm (standard cubic centimeters per minute) and the flow of H2 was set to (c1) 2
(c2) 20 (c3) 40 sccm. Reproduced with permission from [405] © 2018 The Author(s). The density field (n) and concentration
field (C) obtained from PFC simulation of graphene dendrite growth for average system concentrations C0 of (d) 0.13 and (e)
0.17. The evolution of carbon density nA and hydrogen density nB of PFC simulations during the (f) early stage and (g) final step
of graphene dissolution. Reproduced with permission from [405] © 2018 The Author(s).

and are related to the interface energy and width. The
time evolution of the conserved and non-conserved
variables are described by [403, 406]:

∂φ i

∂t
=−Lij

δF

δφ j
(18)

∂ci
∂t

=∇·
(
Mij∇

δF

δcj

)
+ S (19)

where Lij and Mij are associated with the mobil-
ity and kinetics of the microstructural evolution.
S is the source term to incorporate the effect of
thermal noise or allow mass transport. Additional
terms can be added to the free energy density term
in equation (17) depending on different phase trans-
formation phenomena. The contributions of latent
heat released during the solidification and the elastic
energy are two examples that can be incorporated in
equation (17); adding these modifications to the free
energy term requires solving the heat equation [407]
and the mechanical equilibration term [403, 406].
Furthermore, for simulating polycrystalline micro-
structures, an addition set of field variables is required
to represent the grain orientations [408].

6.4.2. A brief background of PF crystal
The order parameter in PFC method is described by
the local-time-averaged density following constant
value (periodic function) inside the non-ordered
(crystalline) phase [409]. It is important to note

that the periodic function varies with crystal
structure of the solid phase. The free energy function
described by the order parameter is minimized
considering the elastic energy and the symmet-
ric properties of the periodic order parameter
[410]. Elasticity, plasticity, formation of disloca-
tions and grain boundaries are inherently incor-
porated in the PFC model [410]. The free energy
function for a single-component PFC is considered
as [411–413]:

F=

ˆ

V

f0 (ϕ) d⃗r−
1

2

¨
ϕ (⃗r) C2 (⃗r− r⃗ ′) ϕ (⃗r ′) d⃗rd⃗r ′

(20)

ϕ is the normalized density, f0 is the ideal free
energy density, and C2 is an isotropic two-point cor-
rection function consisting of a family of gaussian
peaks. Position, width, and the height of the Gaussian
peaks are chosen such that it produces the desired
crystal structure at the minimum point for energy
and stabilizes the muti-phase coexistence. Two-point
correction models are mostly suitable to model a
simple cubic, fcc, an diamond cubic structures [414].
Higher-order corrections functions are capable of
modelingmore complex crystal structures [414, 415],
however, they may bring additional computational
complexity. For a constant volume condition, the
order parameter is a conserved field variable, and its
dynamic time evolution is given by:
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∂ϕ

∂t
= Γ∇2 δF

δϕ
+ η (21)

η is a Gaussian random variable with zero mean and
two-point correction:

⟨η (⃗r, t) ,η (⃗r ′, t ′)⟩= Γkb∇2δ (⃗r− r⃗ ′)δ (t− t ′) . (22)

Now that we briefly explained how the PFM and
PFC approaches work, in the following we summar-
ize their applications in simulating the CVD and PVD
processing of 2D materials.

6.4.3. Microscale modeling of chemical vapor
deposition
6.4.3.1. PF crystal
2D materials exhibit different crystalline symmetries
such as honeycomb, Kagome, triangular, and square
lattices. The typical one-point and two-point PFC
models can simulate fcc and bcc structures [412, 416,
417], but usually fail to model the highly complex
crystal structures. The PFC model for simulating the
CVD process should be able to identify the underly-
ing mechanism for selection of the aforementioned
distinct crystallization modes along with the nature
and growth of the topological defects. Multimode
PFCmodels, with three-point and four-point correc-
tion functions, are capable of studying the mechan-
ism governing the formation and dynamics of com-
plex crystalline and stabilized polycrystalline states
including honeycomb and Kagome [418]. There are
PFC models in literature predicting stabilized single
component [418] and binary [419, 420] 2Dmaterials
with honeycomb-like and Kagomi-like lattice struc-
tures. Various studies in the literature have used these
models to simulate complex solid-state phase trans-
formation and to predict the nature of topological
defects found in 2D materials [84, 420–424].

The traditional PFC models used to simulate
CVD of 2D material contain solid and liquid phases
[425] and were developed to simulate the solid-state
and liquid to solid phase transformations [409, 426,
427]. To model CVD of 2D material, the free energy
functional should also allow the coexistence of solid
phase with the vapor phase. PFC models in literature
take two different approaches to simulate the coexist-
ence of vapor phase with complex structures such as
honeycomb and Kagimi.

The first one considers different field variables
for each phase. Schwalbach et al [428] extended the
traditional PFC models containing solid and liquid
phases and proposed the first model to simulate the
coexistence of solid-liquid-vapor. In addition to the
density field variable, they introduced another order
parameter. Their model accurately predicts various
interfacial properties such as the liquid-vapor inter-
face oscillations and the anisotropic solid-vapor sur-
face energies. Elder et al [405] used this approach and
extended the two-point PFC model of Greenwood

et al [411] from a single component to a two com-
ponent system stabilizing the crystal-vapor coexist-
ence with a 2D simulation approach. Compared with
the Schwalbach’s model [428], they used two field
variables representing dimensionless atomic density
of the solid and vapor phases. As mentioned previ-
ously, the two-point PFC models are not very suit-
able to predict complex structures. For this, Elder et al
[405] also developed another 2D model by extending
the three-point PFC model of Seymour and Provatas
[415] to a two component system, each representing
the solid and vapor phases.

