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Abstract

A first degree homogeneous yield function is completely determined by its restriction to the unit sphere of the stress
space; if, in addition, the function is isotropic and pressure independent, its restriction to an octahedric unit circle, the
π-circle, is periodic and determines uniquely the function. Thus any homogeneous, isotropic and pressure independent
yield function can be represented by the Fourier series of its π-circle restriction. Combinations of isotropic functions
and linear transformations can then be used to extend the theory to anisotropic convex functions. The capabilities
of this simple, yet quite general methodology are illustrated for the modeling of the yielding properties of AZ31B
magnesium alloy.
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1. Introduction

In the phenomenological theory of metal plasticity, plas-
tic behavior is characterized by a yield surface/function
and an associated flow rule. The initial yield surfaces
of BCC and FCC alloys, e.g. steel and aluminum, are,
within an acceptable approximation, symmetric with re-
spect to the origin of the stress space. By contrast, the
initial yield surfaces of HCP-metals are strongly asym-
metric1, due to asymmetries in yielding at constituent
level, e.g., Bilby and Crocker (1965), Christian and
Mahajan (1995), Balasubramanian and Anand (2002),
Graff et al (2007), Kouchmeshky and Zabaras (2009).
And even if initially symmetric, any yield surface may
become asymmetric due to the residual stresses induced
by plastic deformation, e.g. Ortiz and Popov (1983),
Zatarin et al (2004), Barlat et al (2011).

While the description of symmetric yield surfaces
is a relatively well developed subject, e.g. Barlat et
al (2005), Banabic et al (2005), Barlat et al (2007),
Soare and Barlat (2010), Huang and Man (2013), a
general methodology for developing asymmetric yield
functions is still lacking. As an early contribution, one
may note the work of Liu et al (1997), where Hill’s
quadratic was extended via an algebraic combination
of orthotropic extensions of the J2 := (1/2)|σ′| and

∗Corresponding author: stefancgsoare@yahoo.com
1In this work, asymmetric will always refer to the asymmetry with

respect to the origin of the stress space.

I1 := tr(σ) invariants of the deviator of the stress ten-
sor σ. A similar approach was adopted later in Cazacu
and Barlat (2004), where an algebraic combination of
orthotropic extensions of J2 and J3 := det(σ′) was
employed, and further extended to algebraic combina-
tions of general homogeneous polynomials in Soare et
al (2007). More recently, anisotropic extensions of par-
ticular isotropic pressure-dependent asymmetric func-
tions were proposed by Plunkett et al (2008) and by
Yoon et al (2014).

Most of the above anisotropic asymmetric functions
are obtained by composing specific isotropic asymmet-
ric functions with linear transformations of the stress
tensor, Barlat et al (2007). As such, the modeling capa-
bilities of the anisotropic function depend significantly
on the isotropic generators employed. Here, we re-
tain the linear transformation approach for generating
anisotropic extensions, but aim at developing a general
methodology for describing any isotropic and pressure-
independent function, symmetric or not. This, in com-
bination with a simple, geometrical method for con-
structing new isotropic functions, will allow us to ex-
ploit the linear transformation approach at its full po-
tential. In a similar context, an early sketch of a general
theory of (”plane-isotropic”) yield functions, based on
trigonometric polynomials, was outlined by Budianski
(1984), although only for plane stress states and sym-
metric functions. We adopt the same approach, but de-
velop the arguments down to the practical level where
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applications can be developed with relative ease and in
an algorithmic manner.

2. Isotropic, pressure-independent asymmetric yield
functions for general stress states

We start with a brief review of the natural representa-
tion of isotropic functions, further details on this classic
topic of plasticity can be found in Hill (1950). Let σ de-
note the stress tensor, ei its principal directions, and σi

its principal values. A pressure independent, first order
positive homogeneous yield function f can be written
as

f (σ) = f (σ′) = |σ′| f (τ′) (1)

where |σ| :=
√
σ · σ is the magnitude (or norm) of a

second order tensor, σ′ := σ − tr(σ)/3 is the deviator
of the stress σ, and τ′ := σ′/|σ′| is its unit direction.
Since the orientation of the principal frame {ei} can be
specified by, say, its three Euler angles ψi with respect
to a material frame2 , the analytic representation of f
can be further detailed to

f (σ) = |σ′| g(ψ1, ψ2, ψ3, τ
′
1, τ
′
2, τ
′
3)

with τ′i denoting the principal values of the direction of
the stress deviator, related to those of σ by

τ′i = (σi − p)/|σ′|, where p := tr(σ)/3

In this section we shall be concerned with the repre-
sentation of isotropic functions, functions that are in-
variant to any orthogonal transformation of the material
axes. Then, by applying three successive rotations to the
body, one can bring the material axes along the principal
stress directions while leaving the yield function value
unchanged; hence:

f (σ) = |σ′| g(τ′1, τ
′
2, τ
′
3) (2)

One can further apply a 90o rotation of the body about
the principal axis e1, leaving again the yield function
value unchanged. This rotation switches the principal
stresses σ2 and σ3. With two other 90o rotations about
e2 and e3 available, and the yield function invariant to
any combination of them, it follows that the function g
must be symmetric:

g(τ′1, τ
′
2, τ
′
3) = g(τ′2, τ

′
1, τ
′
3) = g(τ′1, τ

′
3, τ
′
2) = ... (3)

2A frame defined/oriented with respect to the material symmetries
of the material.

Eqs (2) and (3) give the most general representation of
an isotropic scalar function (with one symmetric tensor
argument). However, the arguments of the g-function
are not independent, since they are related by the two
constraints |τ′| = 1 and τ′1 + τ

′
2 + τ

′
3 = 0. With the

π-plane3 defined by

Πo := {σ |σ1 + σ2 + σ3 = 0}
of unit normal

no = (e1 + e2 + e3)/
√

3 (4)

the yield function is completely determined by the re-
striction of the function g to the unit circle of the π-
plane, which will be referred to as the π-circle. In geo-
metric terms, the yield surface4 σ = f (σ) is a cylinder
with generatrices parallel to no. Let θ denote the polar
angle on the π-circle, measured counterclockwise start-
ing from, say, g1, where gi denote the projections of ei

ontoΠo. Due to the symmetries in eq. (3), it is sufficient
to consider only the restriction of g to the sector [0, π/3]
of the π-circle, Fig. 1.

Figure 1: Projection of the principal stress frame onto the π-plane
(left), and orthogonal projection of the stress tensor onto the π-plane
of zero trace tensors (right).

Indeed, symmetry about g1 (actually, about the plane
that contains g1 and is orthogonal to Πo) reduces the
range of θ from [0, 2π] to [0, π]; the symmetry about
g2 reduces it further to [0, 2π/3]; finally, the symmetry
about g3 reduces the range of θ to [0, π/3]. Let h = h(θ)
denote the restriction of g to the π-circle. The final ana-
lytical expression for the yield function f , featuring the
isotropy and pressure independence properties is then:

f (σ) = |σ′| h(θ) (5)

3Since only the principal stresses are of interest here, we may re-
gard the stress tensor as a vector σ = σiei of the 3D-space.

