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Abstract
In this work, a Finite Element (FE) implementation of a Field Crack Mechanics (FCM)
model is presented for the first time. The implementation includes general boundary condi-
tions and application to bulk plasticity as well. The current numerical investigation adopts
the standard Galerkin finite element formulation to solve the equation of linear momentum
balance and finite difference framework for crack evolution. Our preliminary investigation
includes the modes-I and II loading conditions, where their respective normal stress fields
are compared against their analytical counterparts. The fundamental questions in classical
fracture mechanics, e.g. the existence of threshold stress for the crack to move, and various
stages associated with the crack propagation are investigated. Additionally, this study ex-
plores two distinct strain energy functions based on the crack surface normal and hydrostatic
deviatoric energy split. Crack irreversibility is a natural phenomenon in the FCM model,
and it does not require satisfying any extra irreversibility constraints. The model shows
good agreement against literature and analytical framework. The current FCM implemen-
tation also recovers the basic notion of fracture propagation which satisfies both energy and
stress criterion. The study also explores the crack motion under the effect of plasticity in
ductile materials. The results thus obtained for both brittle and ductile fracture cases are
consistent with the predictions of classical fracture mechanics. The current implementation
of the FCM effectively demonstrates stable crack propagation, eliminating the requirement
for surfing boundary conditions.
Keywords: Fracture mechanics, field–crack mechanics, continuum mechanics, finite
element modeling

1. Introduction

Fracture is a nearly inevitable phenomenon that may occur for various reasons, such
as defects arising during manufacturing, inherent defects in materials, environmental con-
ditions, and prevailing conditions during operation. Therefore, studying complex failure
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mechanisms associated with crack propagation in solids is important for durability assess-
ment. The pioneering work of Griffith [1] based on simple thermodynamic principles laid
the foundation for fracture mechanics. To solve various initial/boundary value problems
in fracture mechanics, numerous computational techniques/models are available in the lit-
erature. As mentioned in [2, 3], the main distinguishing feature of the FCM model when
compared to the existing models is the vectorial representation of the crack tip field that
enables the model to spontaneously capture the crack propagation direction. Furthermore,
as observed in [2], the specific advantage of a crack tip field lies in the fact that, regardless
of the energy or stress levels, crack evolution exclusively occurs in the presence of crack tip
fields. In the present work, a computational framework of a partial differential equation
(PDE) based fracture model, field crack mechanics [2] is presented.

Using the FCM model, the present study explores the critical features in crack propaga-
tion, such as stable and unstable crack propagations, critical stress, and fracture toughness
criterion as suggested by classical fracture mechanics. The framework was first introduced
by Acharya [2, 4] in capturing the crack behavior in brittle and ductile solids. Our focus is
to develop a computational model related to FCM where the crack region is restricted to a
single fault layer. The model can be seen as a simplified version of Morin and Acharya [3]
which models quasi-static and dynamic fracture within a single planar fault layer. Specifi-
cally, we analyze and compare the layer model under different loading configurations with
their analytical or experimental counterparts in the present work. The following are the
novel contributions of this work.

• Crack is driven solely by the evolution of crack tip fields. Crack irreversibility is an
integral feature of the model.

• The crack evolution is inherently rate–dependent and is governed by a drag parameter.
Furthermore, the numerical demonstration of the influence of the drag parameter on
crack evolution is provided.

• Reproduce the crack propagation under biaxial loading as demonstrated in [3] using
the current finite element implementation.

• Unlike the implementation of Morin and Acharya [3] in which it is restricted to peri-
odic boundary conditions due to the Fast Fourier Transform (FFT) based framework,
the present FE implementation can model edge cracks and apply realistic boundary
conditions.

• FCM model is coupled with a rate–dependent Drucker–Prager plasticity model. Basic
features of metal plasticity are demonstrated.