The second approach for considering the coexist-
ence of solid phase with the vapor phase uses a single
continuum field variable. This approach requires
higher order correlation functions (up to four-
point) to predict three-phase coexistence and trans-
itions including vapor-liquid-solid and the unusual
vapor-solid-liquid transition sequences [415, 429–
433]. However, obtaining a three-phase coexistence
with complex crystal structures is still challenging.
Seymour and Provatas developed the first PFCmodel
using a three-point correlation function in the free
energy functional to model more structurally com-
plex crystals. Given the phase diagram presented in
figure 25(b), their 2D model allows stabilizing the
graphene structure and its coexistence with liquid/va-
por phases [415, 434].

One application of the PFC modeling is to
study the dendritic morphology growth during the
CVD. Experimental observations of graphene syn-
thesis using PVD method, shown in figure 25(c),
suggested that depending on the flow of CH4 and
H2 gases inside the chamber, one can produce full
coverage graphene or isolated dendritic flakes [405].
To study this phenomena, Elder et al [405] applied
the 2D two-point PFC model to study the dendritic
growth during the CVD of graphene. In comparison
to PFC model with three-point correction function,
this model is less robust and also leads to some incor-
rect elastic responses [405]. However, its computa-
tional advantage over the three-point models facilit-
ates larger scale simulations for longer periods of time
sufficient enough to study the crystallization during
CVD. As shown in figures 25(d) and (e), themorpho-
logies of the thin film predicted by PFC were consist-
ent with the experimental observations of CVD [405].
The results suggested that the increase of hydrogen
flow rate decreased the dendricity and increases the
growth speed [405].

Up to this point, it has been shown how the rel-
ative amounts of H2 and CH4 gases in the cham-
ber affect the morphology of graphene growth.
However, the experimental and PFC studies sug-
gest a high H2 to CH4 ratio, even after the partial
coverage of surface via graphene flakes interfering
with the growth dynamics. This causes dissolution of
graphene at grain boundaries, leaving behind a high
H2 concentration at grain boundaries [405, 435]. In
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very extreme cases, it can even lead to the disappear-
ance of graphene dendritic flakes. Elder et al used the
2D three-point PFC to investigate the role of carbon
density on the dynamics of grain boundary [405].
The carbon density (na) and hydrogen density (nB)
profiles shown in figures 25(f) and (g) support the
experimental observations of graphene dissolution
until the hydrogen and carbon densities in the crystal-
ized graphene follow the phase diagram coexistence
values.

6.4.3.2. PF model
Synthesizing high-quality single-crystalline 2D
material via CVD requires full control of the nucle-
ation and growth processes. CVD synthesis of large-
area materials with the desired density of defects
and thickness uniformity depends on various syn-
thesis factors such as temperature, pressure, growth
time, precursor concentrations, and flow patterns
inside the reactor [436, 437]. For instance, stud-
ies suggest that tuning the C:H ratio [436], chan-
ging the H2 gas pressure [438], and smoothing the
substrate [439] help improve the quality of graphene.
However, optimizing the CVD process is challen-
ging because numerous factors affect the dynamics of
crystal growth.

2D PFMs of CVD have been developed based
on the models of spiral growth [440] and epitaxial
growth [441–443]. Ratz and Viogt [441, 442, 444]
developed one of the first PFMs that can simulate
step flow in epitaxial growth of thin films. They intro-
duced an order parameter, representing the steps or
the boundaries of the islands. This order parameter is
discrete in the growth direction but continuous in the
lateral direction. Meca et al [435, 445] developed one
of the first PFMs suitable for simulating the growth of
a single step during the CVD process of 2Dmaterials.
As an alternative to the experimental synthesis of 2D
material, PFM of CVD is a powerful tool to investig-
ate various synthesis factors affecting themorphology
of the islands, e.g. carbon precursor flux [446, 447],
concentration of carbon precursor on the substrate
surface [446], and diffusion of the substrate [446].

In general, the free energy term used in these
PFMs to simulate the CVD is based on the expression
given by Karma and Plapp [440]:

F=

ˆ
d⃗r

[
κ2(∇ψ )

2 − 1

π
cos(π [ψ −ψ 0])

+λξ

{
ψ +

1

π
sin(π [ψ −ψ 0])

}]
(23)

ψ is the order parameter, taking values of −1 and 1
on the substrate and deposited layer, respectively. ξ is
the second field variable given by:

ξ = Γ
(
u− ueq

)
(24)

where Γ is the atomic area of solid, u represents the
concentration of species arriving on the substrate,

and ueq is the equilibrium specie concentration. κ2 is
the gradient step energy term, and the anisotropy of
the step energy is considered by assuming:

κ2 = σ2
{
1+ εg cos(nθ)

}
(25)

σ2 is the constant average interface energy density,
εg is the strength of anisotropy, θ is the angle of the
interface normal with x direction, and n corresponds
to the symmetry which is considered as 6 for sim-
ulating a six-fold crystal symmetry. The minima of
free energy are independent from ξ and happen at
ψ −ψ 0 = 2m+ 1, m =0, 1, 2, …. λ is a dimension-
less constant coupling the evolution equations of ξ
and ψ .