4For a given a hardening curve σ = σ(ϵ p), with ϵ p a measure of
the magnitude of plastic deformation.
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with h : R −→ R+ uniquely determined by its restric-
tion to the [0, π/3] interval as follows: from [0, π/3], h is
extended into [π/3, 2π/3] by symmetry (corresponding
to the symmetry about g3); then h is extended to the in-
terval [0, 2π] by periodicity, with a 2π/3-period; finally,
h is extended from [0, 2π] to the whole real axis by 2π-
periodicity. Hence h is an even 2π/3-periodic function.
It can be represented, generally, as the cosine series:

h(θ) = a0/2 +
∑
k≥1

ak cos(3kθ) (6)

The π-plane projections gi = ei−no/
√

3 have unit direc-
tions gi :=

√
3/2 gi and the deviator admits the repre-

sentationσ′ = σiei−p
√

3 no =
√

2/3σi gi. The angle θ
associated with a stress state σ = σiei is then calculated
from cos θ = g1 · σ′/|σ′|, that is

θ = acos
2σ1 − σ2 − σ3

|σ′|
√

6
(7)

Conversely, given an angle θ and the magnitude of
the deviator, from the representations σ′iei = σ

′ =
|σ′| (cos θ g1 + sin θ q

)
, where q :=

(
g2 − g3

)
/|g2 − g3|

is such that g1 and q form an orthogonal basis in the π-
plane, associated with the polar coordinates5 |σ′| and θ,
one deduces the components of the deviator σ′:

σ′1 = |σ′|
√

2
3

cos(θ)

σ′2 =
|σ′|
√

2

(
sin θ − cos θ

√
3

)
= |σ′|

√
2
3

cos(θ + 4π/3)

σ′3 =
−|σ′|
√

2

(
sin θ +

cos θ
√

3

)
= |σ′|

√
2
3

cos(θ + 2π/3)

(8)

We note that σ′1 ≥ σ′2 ≥ σ′3 if and only if 0 ≤ θ ≤ π/3.
To complete the theory of eqs.(5)-(8), conditions

must be given for the parameters ak so that the yield
function be convex. It is shown in Appendix A that
these are

h′′(θ) + h(θ) ≥ 0,∀θ ∈ [0, π/3] ⇐⇒
a0/2 +

∑
k≥1 ak

(
1 − 9k2

)
cos(3kθ) ≥ 0,∀θ ∈ [0, π/3]

(9)

For a fixed θ ∈ [0, π/3], the second inequality above de-
fines a half-space in the ak-space. With θ covering the
[0, π/3] interval, the convexity domain for ak is an inter-
section of half-planes, and hence the convexity domain
itself is a convex subset in the ak-space.

5Often referred to as the Haigh-Westergaard parametrization

2.1. Illustrations
That Fourier series can represent a wide class of func-
tions is well known. The question is whether this rep-
resentation is efficient for yield functions. Most of
the yield criteria have analytical representations in the
form of smooth functions6, at least of class C1. Hence
the Fourier series expansions of their corresponding h-
functions should converge relatively fast. Equivalently,
sufficiently smooth yield functions should accept accu-
rate approximations within a subspace of trigonometric
polynomials of reasonably small dimension. It is then
instructive to illustrate here the trigonometric represen-
tation of other analytical formulations.

With eqs.(5) and (8), the h-function of a homoge-
neous isotropic pressure-independent yield function f
is

h(θ) =

√
2
3

f (cos θ, cos(θ + 4π/3), cos(θ + 2π/3)) (10)

and the coefficients of its Fourier expansion are calcu-
lated by

ak =
6
π

∫ π/3

0
h(θ) cos(3kθ), k ≥ 0 (11)

The Hershey (1954)-Hosford (1972) isotropic yield
function reads

f a(σ) = K
[
(σ1 − σ2)a + (σ2 − σ3)a + (σ3 − σ1)a] (12)

with a an even natural number and K = 1/2 the normal-
ization constant along uniaxial traction. It is symmet-
ric and hence its h-function is even π/3-periodic; with
eqs.(10) and (11), the first few terms of its Fourier ex-
pansion, in the case a = 8, are

h(θ) =
2.52657

2
− 3.65434

102 cos(6θ) − 1.8511
103 cos(12θ)

−1.3397
104 cos(18θ) − 1.115

105 cos(24θ) − ...

A second example is the asymmetric isotropic func-
tion studied by Cazacu et al (2006):

f a(σ) = K
[(|σ′1| − cσ′1

)a
+

(|σ′2| − cσ′2
)a
+

(
|σ′3| − cσ′3

)a]
where c ∈ [−1, 1], the convexity interval, a ≥ 1, and
K := 1/ [2a(1 − c)a + 2(1 + c)a] is the normalization
constant along uniaxial traction. When c = 0 this func-
tion is symmetric and generates only biaxial curves that
either coincide with Mises (a = 2), or are exterior to the
von Mises oval. For c = 0.8 and a = 4, with eqs.(10)

6Tresca’s yield function being a notable exception
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and (11), the first coefficients of the series representa-
tion eq.(6) of its h-function are reported in the CPB-
column of Table C.1 of Appendix C.

The biaxial curves of both functions, approximated
by retaining the first 5 and 18 terms, respectively, of
their Fourier series are drawn in Fig. 2. As truncation
criterion, enough terms were retained so that the max-
imum of the absolute value of the difference between
original and approximate be of the order of 1/105 while
retaining convexity.

Figure 2: Biaxial curves of the symmetric Hershey-Hosford and
asymmetric CPB06 yield functions, respectively, in trigonometric rep-
resentation.

2.2. Designing two-parameters yield functions

As the previous illustrations have shown, trigonomet-
ric polynomials can provide accurate representations
of isotropic yield functions. However, not every such
polynomial is suitable for yield function representation.
Here we show a method for parameterizing a relevant
subset of a space of trigonometric polynomials. In addi-
tion, while the π-plane is well suited for theoretical de-
velopments, the restriction of the yield function to biax-
ial stress states provides a more intuitive picture. There-
fore, rather than using an arc of the π-circle, we shall
use instead a segment of the biaxial curve7 to construct
isotropic functions.