Modeling a realistic fracture process that occurs in nature is a computationally intensive
task. However, in the past few years, significant progress has been made in the computa-
tional fracture mechanics field, resulting in a much better understanding of complex fracture
processes and addressing them computationally. Some of the notable fracture models are
summarized in the following.
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The pioneering works of Dugdale [5], and Barrenblatt [6] laid the foundation for cohesive
fracture models. The central idea of cohesive zone models (CZM) is to assume an interaction
force between the two crack faces. Fracture occurs when stress between the crack faces
reaches a threshold strength of σmax, as suggested by traction–separation law. The cohesive
law presents a relation between the crack faces and the boundary tractions. The material
degradation occurs due to cohesive constitutive laws, and the numerical implementation
requires unique, cohesive elements in predetermined crack paths. CZMs are successful in
predicting the fracture behaviour in brittle and ductile materials [7–9], interface problems
[10], composite structures [11] as well.

Extended finite element method (XFEM) approach [12–14] is a class of partition of unity
methods [15, 16] which enrich the finite element space with special discontinuous functions.
The enrichment in XFEM happens locally near the discontinuities, which prevents the need
for further re–meshing. In the XFEM model, instead of separately tracking the crack surfaces
using traction separation laws, the nodes near the crack interfaces and crack tips are enriched
separately with additional degrees of freedom.

Modeling cracks using finite elements requires re-meshing near the damaged region, a
computationally-intensive process. It can be overcome using meshless methods [17–20] that
are entirely free of underlying meshes and therefore, re-meshing is not required. Smoothed
particle hydrodynamics [21, 22], element free Galerkin [17], material point methods and
reproducing kernel particle method are some of the popular meshfree techniques used to
model fracture. Although the meshless method seems promising to model fracture, the
computational cost outweighs the finite element approach. Hence, using a coupled technique
where the cracks are modeled with the meshfree method and the remaining continuum with
finite element has been proposed by Rao and Rahman [23].

Recently, peridynamics models [24–27] have gained more traction in capturing the frac-
ture phenomenon by considering the non–local effect from neighboring material points. Each
material point interacts with the neighboring points within a fixed horizon in peridynamics.
The interaction is based on a non–local force strain relation, which models the fracture as
an emergent phenomenon. Peridynamic models are used to solve a wide range of problems
in brittle [25, 28, 29] and ductile [30–32] fracture respectively.

Phase–field or diffuse fracture models proposed by [33–37] are successful in predicting
the crack initiation and complex crack growth patterns through energy minimization. The
scalar field or phase–field variable is controlled by the length scale parameter that controls
the thickness of the crack. A variety of problems in brittle fracture [35], ductile fracture [38–
40], fatigue modeling [41–43], frictional contact [44], dynamic fracture [45–47], and numerous
other applications have been addressed through the utilization of phase-field driven fracture.
However, the real physical meaning of the phase-field variable is still not known [48].

In the present work, a stand–alone finite element code is developed for solving linear
momentum and crack field equations. The computer program is written in Fortran 90. We
use MUltifrontal Massively Parallel Sparse Solver [49] (MUMPS) in the present work to
solve the large linear equation system that arises from the finite element assembly. MUMPS
is a Fortran based package that uses a direct method to solve the sparse system of linear
equations of the form Ax = b. MUMPS utilizes a multifrontal approach to factorize the
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sparse assembly system.
The manuscript is organized as follows. In Section 2 the governing equations about the

complete 3D model are revisited. Additionally, the reduced form of the crack evolution
equation from 3D to 1D is presented. Various components of the model, including the crack
energy density functions, degradation of modulus of elasticity function, and the elastic strain
energy functions under consideration, are discussed in detail. In Section 3, the numerical
formulation for the 1d layer model adapted from [50] is recalled. Furthermore, the proposed
staggered algorithms for brittle and ductile fracture are also discussed. Section 4 is dedicated
to detailed numerical studies, starting from central cracks subjected to mode-I and mode-II
loadings, edge cracks, coalescence of cracks in a single plane, and the influence of plastic
strains.