τψ
∂ψ

∂t
=− δF

δψ
(26)

∂ξ

∂t
= D∇2ξ − ξ

τs
+Ω− 1

2

∂ψ

∂t
(27)

τψ is the characteristic time of attachment of adatom,
τs is the mean lifetime of adatom on the substrate, Ω
is the precursor’s flux arriving at the substrate, and D
is the diffusion coefficient of adatom.

One of the advantages of PF modeling is its abil-
ity to simulate phenomena that are hard to observe
or measure through experiments [448, 449]. For
instance, the concentration gradient around each
graphene island cannot be seen experimentally [446].
However, PF simulation results for CVD of graphene
showed the width of the depletion zone, that is, the
area with a carbon precursor concentration gradient
around the circumference of the growing graphene
island, plays a central role in the shape determin-
ation of the graphene islands [446]. When the size
of the depletion zone is much smaller or much lar-
ger than the island, graphene grows in a hexagonal
shape. Although an extremely small depletion zone
will lead to a graphene island with a regular shape,
its edges are found to be rough. However, compar-
able size between the depletion zone and island pro-
motes fractal-like graphene islands with multi-scaled
branches [446].

Another important advantage of PF modeling is
its ability to consider anisotropy during the growth
process. Some PFMs consider constant values for the
diffusion coefficient and kinetic time constant [437,
446]. However, there are other PFMs that account
for the anisotropies of these variables [435, 445,
450]. 2D PF simulations of graphene CVD suggest
that, as shown in figure 26(b), diffusion anisotropy
is the most important anisotropy term impacting
the crystal shape. The results show the transition
from a six-fold to a four-fold symmetry as the dif-
fusion strength takes a very high value [435, 445].
It should be mentioned that in [435], a systematic
investigation on various anisotropy strength values
for the diffusion and kinetic term has been per-
formed. However, accurate strength values cannot be
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Figure 26. (a) The field variable in phase 1, phase 2, and its evolution across the diffusive interface in PFM. (b) The effect of
diffusion anisotropy and deposition fluxΩ (reference deposition fluxΩ0 = 0.677)on the crystal morphology during CVD.
Reprinted with permission from [435]. Copyright (2013) American Chemical Society, (c) the comparison of PF simulation and
experimental of CVD of graphene on oxide free copper, OF-Cu and oxide free copper with 1 min O2 exposure, OF-Cu(O).
Reproduced with permission from [437].© 2013, American Association for the Advancement of Science. The PF simulation are
performed under various conditions: (c1) Ω= 0.002, τψ = 2, (c3) Ω= 0.0004, τψ = 2, (c5) Ω= 0.0006, τψ = 1, and, (c7)
Ω= 0.002, τψ = 1. The experiments are performed under different P CH4 values [Torr], (b2) 2× 10−3, (b4) 3× 10−4, (b6)
1× 10−3, and (b8) 2× 10−3.

calculated from experiments. MD is a powerful tool
with established algorithms for calculating anisotrop-
ies of surface energy and kinetic terms [44, 407, 451].
However, the literature lacks an MD-based method
and a multiscale framework for a quantitative invest-
igation of the factors affecting domain morphology
and growth dynamics during CVD.

PFMs are also capable of simulating how impur-
ities on the substrate alter the nucleation and growth
kinetics during CVD. Hao et al [437] performed a
combined experimental and 2D PF simulation study
to identify how oxygen exposure on the substrate sur-
face affects the island morphology and growth rate.
Their experimental observations showed oxygen on
the copper surface suppresses the nucleation and pro-
motes the growth of large single-crystalline graphene
[437]. The change of the graphene domain mor-
phology, as shown in figures 26(c2), (c4), (c6), and
(c8), suggests different growth mechanisms are activ-
ated under various synthesis conditions. Compact
islands in the absence of oxygen impurities suggest
the growth is an edge-attachment-limited process.
The dendritic shape in oxygen exposure indicates
that the growth kinetics are in a diffusion-limited

regime [437]. They also performed PF simulations
of CVD that supported their experimental observa-
tions. Large energy barriers for the edge attachment,
which are experimentally observed in cases with sub-
strate exposed to oxygen, are computationally rep-
resented by choosing a large characteristic time of
adatom attachment on the substrate. PF simulation
results [437] (figures 26(c1) and (c3)) show that as
long as the characteristic time of attachment is large,
(represented by τψ = 2) different values of carbon
flux result in compact hexagonal structures. However,
for small τψ values, shown by figures 26(c5) and (c7),
Ω becomes the dominant parameter, and shape of
the domain changes to a dendritic. Furthermore, Li
et al [452] used the same model as Hao et al [437]
to uncover the growth mechanisms of bilayer and
monolayer graphene on copper. This work demon-
strates that when graphene was grown by CVD
on the surface of clean copper (without impurit-
ies), only monolayered graphene islands or graphene
films were obtained. While the existing impurity on
the substrate assists nucleation. Thus, bi-layered or
even few-layered graphene may appear around each
impurity particle. It should bementioned that similar
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to all the previous studies on PF modeling of CVD,
simulations of [437] were performed in 2D and the
multilayer growth is handled by the sin and cos terms
in equation (23) which has multiple local minima.