Several yielding points are of interest; with eq.(7):
1)Uniaxial traction: σ = (σt

0, 0, 0), with σt
0 > 0; then

σ′1 = 2σt
0/3 > −σt

0/3 = σ
′
2 = σ

′
3 and hence cos θ = 1

7A section through the yield surface by, say, the (σ1, σ2)-plane.

so that θ = 0.
2)Uniaxial compression: σ = −(σc

0, 0, 0), with σc
0 > 0;

then σ′1 = σ′2 = σc
0/3 > −2σc

0/3 = σ′3 and hence
cos θ = 1/2 so that θ = π/3.
3)Balanced-biaxial traction: σ = (σt

b, σ
t
b, 0), with σt

b >
0; then σ′1 = σ′2 = σt

b/3 > −2σt
b/3 = σ′3 and hence

cos θ = 1/2 so that θ = π/3. It necessarily follows that
for any isotropic function there holds: σc

0 = σ
t
b.

4)Balanced-biaxial compression: σ = −(σc
b, σ

c
b, 0),

with σc
b > 0; then σ′1 = 2σc

b/3 > −σc
b/3 = σ

′
2 = σ

′
3 and

hence cos θ = 1 so that θ = 0. Thus for any isotropic
function there holds: σt

0 = σ
c
b.

5)Biaxial traction: σ = (σa, σa/2, 0), with σa > 0;
then σ′1 = σa/2 > 0 = σ′2 > −σa/2 = σ′3 and hence
cos θ =

√
3/2 so that θ = π/6.

6)Pure shear: σ = (σs,−σs, 0), with σs > 0; then
cos θ =

√
3/2 so that θ = π/6. Thus for any isotropic

function there holds: σs = σa/2.
More generally, if the biaxial stress state is described

by σ1 = ρ cosψ, σ2 = ρ sinψ, then the biaxial angle ψ
and the angle θ on the π-circle are related by

tanψ =
sin2 θ ± sin 2θ

√
3/2

4 sin2 θ − 3
(13)

The ”plus” branch of the above formula is a one-to-one
map of θ ∈ [0, π/3) onto ψ ∈ [0, π/4), and hence, by
symmetry reasons alone, the compression part of the bi-
axial curve is completely determined by the tensile part.
The ”minus” branch of the formula is a one-to-one map
of θ ∈ [0, π/3) onto ψ ∈ (−π/2, 0], and hence the shear
part of the biaxial curve could also be used as a gener-
ating sector.

In particular, from the above list, three8 modeling
points have characterizing properties, say 1), 3), and 5).
Then a three-parameter h-function can be represented in
the form:

h(θ) = p0 + p1ϕ1(θ) + p2ϕ2(θ) (14)

where ϕ1 and ϕ2 are suitably chosen shape (or basis)
functions.

In eq.(14), p0, p1 and p2 are parameters which are re-
duced, upon normalization, to two independent shape-
parameters as follows. The three equations character-
izing yielding in the loading modes 1), 3) and 5), are,
respectively,

p0 + ϕ11 p1 + ϕ21 p2 = t1
√

3/2, with t1 := σ/σt
0

p0 + ϕ12 p1 + ϕ22 p2 = t2
√

3/2, with t2 := σ/σt
b

p0 + ϕ13 p1 + ϕ23 p2 = t3
√

2, with t3 := σ/σa

(15)

8Other modeling points can be added as needed, as for example
the tensile stress of direction (1, 1/4, 0).
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where it has been denoted ϕ11 := ϕ1(0), ϕ21 := ϕ2(0),
ϕ12 := ϕ1(π/3), ϕ22 := ϕ2(π/3), ϕ13 := ϕ1(π/6), ϕ23 :=
ϕ2(π/6). Denoting

∆ := (ϕ12 − ϕ11)(ϕ23 − ϕ21) + (ϕ11 − ϕ13)(ϕ22 − ϕ21)

and t1 := t1
√

3/2, t2 := t2
√

3/2, t3 := t2
√

2, it follows:

p0 = t1 − ϕ11 p1 − ϕ21 p2

p1 =
1
∆

[
(ϕ23 − ϕ21)(t2 − t1) + (ϕ22 − ϕ21)(t1 − t3)

]
p2 =

1
∆

[
(ϕ13 − ϕ11)(t1 − t2) + (ϕ12 − ϕ11)(t3 − t1)

] (16)

In what follows, the usual scaling of the yield func-
tion with σt

0 will be used and then t1 = 1. Hence, the
two parameters of the h-function in eq.(14) are the ra-
tios t2 and t3. They can vary only within an admissi-
ble domain where the resulting yield function is convex,
the convexity domain. This domain is characterized by
eq.(9), which in the present case reduces to, by substi-
tuting eq.(16) into eq.(14):

α(θ)t2 + β(θ)t3 ≥ γ(θ),∀θ ∈ [0, π/3] (17)

where

α := (ϕ11 − d1)(ϕ21 − ϕ23) + (ϕ21 − d2)(ϕ13 − ϕ11)
β := (ϕ11 − d1)(ϕ22 − ϕ21) + (ϕ21 − d2)(ϕ11 − ϕ12)
γ := ∆ + (ϕ11 − d1)(ϕ23 − ϕ22) + (ϕ21 − d2)(ϕ12 − ϕ13)

and di(θ) := ϕi(θ) + ϕ′′i (θ), i = 1, 2.
The inequalities in (17) define the convexity domain

in the (t2, t3)-plane, each inequality, corresponding to
some θ ∈ [0, π/3], describing a half-plane containing
the convexity domain. It is never empty, since the Mises
quadratic corresponds to the pair (t2 = 1, t3 =

√
3/2 ≈

0.866). However, the size and spread of the convexity
domain about the point (1, 0.866), and hence the mod-
eling range of formula (14), depend considerably on the
choice of the basis functions ϕi.

2.2.1. Constructing basis functions
The ϕi-functions in eq.(14) are constructed as h-
functions of yield functions that have as traces on the
biaxial plane conveniently chosen biaxial curves. To
this end we assume that the relevant arc of the latter (by
eq.(13), spanning the [0, π/4] sector of the first quad-
rant) is represented in the implicit form

ϕ(σx, σy) = 1 (18)

with ϕ a symmetric and first degree positive homoge-
neous function; with the polar parametrization σx =

ρ cosψ and σy = ρ sinψ of the biaxial plane (σx, σy),
the above is equivalent to

ρ(ψ) = 1/ϕ(cosψ, sinψ) (19)

Assuming that this biaxial curve is the trace of a yield
function f on the (σx, σy)-plane, recalling eq.(5) there
holds

h(θ) =
f (σx, σy, 0, ...)
|(σx, σy, 0, ...)′|

=
ϕ(σx, σy)

|(σx, σy, 0, ...)′|

and defining h(ψ) := ϕ(cosψ, sinψ), the restriction of ϕ
to the unit circle of the (σx, σy)-plane, it follows

h(θ) =
h(ψ)
√

3/2√
1 − cosψ sinψ

=

√
3/2

ρ(ψ)
√

1 − cosψ sinψ
(20)