One important factor limiting the reproducib-
ility of CVD is the variability existing between 2D
materials grown in different reactors using the same
growth conditions. In order to capture the vari-
ous physics involved in the growth of monolayer
materials across different length- and time-scales,
Momeni et al [453] and Ji et al [450] developed
a multiscale/multiphysics model based on coupling
continuum fluid dynamics (CFD) andPFM for study-
ing CVD growth of 2D materials. This approach cor-
relates the island morphology of the 2D material
to macroscopic (such as inlet velocity and temper-
ature) and microscale growth parameters (such as
surface diffusion and deposition rates). Their mod-
eling results, as predicted by previous experimental
studies [454], suggest that low precursor concentra-
tions result in a more uniform distribution of h-BN
islands. Furthermore, Momeni et al [455] extended
their model by coupling PFM, reactive MD, and CFD
to obtain precise control over the coverage, morpho-
logy, and properties. This multiscale simulation of
WSe2 synthesis revealed that the uniformity andmor-
phology of 2D materials are strong functions of pre-
cursor concentration and its gradient over the sub-
strate, which are also influenced by the growth cham-
ber configuration and flow characteristics. Although
this multiscale model takes into account the inter-
play between the flow inside the reactor and diffusion
of precursor, this approach still does not fully solve
the reproducibility problem. Because this framework
neglects the chemical reactions, breakdownof species,
and the effect of substrate defect distribution on the
nucleation stage.

6.4.4. Micro scale modeling of physical vapor
deposition
In general, the surface morphology and microstruc-
tural features formed during the growth of thin film
by PVD, such as crystal structure, orientation, grain
size, grain shape, chemical composition, phase dis-
tribution and surface roughness, depend on depos-
ition conditions and the target materials [456–458].
There is a complex correlation between phenomena
associated with synthesis (the vapor transport, sur-
face adhesion and diffusion, phase separation, grain
growth, surface roughening), deposition condition,
the initial microstructural features of the substrate
(grain size, grain boundary type, orientation, tem-
perature,) andmicrostructural dynamics to deposited
thin film [458]. PFM is a powerful tool to simulate the
pattern formation and evolution during the PVD.

In general, the field variable ϕ in the PFM ranges
between 1 and −1 as it moves from the solid into the
vapor phase, respectively. The general form of free

energy in these models is given by:

F=

ˆ
d⃗r
[
f0 (ϕ)+α(ϕ)(∇ϕ)2 + s(ϕ) fsub

]
(28)

ϕ is the order parameter, f0 is the symmetric double-
well potential with minima at ϕ =−1 and 1. fsub rep-
resent the driving force for the microstructure evolu-
tion during the PVD.

The PFM of PVD describe the kinetics of thin-
film growth by two coupled partial differential
equations for order parameter ϕ (equation (18)) and
a second field variable ρ, describing the incident
vapor flux. The evolution of vapor field is given by:

∂ρ

∂t
= ∇⃗.

(
D∇⃗ρ

)
−∇⃗.(ρ⃗v)− S (29)

v⃗ is the velocity field of the incident vapor, S is the
source term acting as a sink to remove vapor that has
been convert to solid [37, 38, 406, 459, 460].

There are two different PFM approaches in the
literature which consider the dynamics of thin-film
nucleation and growth along with the evolution
microstructure within it. The first approach considers
the phase separation happening during the synthesis
of immiscible alloys [459–461]. The second approach
considers the growth of a single-phase polycrystalline
2D material and studies the deposition of the thin
film and the evolution of granular structure during
the PVD process [37, 38].

In developing PFM for PVD of a two-phase
immiscible alloy system, another field variable c is
introduced which describes the local equilibrium
composition of phase A or B. In this model, fsub is
given by:

fsub = felastic + fc +αc(∇c)2 (30)

fc is double-well potential and felastic is the elastic
energy density. The evolution equation c is given
by equation (19). Introduction of elastic energy
term in the free energy adds elastic strain to the
unknown variables and one should also solve the
mechanical equilibrium equation. This PFMhas been
implemented [459, 461] to simulate PVD of vari-
ous alloy with various two phase-fractions. The res-
ults given by figure 27(a) showed that this model is
capable of describing the four basic morphologies,
known as lateral, vertical, random and nanoprecip-
itate concentration modulations that are commonly
observed by the experiments [462–464]. Despite this
PFM’s advantages, it still fails to provide a quantitat-
ive description of the synthesis process and it ismainly
used to investigate how different factors such as phase
fraction, incident vapor velocity, and phase kinet-
ics affect the microstructure formation and morpho-
logy. In developing PFM for PVD of a polycrystalline
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Figure 27. (a) Formation of lateral, random, vertical, and nanoprecipitation concentration modulations from phase field
simulations of thin-film growth of immiscible alloy with 50/50 phase fraction system. Reprinted from [406], Copyright (2022),
with permission from Elsevier. (b) PF simulation of PVD on a polycrystalline substrate with low-angle and high-angle GB
misorientations with different s and ε parameters given by equation (16): (b1) s= 0.01 and ε= 0.005, (b2) s= 0.1 and
ε= 0.005, (b3) s= 0.01 and ε= 0.05, (b4) s= 0.1 and ε= 0.05. The color legend shows grain orientation in degrees relative to
the positive x-axis. Reprinted from [38], Copyright (2017), with permission from Elsevier. (c) PF-calculated heat maps of the thin
film’s surface height of thin films after 35 min of deposition with three different deposition rates (V) and the gas–solid transition
velocity (B) of (c1) V= 0.1 nm s−1 B= 0.23 nm2 s−1 (c2) V= 0.5 nm s−1 B= 1.44 nm2 s−1 (c3) V= 1 nm s−1

B= 4.71 nm2 s−1. Reproduced from [465]. CC BY 4.0.

single-phasematerial, the subsurface free energy con-
tribution is formulated as:

fsub = s |∇θ|+ ε|∇θ|2 (31)

θ is a field variable describing the grain orienta-
tion with respect to a reference. Evolution equation
for θ is also described by an equation similar to
equation (18). The parameters s and ε depend on
the latent heat of fusion and a characteristic GB
thickness [38]. As shown in figure 27(b), PFM is cap-
able of studying how initial microstructural, mater-
ial properties (e.g. latent heat of fusion) and syn-
thesis factors such as deposition rate and vapor incid-
ent vapor affect formation and evolution of polycrys-
talline microstructure or the surface roughness [37,
38]. Yang et al is one the only three-dimensional PF
simulations of the 2D material synthesis. Given by
figure 27(c), they performed multiple simulations to
study the effect of deposition rate and model para-
meters on the microstructure of deposited thin films
[465]. They provided a heatmap explaining a quantit-
ative relationship between the surface roughness and
the deposition rate and model parameters.

6.5. Continuummodeling andML in the synthesis
of 2Dmaterials

In its conventional form, the PFM accounts for nuc-
leation by adding a term representing thermody-
namic fluctuations of field variables [466]. On the
other hand, nucleation and growth occur on different
time scales. Therefore, observing the nucleation and
growth kinetics in real alloys is computationally chal-
lenging. As an alternative, the Langevin noise terms
in the PFM equations can be replaced with a Poisson
seeding algorithm, in which nuclei are introduced in
the microstructure with a rate matching the observed
nucleation rate [466, 467]. A similar approach was
also used in a multiphase field model for simulating
the PVD process. This model is capable of studying
the role of initial substrate phase and temperature dis-
tributions on PVD of a generic allotropic metal with
two stable phases [460]. The phase nucleation model
explicitly introduces nucleation sites into the PFM via
classical nucleation theory and Poisson seeding [466,
467].

Continuum modeling and ML offer signi-
ficant advantages in the synthesis of 2D mater-
ials by enabling efficient and detailed analysis
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Figure 28. (a) Continuum mechanics model of the self-folded 2D flake on a flat substrate. The two blue curves indicate the two
outer surfaces of the flake. The black curve indicates the middle-plane deformation profile. (b) The calculated middle-plane
deformational profiles of self-folded 1L to 5L MoS2 flakes. (c), (d) The comparison of the bending stiffness of MoS2, graphene,
and hBN. (e) The comparison of the interlayer shear energy contribution to the overall bending energy of 2D sheets. The dashed
lines are the respective power-function fitting curves. The bending stiffness values for graphene are reproduced from [469]. The
bending stiffness values for 1L and 2–6L hBN are reproduced from [470] and [471], respectively. Reprinted from [468], with the
permission of AIP Publishing.

of large-scale processes and providing predictive
insights. Continuum models are adept at simulat-
ing macroscopic phenomena such as stress distri-
bution, heat transfer, and large-scale morphological
changes in 2Dmaterials during processes like CVD or
exfoliation [468, 472, 473]. Jiang et al [468] showed
continuum mechanics aids in understanding the
mechanical exfoliation of ultrathin 2D materials by
analyzing their bending rigidity (refer to figure 28).
This approach considers the intricate balance of intra-
and inter-layer interactions, particularly in materials
like MoS2, graphene, and hBN, where classical mech-
anics might not fully capture the nuances of their
layered atomic structures and bonding characterist-
ics. They provide a macroscopic view that is critical
for scaling up production and ensuring uniformity of
material properties.

Along with conventional simulation methods,
ML techniques can significantly enhance the syn-
thesis process by predicting optimal synthesis condi-
tions, identifying potential newmaterials, and optim-
izing parameters for desired properties [474–476].
Yoshihara et al explored the use of ML models to

optimize the CVD process for synthesizing large-area
graphene [474]. The study successfully developed an
MLmodel that predicts the size of graphene domains
based on CVD growth conditions and surface char-
acteristics of copper substrates. This approach res-
ulted in enhanced graphene growth, demonstrating
that ML can significantly improve the efficiency and
outcomes of material synthesis processes. By analyz-
ing large datasets from experimental and computa-
tional studies, ML algorithms can uncover complex
relationships and trends that are not immediately
apparent, leading to more efficient and targeted
synthesis approaches. For instance, ML can pre-
dict the best combination of precursors and pro-
cess conditions in CVD to obtain high-quality 2D
materials with specific properties [477]. Li et al
presented an ML approach for analyzing optical
images of CVD-grown 2D materials [478]. They
employed unsupervised learning, combining self-
organizing map (SOM) and k-means clustering, to
assess the quality of these materials efficiently. This
method demonstrates high accuracy and is applicable
to various material systems, marking a significant
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advance in the efficient evaluation of CVD-grown
materials.

ML can be utilized in conjunction with MD sim-
ulation results to understand a process. Liu et al
[296] used reactive MD simulations to study the
CVD growth of MoS2 from MoO3 and S precursors.
Subsequently, the authors used a machine-learning
approach involving feedforward neural networks to
identify the critical reaction mechanisms. The results
from the training of 36 000 simulation data points
revealed novel growth mechanisms which turned out
to be fundamental for augmenting the experimental
CVD growth of MoS2 [296].