With eq.(13) providing a one-to-one map [0, π/3] ∋
θ −→ ψ ∈ [0, π/4], the above formula calculates the
h-function in terms of the [0, π/4]-arc a biaxial curve.
Of course, not just any biaxial curve is the trace of an
isotropic yield function. For C1-smooth functions the
biaxial curve must satisfy the following condition 9

∂ϕ

∂σx
(1, 0) + 2

∂ϕ

∂σy
(1, 0) = 0 (21)

The biaxial function is taken in the form of a patch of
two C2-smooth, symmetric and positive homogeneous
functions. As shown next, this will allow for sufficient
modeling flexibility with the advantage of retaining sim-
plicity in calculations. Then defining the stress ratio
t := σy/σx,

ϕ(σx, σy) =
{
ϕ(1)(σx, σy), if 0 ≤ t ≤ t∗

ϕ(2)(σx, σy), if t∗ ≤ t ≤ 1 (22)

where t∗ is a stress ratio serving as parameter of the
patch. Furthermore, the patch is subjected to the con-
dition that it be C2-smooth at the contact point σ∗x(1, t∗).
This translates into three relations as follows. First, con-
tinuity demands that:

ϕ(2)(1, t∗) = ϕ(1)(1, t∗) (23)

Second, the curve defined by the patch may also be
parameterized, arbitrarily for the moment, in the form
σx = σx(s) and σy = σy(s) with the parameter s in a
certain interval; substituting in eq.(18) and differentiat-
ing with respect to s obtains

∂ϕ

∂σx
(σx(s), σy(s))

dσx

ds
+
∂ϕ

∂σy
(σx(s), σy(s))

dσy

ds
= 0(24)

9Stating that the r-value of ϕ is one. This is further equivalent with
the symmetry condition h′(0) = 0; the proof is straightforward but
rather technical and therefore is not included here.
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relationship holding at all points s for which t(s) :=
σy(s)/σx(s) , t∗. Then the limits t(s) ↑ t∗ and t(s) ↓ t∗

provide two relationships that, when subtracted, result
in the following condition for a C1-smooth contact:

∂ϕ(2)

∂σx
(1, t∗)Λ+

∂ϕ(2)

∂σy
(1, t∗) =

∂ϕ(1)

∂σx
(1, t∗)Λ+

∂ϕ(1)

∂σy
(1, t∗)(25)

Above, we used the first degree homogeneity of the ϕ(i)

functions and defined Λ := (dσx/dσy)(s∗), s∗ denoting
the value of s corresponding to t∗.

Differentiating with respect to s the relationship in
eq.(24) obtains, for all s , s∗

∂2ϕ

∂σ2
x

(
dσx

ds

)2

+ 2
∂2ϕ

∂σx∂σy

dσx

ds
dσy

ds
+
∂2ϕ

∂σ2
y

(
dσy

ds

)2

+
∂ϕ

∂σx

d2σx

ds2 +
∂ϕ

∂σy

d2σy

ds2 = 0

For s = s∗, we can now choose a parametrization such
that10(
∂ϕ(2)

∂σx
− ∂ϕ

(1)

∂σx

)
d2σx

ds2 +

(
∂ϕ(2)

∂σy
− ∂ϕ

(1)

∂σy

)
d2σy

ds2 = 0

without altering the Λ-ratio. With the last two relation-
ships, and using once again the homogeneity of the ϕ
functions, a C2-smooth contact implies∂2ϕ(2)

σ2
x
Λ2 + 2

∂2ϕ(2)

∂σx∂σy
Λ +

∂2ϕ(2)

∂σ2
y

 (1, t∗) =∂2ϕ(1)

σ2
x
Λ2 + 2

∂2ϕ(1)

∂σx∂σy
Λ +

∂2ϕ(1)

∂σ2
y

 (1, t∗)
(26)

Here, the functions ϕ(i) are taken in the form of sym-
metric homogeneous polynomials of degree six

ϕ(i) = a(i)
1

(
σ6

x + σ
6
y

)
+ a(i)

2

(
σ5

xσy + σxσ
5
y

)
+a(i)

3

(
σ4

xσ
2
y + σ

2
xσ

4
y

)
+ a(i)

4 σ
3
xσ

3
y

(27)

The biaxial curve is then constructed as follows. First,
ϕ(1) is determined by the r-value condition in eq.(21),
the equations

ϕ(1, 0) = 1, ϕ(1, t∗) = 1/(σ∗x)6

stating that the biaxial curve passes through the points
(1, 0) and (σ∗x, t

∗σ∗x), and

∂ϕ(1)

∂σx
(1, t∗)Λ +

∂ϕ(1)

∂σy
= 0

10In geometric terms: assuming the contact is already C1-smooth,
the velocity vector is orthogonal on both gradients ∇ϕ(1) and ∇ϕ(2);
by parameterizing the curve so that the acceleration and velocity are
collinear at s = s∗, there holds

(
∇ϕ(2) − ∇ϕ(1)

)
· (d2/ds2)

(
σx, σy

)
= 0.

stating that the biaxial curve has a slope 1/Λ at point
(σ∗x, t

∗σ∗x). Then, the second branch of the patch
is determined by the C2-smoothness conditions in
eqs.(23,25,26), and the additional equation:

ϕ(2)(1, 1) = 1/σ6
b (28)

stating that the biaxial curve passes through the
balanced-biaxial stress point (σb, σb).

All these equations are linear and determine the a(i)
k -

coefficients once the parameters of the Poly6-patch, t∗,
σ∗x, Λ and σb are given11. The parameter σb charac-
terizes the type and the degree of tension-compression
asymmetry of the biaxial curve, while Λ, t∗ and σ∗x fur-
ther modulate its shape.

Figure 3: Biaxial curves generated using the Poly6-patch; illustrations
for σb ∈ {0.5472, 0.736, 1.6}

The domain of variation of these parameters is re-
stricted by the requirement that the biaxial curve be con-
vex. Admissible values can be found by a trial and er-
ror procedure as follows. Given a triplet (t∗, σ∗x,Λ), one
varies σb within an appropriate interval (for example,
if biaxial curves with a compression/tension ratio less
than one are sought, the maximal interval of variation
for σb is (0.5, 1)); for each σb, one calculates the coef-
ficients of the patch, then the Fourier coefficients of the

11One could also consider a patch of two homogeneous polyno-
mials of degree four; in this case, the C2-smooth contact condition
would make ϕ(1) and ϕ(2) identical, since each have three parameters.
Instead, a C1-smooth Poly4-patch has two parameters, e.g., σb and
σ∗x, assuming t∗ fixed (Λ can be calculated once ϕ(1) is known)

6



h-function via eq.(20), and finally checks the convexity
of the yield function via the relationships in eq.(9). In
this way, one determines the subinterval of admissible
values of σb for which the generated yield function is
convex; in case this convexity subinterval is empty, the
current triplet (t∗, σ∗x,Λ) is not admissible and a new es-
timate of (t∗, σ∗x,Λ) may be tested, etc.