The coupling of continuum models with ML
algorithms facilitates a more holistic approach, where
themacroscopic insights fromcontinuummodels can
be combined with the predictive power of ML, lead-
ing to an accelerated discovery and optimization pro-
cess in the synthesis of 2D materials. Along with that,
atomistic and molecular level simulation can provide
more intricate understanding of the synthesis and
process behavior, albeit with higher computational
expenses. The overarching research direction would
follow integrated, and hybrid atomistic-continuum
simulations assisted by ML to harness greater under-
standing and optimized synthesis processes exploit-
ing the insights across different length scales.

7. Evolving trends and future directions

7.1. Electronic scale calculations
To broaden the capabilities of DFT beyond ground-
state properties, extending its reach to accurately
depict excited states, non-equilibrium phenomena,
and time-dependent processes, advancements in the
current methodology is inevitable. This expansion
will facilitate a more comprehensive understanding
of electronic dynamics. The integration of quantum
computing technologies is anticipated to revolution-
ize DFT simulations. With the rapid progress in
both DFT calculations and computational power,
accessing basic material properties becomes increas-
ingly straightforward, leading to the creation of
numerous materials databases, such as the Materials
Project [356]. Quantum computers hold the poten-
tial to tackle currently intractable calculations, offer-
ing new solutions for complex quantum many-body
problems.

Conventional DFT calculations, typically oper-
ate within a system size of <103 atoms, with time
scales on the order of picoseconds. To extend length-
and timescales, there is a push to develop linear-
scaling DFT methods, such as the charge-patching
method [479] and the linear scaling 3D fragment
method [480]. DFT stands as a cornerstone of
the Materials Genome Initiative, and ongoing pro-
gress involves crafting efficient workflows for high-
throughput screening of materials, accelerating the
discovery of novel materials with tailored properties

for specific applications [481]. Research endeavors
persist in the development of hybrid functionals that
strike a balance between accuracy and computational
cost. These functionals aim to overcome limitations
associated with describing strongly correlated sys-
tems and enhance the treatment of diverse chem-
ical reactions. DFT is anticipated to assume a pivotal
role in comprehending and predicting the beha-
vior of complex systems, encompassing biological
molecules, interfaces, and materials under extreme
conditions [482]. The evolution ofmore accurate and
reliable exchange-correlation functionals is pivotal
in this context. The trajectory of DFT involves an
unceasing pursuit of accuracy, an expansion of cap-
abilities to address a broader array of electronic phe-
nomena, and an embrace of emerging technologies
such as quantum computing and ML to unlock new
frontiers inmaterials science and quantum chemistry.

The accuracy of mesoscale and macroscale mod-
els often relies on the parameters and relationships
established at the electronic scale. Data obtained from
electronic scale simulations can be used to inform and
enhance MD simulations at higher scales. Electronic
scale simulations also generate vast datasets including
atomic coordinates, energies, forces, and electronic
properties. These datasets can be leveraged to train
ML algorithms for predicting material properties.
For example, ML models can be trained to predict
mechanical stability, interaction energies, and cata-
lytic activity using electronic scale data as input fea-
tures. ML models can then be employed to construct
surrogate models that approximate potential energy
surfaces, enabling acceleratedMD simulations. These
surrogate models, often referred to as force fields or
interatomic potentials, can significantly reduce com-
putational costs while maintaining accuracy. This
allows researchers to explore longer time scales and
larger system sizes. The insights gained fromML ana-
lysis can expedite thematerials discovery process, sug-
gesting novel compounds with desirable properties,
guiding experimental synthesis efforts, and even pre-
dicting new phases of materials.

7.2. MD simulations
MD stands as an exceptional tool for unraveling
various behaviors of 2D materials. For the study
of mechanical properties, MD simulations offer
detailed insights into interactions of nanostructures
and defects, revealing material strength, elasticity,
and deformation mechanisms with high precision.
For investigating thermal properties, MD simula-
tion is capable of capturing atomic motion and heat
transfer, improving our understanding of phenom-
ena such as thermal conductivity and phonon disper-
sion. Additionally, with the advancing of interatomic
potentials, MD simulation can be used to elucid-
ate the intricate dynamics of chemical reactions and
uncover the pathways and mechanisms of oxidation
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[483, 484]. In the context of desalination, MD simu-
lation plays a pivotal role in analyzing the process of
ion and water molecule transport through nanoscale
pores [485]. Furthermore, in materials synthesis, MD
simulations aid in optimizing experimental condi-
tions and understanding the atomistic details of 2D
materials growth, as well as guiding the design of
novel materials [486]. Overall, the power of MD sim-
ulation lies in its ability to bridge atomic and micro-
scopic scales, providing valuable insights into a broad
spectrum of material properties and behaviors.

However, it is important to acknowledge the cer-
tain challenges and drawbacks of MD simulations.
These include the computational demands of sim-
ulating large-scale systems, the importance of thor-
ough validation against experimental data, and the
potential for discrepancies stemming from limita-
tions in simulation accuracy.While challenges persist,
ongoing advancements in simulation methodolo-
gies, force fields, and collaboration with experimental
studies provide hope for enhancing the effectiveness
and trustworthiness of MD simulations in shaping
the development of next generation 2D materials.