Examples of biaxial curves generated with the Poly6-
patch are shown in Fig. 3. Some parameters values and
σb-intervals of convexity are as follows:
t∗ = 0.145, Λ = −0.9, σ∗x = 0.945, 0.5471 ≤ σb ≤
0.5526;
t∗ = 0.15, Λ = −0.3, σ∗x = 1.0, 0.6441 ≤ σb ≤ 0.7361;
t∗ = 0.5, Λ = −0.45, σ∗x = 1.31, 1.2535 ≤ σb ≤ 1.65.

Since we envision applications to the modeling of
magnesium alloys, and since these have, in general, a
compression to tension ratio of less than one, a two-
parameter isotropic function, f (σ) = |σ′|h(θ) with the
h-function given by eq.(14), is constructed by defining
ϕ1 to be the h-function of the Hershey-Hosford yield
function with an exponent a = 30 in eq.(12), and ϕ2 to
be the h-function of the Poly6-patch curve with param-
eters t∗ = 0.145, Λ = −0.9, σ∗x = 0.945, σb = 0.5472,
the small ”triangle” in Fig. 3. The coefficients of the
trigonometric representations of ϕ1 and ϕ2 are featured
in the columns ”HH” and ”Poly6” of Table C.1 of Ap-
pendix C.

Given the ϕ1 and ϕ2 functions, using the convexity
constraints in eq.(17), the convexity domain for the t2
and t3 parameters of the function can be obtained in
graphic form by plotting the (linear) constraints corre-
sponding to a fine set of sampling points θk ∈ [0, π/3].
The white region in Fig. 4 represents the convexity
domain of the particular isotropic function constructed
above.

Figure 4: Convexity domain in the (t2, t3)-plane.

It can be noticed that it contains functions with oppo-
site asymmetry (compression/tension ratio greater than
one, for t2 < 1) even though both ϕ1 and ϕ2 have
t2 ≥ 1. The shape of the convexity domain is sim-
ple enough to be generated by just a few vertices.
Simple inspection identifies the following points of in-
terest: (1.8303, 1.3741), (1.0, 0.9696), (0.742, 0.836),
(0.81, 0.813), (1.0, 0.85285). The convex hull of the set
formed by these points can then serve as an approxima-
tion from within of the convexity domain.

3. Anisotropic extensions

As announced in the introductory section, we shall
use next the linear transformation approach to obtain
anisotropic yield functions. Since this approach em-
ploys quite a particular parametrization of the symmetry
group, one cannot expect that every anisotropic function
can be satisfactorily approximated. On the other hand,
convexity is assured by default, which is an important
advantage for the parameters-identification procedure12.

Given NI isotropic, pressure-independent and posi-
tive homogeneous of first degree (convex) yield func-
tions g(i), an anisotropic, pressure-independent and pos-
itive homogeneous convex function f̂ is obtained by
defining

f̂ (σ) :=
NI∑
i=1

g(i)(Σ(i)) (29)

where

Σ(i) := A(i) : σ′ (30)

and A(i) are fourth order tensors which are invariant to
the symmetry group of the material. If σ0 := στ rep-
resents a uniaxial state of tensile stress along the unit
stress-direction τ, by defining

K := f̂ (τ) (31)

a normalized anisotropic yield function is defined by

f (σ) :=
1
K

f̂ (σ) (32)

having the property that f (σ0) = σ = |σ0|, the magni-
tude of the uniaxial stress.

For orthotropic symmetry, the case of most interest
in applications, a generic linear transformation as in

12Which becomes a constrained optimization problem in the ab-
sence of default convexity.
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eq.(30) acquires, with respect to the material frame13,
the component form14

Σ11 = a1σ11 + a2σ22 − (a1 + a2)σ33

Σ22 = a3σ11 + a4σ22 − (a3 + a4)σ33

Σ33 = −Σ11 − Σ22

Σ12 = a5σ12, Σ13 = a6σ13, Σ23 = a7σ23

(33)

The principal values of a generic deviatoric image
stress Σ are calculated by, e.g., Malvern (1969),

Σi = 2
√

J2(Σ)/3 cos γi (34)

where

γ1 :=
1
3

acos

 J3(Σ)
2

(
3

J2(Σ)

)3/2 ,
γ2 := γ1 + 2π/3, γ3 := γ2 + 2π/3

and

J2(Σ) :=
1
2
|Σ|2, J3(Σ) := det(Σ) (35)

Finally, the angle on the π-circle is calculated by the
formula in eq.(7) and the value of the yield function on
the given stress state σ is calculated using eq.(32) and
the natural representation of the isotropic generators in
eqs.(5) and (6). Formulas for the gradient of the yield
function are provided in Appendix B.

3.1. Application to the modeling of Mg-alloy or-
thotropic sheet

In what follows, the modeling range of eqs.(29)-(33)
is tested on the AZ31B Mg-sheet, a material featur-
ing a very high tension-compression asymmetry. With
the material frame axes 1, 2 and 3 (or x, y and z)
aligned along the rolling, transverse and thickness di-
rections, respectively, the usual experimental charac-
terization of orthotropic sheet provides a set of direc-
tional yield stresses, that is, magnitudes σθ of uniax-
ial stress states σθ := σθτθ, along loading directions15

vθ := ±(cos θ, sin θ, 0) in the sheet plane,

σθ =
σ

f (τθ)
(36)

13Assumed to be aligned along the symmetry axes.
14One arrives at this parametrization by recalling that the isotropic

generators g(i) are pressure-independent.
15The angle θ ∈ [0, π/2] used in this section to indicate directional

properties should not be confused with the angle θ on the π-circle
employed in the previous sections.

and corresponding directional r-values (the gradient of
the yield function is calculated in Appendix B)

rθ :=
Dp
θ+π/2

Dp
33

=

(
∂ f̂
∂σ

(τθ) : v⊥
θ

)
· v⊥
θ

∂ f̂
∂σ11

(τθ) +
∂ f̂
∂σ22

(τθ)

(37)

where, assuming the normality rule, Dp = λ̇ ∂ f /∂σ is
the rate of plastic deformation, v⊥

θ
:= (− sin θ, cos θ, 0),

and

τθ := ±

 cos2 θ sin θ cos θ 0
sin θ cos θ sin2 θ 0

0 0 0


the + and − signs corresponding to tension and com-
pression, respectively.

Throughout the rest of this section the yield function
is normalized with the yield stress along the rolling di-
rection and hence the normalization constant in eq.(31)
is K = f̂ (τ0), with τ0 = diag[1, 0, 0].