Advancing MD simulations studies of 2D mater-
ials for various purposes and applications involves a
multifaceted approach, encompassing considerations
from interatomic potentials to multiphysics simula-
tions. Our recommendations for future directions of
nanoscale simulations of 2D materials are summar-
ized in the following.

There is an immense need for developing
interatomic potentials that are specifically tailored
for the unique characteristics of 2D materials, and
systematically test the transferability of the poten-
tials across different conditions and materials com-
position to ensure reliability in diverse simulation
scenarios. For example, some empirical and semi-
empirical potentials, like Tersoff potential, are pop-
ular for studying the mechanical and thermal prop-
erties of large-scale 2D materials system that involves
millions of atoms [487]. However, these potentials
come with limitations in terms of weak transferab-
ility and inaccurately capturing the anisotropic fea-
tures of 2D materials. To address these challenges, we
recommend several strategies, such as collaboration
with ML approaches to enhance transferability by
learning from diverse datasets and incorporating dir-
ectional bonding and layer-dependent interactions in
potential parameterization. On the other hand, while
ReaxFF is powerful in simulating chemical reactions,
it is confined by the size of the simulation box. To
overcome this limit, the suggestion is to incorpor-
ate ML methods, and combining ReaxFF with other
simulation methods, such as quantum mechanics or
classical force fields in order to enable larger scaleMD
simulations. In general, exploring the integration of
ML techniques to accelerate MD simulations, predict
material behaviors, and guide the parameterization
of interatomic potentials is of great interest.

Integrating MD simulations with other compu-
tational techniques, such as DFT and continuum
mechanics, is needed to perform multiphysics sim-
ulations that capture a broader range of material
behaviors like electronic, dielectric, and magnetic
properties. An important example of multiphysics
studies is the investigation of the chemical reactions
induced bymechanical forces, expanding studies bey-
ond thermally driven reactions.

New MD simulation frameworks need to be
developed and applied to study the functionalization
of 2D materials for specific applications, such as gas
sensing, catalysis, or electronic devices. Such mod-
els can investigate the effects of functional groups,
dopants, or defects on material properties. In addi-
tion, MD simulations can be also developed and util-
ized to study properties of 2D materials for applic-
ations in energy storage and conversion, sensors
and detectors, electronic and optoelectronic devices,
given the accuracy of interatomic potentials.

7.3. Molecular mechanics
The Molecular mechanics-based analytical approach
offers a computationally efficient yet accuratemethod
for evaluating the elastic properties of 2D materials,
including monolayer (e.g. graphene, h-BN, etc) and
multilayer (e.g. MoS2, MXenes, etc) structures and
their heterostructures. Mechanical properties such as
Young’s moduli, shear modulus, and Poisson’s ratios
are of utmost importance for accessing the viability of
a material’s use in various applications of nanoelec-
tromechanical systems. From nano-structural point
of view, the 2D materials having hexagonal struc-
tural forms are categorized in four different classes.
The efficient analytical formulae are applicable to all
the classes of material and any of their heterostruc-
tures. Good agreement in the results obtained from
the analytical expressions and available scientific lit-
erature corroborates the validity of these molecular
mechanics-based formulae.

An attractive feature of the analytical approach
is that it is computationally efficient, insightful, and
easy to implement, yet yields accurate results. This
has allowed a recent investigation of stochastic char-
acterization concerning the effective elastic properties
of 2D materials [488]. Further, the continuum-based
approach for analyzing multi-layered 2D mater-
ial heterostructures has been extended to twisted
graphene and other multi-layer 2D materials [283,
489]. Mechanical idealization of the atomic bonds
of 2D materials, as discussed in this section, further
allows a wide range of efficient dynamic and mech-
anical stability analysis of single and multi-layered
2D materials, their derivatives and heterostructures
following an atomistic finite element approach [27,
490–492]. Further, there exist a range of proper-
ties (such as chemo-mechanical properties, electronic
characteristics, morphological stability etc) that are
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defined at comparatively lower length scales con-
cerning molecular, atomistic, and electronic levels,
and such properties cannot be effectively investig-
ated through a continuum-based approach. Thus, the
future research direction would follow hybrid multi-
scale simulation approaches for an effective, efficient,
and comprehensive investigation of a range of 2D
materials.

7.4. PFmodeling and other microscale models
PF approach is a powerful and versatile tool that
can help predict the structure-process-property cor-
relation in the synthesis of 2D materials. Both PFM
and PFC models are capable of simulating the vapor
deposition (both physical and chemical) synthesis
of 2D materials. PFC models can investigate atomic
length scale features of materials during temporal
evolution over diffusive time scales. In order to pre-
dict the triple-phase phase diagram with realistic
oscillations of density and anisotropic surface energy
at solid-liquid-vapor, the vapor phase should be
added to the traditional PFC models of solid-liquid
coexistence. Modifications such as using multimode
PFC models with three-point and four-point correc-
tion functions, or describing the free energy based on
three order parameters (for solid, liquid, and vapor
phases) help make decent predictions of dendrite
morphology and microstructure evolution during
CVD. Despite the progress in this field, performing
quantitative simulations to improve the understand-
ing of microstructural evolution and surface rough-
ness of deposited thin films still faces different chal-
lenges. First, the three-dimensional PFC simulations
of the vapor deposition of thin films are challenging
due to the computational complexity and resource
requirements. Capturing the dynamic evolution of
atomic-scale structures in three dimensions over the
timescales relevant to 2D material growth requires
significant computational power and advanced mod-
eling techniques. For that, the current state often
involves simplifications or focuses on 2D simulations
to reduce computational demands while still gain-
ing valuable insights into the process. Second, the
PFC results depend on model parameters. At a more
quantitative level for traditional PFCmodels of solid-
liquid coexistence, studies in the literature use MD
results to determine the model parameters by fitting
the PFC predictions of various properties (such as
peak liquid structure factor properties, solid-density
wave amplitudes, and elastic constants) to the MD
results [416, 493]. However, the current state of the
art sets the PFC parameters such that they can pre-
dict the vapor-liquid-solid coexistence. Integrating
the current PFC models with MD helps to estab-
lish a quantitative relationship between the depos-
ition rate, model parameters, and surface roughness
for the optimization of deposition processes.