A more detailed description of the plastic properties
of the sheet is obtained by testing sheet samples under
tensile in-plane biaxial stressing conditions to obtain,
for example, valuesσ(k)

b > 0 for which the sample yields
under the stress stateσ = diag[σ(k)

b , t(k)σ(k)
b , 0], for given

stress ratios t(k), that is

σ(k)
b =

σ

f (1, t(k), 0)
(38)

Then, given the set of isotropic generators and the
sets of sampling directions θp and tk, the parameters of
the yield function, the ai-coefficients of the linear trans-
formations (33), are identified as the solution of the fol-
lowing optimization problem16

Min
√
Es + Er + Eb (39)

with

Es :=
∑

p

[
wt,s

p

(
σt
θp
− σt,exp

θp

)2
+ wc,s

p

(
σc
θp
− σc,exp

θp

)2
]

Er :=
∑

p

[
wt,r

p t
(
rt
θp
− rt,exp

θp

)2
+ wc,r

p

(
rc
θp
− rc,exp

θp

)2
]

Eb :=
∑

k

wk

(
σ(k)

b − σ
(k),exp
b

)2

where σt
θp

, rt
θ and σc

θp
, rc

θ are predicted values according
to formulas (36) and (37) in tension and compression,

16In fact, a slight variation of this method is used here, see next.
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respectively, and σ(k)
b are predicted values according to

eq.(38); σt,exp
θp

, σc,exp
θp

, etc, are the corresponding val-
ues measured from experiments and wt,s

p , wc,s
p , etc, are

weights used in the optimization process.
The number of isotropic generators depends on the

level of detail of the experimental characterization.
Usually, the directional properties are sampled in three
directions, θ ∈ {0o, 45o, 90o}, thus generating 12 data
points (yield stresses and r-values in tension and com-
pression). Even if not available, (heuristic) biaxial stress
points are in general required to control the shape of bi-
axial yield curve in the (σx, σy)-plane. This increases
the number of data-points to at least 15. Since each ten-
sor A has five parameters for plane stress states, a num-
ber of three isotropic generators (and hence three linear
transformations) will be used in eq.(29).

A crucial preliminary step consists in identifying an
adequate set of isotropic generators. In general, this
may be done by trial and error. Here, given the signifi-
cant tension/compression asymmetry, this preliminary
identification is done by searching for a combination
of three generators that provides an optimum transverse
isotropic approximation to the data. Thus, with

Σ11 = b1σ11 + b2σ22 − (b1 + b2)σ33

Σ22 = b2σ11 + b1σ22 − (b1 + b2)σ33

Σ33 = −Σ11 − Σ22

Σ12 = (b1 − b2)σ12, Σ13 = b3σ13, Σ23 = b3σ23

(40)

representing a generic linear transformation invariant to
rotations about the normal (thickness) direction, a sub-
set of the convexity domain, Fig. 4, is investigated:

Figure 5: Biaxial curve of the transverse isotropic approximation of
the first AZ31 Mg-sheet data set.

given three (t2, t3)-points, the optimization problem (39)
is solved17 for b(i)

k , i = 1, 2, 3, with average directional
properties in tension/compression and with the desired
shape in the biaxial plane (σx, σy) as input data and
with, for example, b(i)

1 = 2/3, b(i)
2 = −1/3, i = 1, 2, 3

as initial guess (representing isotropy); the most conve-
nient combination of isotropic generators is retained.

Then, the generic orthotropic transformation in
eq.(33) is re-parameterized in the form

a1 = b1 + c1, a2 = b2 + c2

a3 = b2 + c3, a4 = b1 + c4

a5 = b1 − b2 + c5, a6 = b3 + c6, a7 = b3 + c7

(41)

and the problem (39) is solved for the ci-parameters
(several iterations may be required, but the very first ini-
tial guess is, conveniently: c(i)

k = 0, i = 1, 2, 3).

Figure 6: Directional yield stress corresponding to the first AZ31 Mg-
sheet data set, data from Lou et al (2007).

Figure 7: Directional r-values corresponding to the first AZ31 Mg-
sheet data set, data from Lou et al (2007).

17Solutions to optimization problems reported here have been ap-
proximated using the simplex algorithm of Nelder and Mead (1965).
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Figure 8: Constant shear sections through the yield surface, of the
first model, represented in the biaxial plane (σx, σy), for σxy/σ

t
0 ∈

{0, 0.1, 0.2, 0.3, 0.5}, the outer curve corresponding to σxy = 0.

Figure 9: Model 2: biaxial curve and biaxial data reported in Andar et
al (2012).

Two experimental characterizations of AZ31B Mg-
sheet are considered: one reported in Lou et al (2007),
produced by Magnesium Elektron, and the other re-
ported in Andar et al (2012), produced by Posco-Korea.
The first data set corresponds to initial yielding, while
the second corresponds to a level of 4% of plastic de-

formation. Notably, for Mg-alloys in general, the ini-
tial yielding stress in balanced-biaxial tension is less
than the tensile yielding stress along the rolling direc-
tion; this can be seen in the data reported by Andar
et al (2012) and also in the early experimental study
of Kelley and Hosford (1968); the situation changes
after some deformation, the balanced-biaxial yielding
stress becoming greater than the yielding stress along
the rolling direction.

The above parameter identification procedure was ap-
plied to the modeling of both data sets. Fig. 5 shows
the initial transverse isotropic approximation of the data
in Lou et al (2007), the average r-value of the model, in
tension and compression being 2.139 and 0.225, respec-
tively. The isotropic generators and parameters of the
two models are reported in the ”Model 1” and ”Model
2” columns of Tables C.2-C.4 of Appendix C, for the
data in Lou et al (2007) and Andar et al (2012), respec-
tively, and illustrations are shown in Figs. 6-8, and 9-11.

Figure 10: Model 2: directional stresses, data from Andar et al (2012).

Figure 11: Model 2: directional r-values, data from Andar et al (2012).

Overall, the quality of the two models is satisfactory,
the accuracy being good for r-values in both cases, and
acceptable for the directional compressive stresses of
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the first model. Comparison with other models is hardly
possible at this moment, since similar attempts at cap-
turing both biaxial and directional tesnion/compression
properties are scarce in the literature18.

As a final remark, an interesting feature of some of
the previously proposed asymmetric functions is that
pressure-dependent isotropic functions are used as gen-
erators, e.g., Plunkett et al (2008) and Yoon et al (2014).
A relative advantage19 is that the image stresses need
not be deviatoric, each having nine parameters for gen-
eral stress states, instead of the seven parameters of a
pressure-independent linear transformation, eq.(33). By
using spherical harmonics to represent functions defined
on the unit sphere of the space of principal stresses,
the present developments extend to pressure-dependent
isotropic generators. The corresponding theory and fur-
ther applications will be reported elsewhere.

Appendix A. Derivatives and convexity of an
isotropic function in the natural
representation

Formulas for the gradient and Hessian of an isotropic
function in the natural representation are presented to-
gether with a proof of the convexity condition in eq.(9).

The context being that of eq.(5), the representation

f (σ) = |σ′|h(θ) = g(ρ, θ) (A.1)

is basically a function of the polar coordinates ρ = |σ′|
and θ in the deviatoric plane; thus if (x, y) is an asso-
ciated Cartesian coordinate system, for all points with
x , 0 there holds

ρ = (x2 + y2)1/2, tan θ = y/x (A.2)

and

x = ρ cos θ, y = ρ sin θ (A.3)

From eq.(8)

cos θ =
2σ1 − σ2 − σ3

|σ′|
√

6
and sin θ =

σ2 − σ3

|σ′|
√

2

so that eq.(A.3) becomes

x =
1
√

6
(2σ1 − σ2 − σ3), y =

1
√

2
(σ2 − σ3) (A.4)

18One may mention the model in Plunkett et al (2008), but compar-
ison is precluded due to the different r-values used as input.

19Accurate modeling of the directional properties would still re-
quire three linear transformations, since the additional parameters are
related to biaxial yielding properties.

Then, from eq.(A.2),

∂θ

∂x
=
−y

x2 + y2 ,
∂θ

∂y
=

x
x2 + y2 (A.5)

and
∂θ

∂σi
=
∂θ

∂x
∂x
∂σi
+
∂θ

∂y
∂y
∂σi

(A.6)

together with eq.(A.4) obtain:

∂θ

∂σ1
=
σ3 − σ2

|σ′|2
√

3
∂θ

∂σ2
=
σ1 − σ3

|σ′|2
√

3
∂θ

∂σ3
=
σ2 − σ1

|σ′|2
√

3

(A.7)

Then the gradient of the function in eq.(A.1),

∂ f
∂σi
=

∂ρ

∂σi
h(θ) + ρ h′(θ)

∂θ

∂σi
(A.8)

is calculated with the help of

∂ρ

∂σi
=
∂|σ′|
∂σi

=
σ′i
|σ′| (A.9)

and of eq.(A.7), as

∂ f
∂σ1
=

1
|σ′|

[
σ′1 h(θ) +

σ3 − σ2√
3

h′(θ)
]

∂ f
∂σ2
=

1
|σ′|

[
σ′2 h(θ) +

σ1 − σ3√
3

h′(θ)
]

∂ f
∂σ3
=

1
|σ′|

[
σ′3 h(θ) +

σ2 − σ1√
3

h′(θ)
] (A.10)

Taking partial derivatives in eq.(A.8) obtains

∂2 f
∂σi∂σ j

=
∂2|σ′|
∂σi∂σ j

h(θ) + |σ′|h′′(θ) ∂θ
∂σi

∂θ

∂σ j

+h′(θ)
[
∂|σ′|
∂σi

∂θ

∂σ j
+
∂|σ′|
∂σ j

∂θ

∂σi
+ |σ′| ∂2θ

∂σi∂σ j

] (A.11)

From eq.(A.9) one calculates

∂2|σ′|
∂σi∂σ j

=
1
|σ′|

δi j −
1
3
−
σ′iσ

′
j

|σ′|2

 (A.12)

For example, for i = 1 and j = 1, after using the rela-
tionship σ′1 + σ

′
2 + σ

′
3 = 0:

∂2|σ′|
∂σ1∂σ1

=
(σ3 − σ2)2

3|σ′|3

and then, with eq.(A.7) one obtains:

|σ′| ∂θ
∂σ1

∂θ

∂σ1
=

(σ3 − σ2)2

3|σ′|3 =
∂2|σ′|
∂σ1∂σ1
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Similar calculations show that the above relationship
holds for all pair of indices, that is:

|σ′| ∂θ
∂σi

∂θ

∂σ j
=

∂2|σ′|
∂σi∂σ j

(A.13)

Next, from eq.(A.7):

∂2θ

∂σ1∂σ1
=

2σ′1(σ2 − σ3)

|σ′|4
√

3

and hence, with eqs.(A.9) and (A.7):

∂|σ′|
∂σ1

∂θ

∂σ1
+
∂|σ′|
∂σ1

∂θ

∂σ1
+ |σ′| ∂2θ

∂σ1∂σ1
= 0

Similar calculations show that the above relation holds
for all pairs of indices, that is:

∂|σ′|
∂σi

∂θ

∂σ j
+
∂|σ′|
∂σ j

∂θ

∂σi
+ |σ′| ∂2θ

∂σi∂σ j
= 0 (A.14)

From eqs.(A.11), (A.13) and (A.14) one obtains

∂2 f
∂σi∂σ j

=
[
h′′(θ) + h(θ)

] ∂2|σ′|
∂σi∂σ j

(A.15)

Formulas (A.10) and (A.15) feature the gradient and
the Hessian of an isotropic pressure-independent ho-
mogeneous function in the natural representation (A.1).
Formula (A.15) is particularly interesting: it shows that
calculating the Hessian of an arbitrary isotropic func-
tion is not much more complicated than calculating the
Hessian of the von Mises function. In addition, since
the latter is convex, it follows that the function f is con-
vex20 if and only if

h′′(θ) + h(θ) ≥ 0, ∀θ ∈ [0, π/3]

which is the convexity condition stated in eq.(9).

Appendix B. The gradient of an anisotropic exten-
sion

It is sufficient to consider the case of a single isotropic
generator, thus functions of the form

f (σ) = g(Σ1,Σ2,Σ3)

20An alternative argument makes use of a theorem of Davis (1957):
a numerical function f = f (M) defined over a space of symmetric
matrices and depending only on the spectrum of the matrix in the form
f (M) = g(m1, ...,mn), where mi are the eigenvalues of M, is convex
if and only if the function g is symmetric and convex. Then, a direct
verification shows that the matrix ∂2 |σ′ |/∂σi∂σ j is positive definite
and hence the function f = f (σ1, σ2, σ3) is convex over subsets of
the 3D-space of vectors (σ1, σ2, σ3); by Davis’theorem, f will be
convex also as a function over the space of stress tensors.

where Σp are the principal stresses of the image stress
Σ = A : σ. With σi j denoting components of the stress
σ with respect to an arbitrary orthonormal basis, the
above representation implies

∂ f
∂σi j

=
∑

p

∂g
∂Σp

∂Σp

∂σi j
(B.1)

The gradient ∂g/∂Σp is calculated using eq.(A.10) of
Appendix A. It remains to deduce formulas for the cal-
culation of21 ∂Σp/∂σi j.