PFM is a popular simulation technique based on
the Ginzburg-Landau theory, providing mesoscale

understanding of phase transitions during vapor
deposition. Despite the progress in PFM of PVD and
CVD, the current state of the art faces similar chal-
lenges as the PFC is a quantitative description of
the microstructure evolution during the deposition
process. First, very limited studies have performed
three-dimensional simulations of the deposition pro-
cess. It is well known that three-dimensional sim-
ulations are essential to ensure the modeling pre-
dictions match the physics involved in the thin-film
synthesis process. Furthermore, MD is a powerful
tool with established algorithms for calculating aniso-
tropies of surface energy and kinetic terms [44, 407,
451]. The literature lacks an MD-based method and
a multiscale framework for a quantitative investiga-
tion of the factors affecting domain morphology and
growth dynamics. Evolving trends and future direc-
tions in using PFM for vapor deposition synthesis
should focus on enhancing quantitative simulation
capabilities by performing three-dimensional simu-
lations of MD-informed PFM. This is essential for
quantitative modeling of the synthesis to advance the
understanding of the microstructural evolution and
surface characteristics of thin films during the depos-
ition process.

7.5. Artificial intelligent andML
With rapid progress in AI in the areas such as nat-
ural language processing (NLP) in the last couple
of years, the training data for ML can also be
obtained by NLP. In the case of obtaining the train-
ing data, text-mining such as Bidirectional Encoder
Representations from Transformers (BERT) models
can be used. BERT provides promising information
extraction tools, but these models may yield subop-
timal results when applied to materials domain since
they are not trained inmaterials science specific nota-
tions and jargon. In this, the training data generation
part for the ML models can be reduced significantly.
MatSciBERT [494] and SciBERT [495] are two of the
primary candidates in this domain. In the near future,
there is a tremendous possibility of exploiting such
advancements in ML models for exploring different
2D materials and their heterostructures.

Over the last decade, the necessity of integrating
multiple length-scales and respective analysis tech-
niques including DFT, MD, and continuum simula-
tions along with experimental outcomes have become
evident for efficient, effective, and comprehensive
characterization and innovation in the field of 2D
materials. ML based models can be exploited for
such scale bridging along with process and growth
simulation [17]. These possibilities have led to a
strong rationale for creating ML assisted fully func-
tional digital twins in this context for multi-scale
design and innovation, synthesis, characterization,
and performance monitoring of 2D materials and
devices.
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One of the major concerns in data-driven ML
[496] is related to interpretability and explainabil-
ity. The materials science community and the ML
community are evaluating such issues carefully for a
more responsible use of ML [497]. The future traject-
ory of 2D materials research is poised for an exciting
convergence with physics-based ML methodologies
[323, 324]. The integration of physics principles into
ML models promises a transformative impact on
materials science, particularly for 2D materials, by
enabling a deeper comprehension of their under-
lying physics. The development of hybrid models
that merge data-driven ML with physics-based con-
straints is expected to significantly improve the accur-
acy and interpretability of material property predic-
tions. These advanced methodologies aim to offer
insights intomaterial behavior, facilitate the design of
materials with specific functionalities, and bridge the
theoretical-experimental divide, heralding a new era
of precision in materials research at the atomic and
nanoscale levels.

8. Concluding remarks

This article provided a comprehensive overview of
recent advances, challenges, and opportunities in
multiscale computational modeling techniques for
the study and design of 2D materials. It discussed
the significance of different computational mod-
eling techniques in understanding the structures,
multiscale defects, and properties of 2D materials
and reviewed various length-scale models aiding in
their design and synthesis. The development and
integration of multiscale computational techniques,
including DFT, MD, PF, continuum-based molecu-
lar mechanics, and ML, were presented systematic-
ally for the study and design of 2D materials. The
study highlighted recent advancements, challenges,
and future prospects in modeling techniques tailored
for emerging 2D materials, emphasizing the need to
accurately capture intricate behaviors across various
scales and environments. Opportunities lie in enhan-
cing predictive capabilities through exploiting the
tremendous recent advances in numerical algorithm
developments and supercomputing capabilities to
accelerate materials discovery for applications span-
ning electronics, photonics, energy storage, catalysis,
and nanomechanical devices. This article offered a
roadmap for future research in multiscale compu-
tational modeling and simulations of 2D materials,
emphasizing the importance of integrating physics-
based models with data-driven ML methodologies
for a deeper comprehension of materials beha-
vior and the design of 2D materials with specific
functionalities.
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