Eq.(34) is well-suited for calculating the principal
values of a symmetric tensor in terms of its components
with respect to an orthogonal basis. On the other hand,
±1 are singular points for the derivative of the acos-
function and hence ”branches” seem inherent when cal-
culating gradients. Then a slightly more efficient ap-
proach is to start directly from the equation characteriz-
ing the principal values of the deviatoric stress Σ:

Σ3
p − J2Σp − J3 = 0

Differentiation with respect with respect to σi j obtains(
3Σ2

p − J2

) ∂Σp

∂σi j
=
∂J2

∂σi j
Σp +

∂J3

∂σi j

Recalling the definition of J2 in eq.(35) and that Σ1 +

Σ2 + σ3 = 0, there holds

3Σ2
p − J2 =


2Σ2

1 − Σ2
2 − Σ1Σ2, if p = 1

−Σ2
1 + 2Σ2

2 − Σ1Σ2, if p = 2

2Σ2
1 + 2Σ2

2 + 5Σ1Σ2, if p = 3

and hence

3Σ2
1 − J2 = 0 ⇐⇒ Σ1 = Σ2 or Σ2 = −2Σ1

3Σ2
2 − J2 = 0 ⇐⇒ Σ1 = Σ2 or Σ1 = −2Σ2

3Σ3
1 − J2 = 0 ⇐⇒ Σ1 = −2Σ2 or Σ2 = −2Σ1

Then the sought gradients are calculated as follow:
(1) If Σ1 , Σ2 and Σ2 , −2Σ1 and Σ1 , −2Σ2, then
3Σ2

p − J2 , 0, for p = 1, 2, 3, and then

∂Σp

∂σi j
=

1
3Σ2

1 − J2

(
∂J2

∂σi j
Σp +

∂J3

∂σi j

)
, p = 1, 2, 3

21In particular, if A is the restriction of the fourth order identity
tensor to the subspace of deviatoric tensors, ∂Σp/∂σi j reduces to
∂σ′p/∂σi j and eq.(B.1) becomes a general formula for the gradient of
an isotropic function with respect to the components of its argument.

12



(2) If Σ1 = Σ2, then 3Σ2
3 − J2 , 0, and then

∂Σ3

∂σi j
=

1
3Σ2

3 − J2

(
∂J2

∂σi j
Σ3 +

∂J3

∂σi j

)
and, since Σ3 = −Σ1 − Σ2 = −2Σ1 = −2Σ2,

∂Σp

∂σi j
= −1

2
∂Σ3

∂σi j
, p = 1, 2

(3) If Σ2 = −2Σ1, then 3Σ2
2 − J2 , 0, and then

∂Σ2

∂σi j
=

1
3Σ2

2 − J2

(
∂J2

∂σi j
Σ2 +

∂J3

∂σi j

)
∂Σp

∂σi j
= −1

2
∂Σ2

∂σi j
, p = 1, 3

(4) If Σ1 = −2Σ2, then 3Σ2
1 − J2 , 0, and then

∂Σ1

∂σi j
=

1
3Σ2

1 − J2

(
∂J2

∂σi j
Σ1 +

∂J3

∂σi j

)
∂Σp

∂σi j
= −1

2
∂Σ1

∂σi j
, p = 2, 3

Finally, for completeness, the gradients of J2 and J3
are, generically:

∂J
∂σi j

=
∑
a,b

∂J
∂Σab

∂Σab

∂σi j

where, with the usual vectorization of stress tensors,
∂J2

∂Σab
= (Σ11,Σ22,Σ33, 2Σ12, 2Σ13, 2Σ13)T

∂J3

∂Σab
= [Σ22Σ33 − Σ23, Σ11Σ33 − Σ13, Σ11Σ22 − Σ12,

2(Σ13Σ23 − Σ12Σ33), 2(Σ12Σ23 − Σ13Σ22),

2(Σ12Σ13 − Σ23Σ11)]T

and, from eq.(33),
∂Σ11

∂σi j
= (a1, a2, −a1 − a2, 0, 0, 0)T

∂Σ22

∂σi j
= (a3, a4, −a3 − a4, 0, 0, 0)T

∂Σ33

∂σi j
= −

(
∂Σ11

∂σi j
+
∂Σ22

∂σi j

)
∂Σ12

∂σi j
= (0, 0, 0, a5, 0, 0)T

∂Σ13

∂σi j
= (0, 0, 0, 0, a6, 0)T

∂Σ23

∂σi j
= (0, 0, 0, 0, 0, a7)T

Appendix C. Tables of numerical parameters

Table C.1: Numerical values of the ai parameters of the trigonometric
representation in eq.(6).

CPB HH Poly6
a0 3.43878513 2.64295225 3.71812212
a1 -0.39425458 0.0 -0.44949023
a2 -0.06978321 -0.07183851 -0.09665677
a3 -0.02020266 0.0 -0.03909226
a4 -0.00660238 -0.01521937 -0.01985927
a5 -0.00231523 0.0 -0.01128121
a6 -0.00088558 -0.00537965 -0.00680347
a7 -0.00035950 0.0 -0.00423302
a8 -0.00014405 -0.00226389 -0.00266788
a9 -0.00005673 0.0 -0.00168074
a10 -0.00002442 -0.00103420 -0.00104690
a11 -0.00001143 0.0 -0.00063820
a12 -0.00000468 -0.00049510 -0.00037676
a13 -0.00000159 0.0 -0.00021283
a14 -0.00000081 -0.00024436 -0.00011347
a15 -0.00000057 0.0 -0.00005632
a16 -0.00000019 -0.00012326 -0.00002603
a17 0.0 -0.00001207
a18 -0.00006320 -0.00000732

Table C.2: Numerical values of the t2 and t3 shape-parameters char-
acterizing the isotropic generators by eqs.(14) and (16).

Model 1 Model 2
t(1)
2 1.82378 1.83030

t(1)
3 1.37086 1.37410

t(2)
2 1.82378 1.78469

t(2)
3 1.37077 1.35145

t(3)
2 1.83030 1.81727

t(3)
3 1.37410 1.36686

Table C.3: Numerical values of the bi parameters of the transverse
isotropic linear transformations in eq.(40).

Model 1 Model 2
b(1)

1 0.62244648 -0.94934324

b(1)
2 -0.35794805 -0.94921488

b(2)
1 0.49789902 1.68358706

b(2)
2 -0.47899704 -1.63654452

b(3)
1 -0.26570862 1.28981641

b(3)
2 -0.26720922 -0.71132313
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Table C.4: Numerical values of the ci parameters of the orthotropic
linear transformations in eq.(41).

Model 1 Model 2
c(1)

1 0.15753363 0.08974462

c(1)
2 0.07057620 0.13001845

c(1)
3 -0.08794903 0.09471368

c(1)
4 -0.08147106 0.12176141

c(1)
5 0.02637219 0.10552885

c(2)
1 -0.01107806 0.14658043

c(2)
2 0.10060782 -0.03189079

c(2)
3 0.02425665 -0.11177784

c(2)
4 0.00170572 0.18749099

c(2)
5 -0.03097213 0.24100154

c(3)
1 0.07828269 -0.24215285

c(3)
2 0.00640890 0.13660833

c(3)
3 0.07995998 0.21262800

c(3)
4 0.00490868 -0.17721402

c(3)
5 -0.00146543 -0.33462270
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