2. Field crack mechanics - Layer model

This work addresses the response of fracture behavior in brittle and ductile solids by
satisfying the crack evolution laws proposed in FCM. In the FCM model, the crack field
c(x, t) and its tip field t(x, t) are assumed to be continuous and participate naturally in the
crack evolution law by satisfying the kinematics under consideration. Under the assumption
of small deformation theory, the general governing equations in 3D are

∇.σ = 0 balance of linear momentum (static case)
σ = C : ε constitutive law
ε = 1

2
(∇u +∇uT ) strain displacement relation

ċ = −curl(c)×V crack evolution law,

(1)

where σ(x, t), ε(x, t) and u(x, t) represent the stress, strain and displacement fields that
depend on damage, position and time respectively. C(|c|) represents the fourth order elastic
modulus tensor with components degraded by the amount of damage c. V(x, t) represents
the velocity of the crack tip field which is considered to be the driving force for the crack to
evolve. Upon assuming a free energy density function [2]

ψ(εe, c, curl(c)) = ψE(ε
e, c) + φ(c, curl(c)), (2)

where ψE is the elastic strain energy density function that depends on strain and damage,
φ is the resistance offered to the crack motion in creating new flank surfaces. εe = ε−εp, is
the elastic part of the strain tensor. ε is the symmetric part of the displacement gradient,
and εp is the plastic strain tensor. The typical forms of ψE and φ are given as

ψE =
1

2
ε : C(|c|)ε, ϕ = η(|c|) + κ

2
|curl(c)|2, (3)

where η is a crack energy density function that represents the energy cost for the damage to
progress, and κ regularizes the crack tip field t(x, t). By considering the power contribution
from external and internal sources, the dissipation inequality is written as
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D =

∫
∂V

tf.u̇ da+
∫
V

b.u̇ dv − d

dt

∫
V

ψ dv − d

dt

∫
V

1

2
ρo|u̇|2 dv, (4)

where tf, b are the traction and body forces respectively. u̇ is the velocity field and ρo is
the mass density. Substituting the free energy contribution from Eq. (2) in Eq. (4) the
dissipation can be written as,

D =

∫
V

(T− ∂εeψ) : grad(V) dv+∫
V

T : ε̇p dv +

∫
V

{
[−∂cψ + curl(∂tψ)]× t

}
.V dv +

∫
∂v

V.[(∂tψ × n)× t] da, (5)

where from Eq. (5) the driving force V(x, t) for the crack tip motion is deduced as

V⇝
{
[−∂cψ + curl(∂tψ)]× t

}
. (6)

For completeness a more detailed derivation of Eq. (5) from Eq. (4) is shown in Appendix
A.

2.1. Reduced form of the crack evolution law to 1D - A planar ansatz
Let the domain under consideration be Ω ∈ R2, where the balance of linear momentum is

satisfied and the layer L, which is embedded in Ω, where crack evolution law is to be solved.
Hence, in the present work, the terms FCM model and Layer model are synonymous. The
geometry with various domains under consideration for the layer model is shown in Fig. 1.
The domains Ω and L are defined as

Fig. 1: Initial geometry of the layer model representing central crack (hashed portion) confined to a layer.
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Ω = {(x, y) : (x, y) ∈ [−W,+W ]× [−H,+H]},
L = {(x, y) : (x, y) ∈ [−W,+W ]× [−d,+d]}.

(7)

In Fig. 1, ‘Layer, L’ indicates a singular default layer with a pre-determined crack path.
The size of the domain is 2W × 2H. The crack field is positioned at the center of the
domain, confined to the layer L with finite thickness 2d. wc represents the width of the
crack. Assuming the vectorial crack field is confined only to the layer,

c(x, t) =
{
w(x, t)ê2 inside L,
0 outside L

, (8)

where w(x, t) represents the normal component of the crack field c(x, t). The crack tip field
and its curl are given as

t(x, t) = −curl(c) = w,x (x, t)ê3, curl(t) = w,xx (x, t)ê2. (9)

Assuming the velocity of the crack tip to be V(x, t) = v(x, t)ê1 i.e. parallel to the crack
propagation direction, the crack evolution equation can be written as

∂w

∂t
= −∂w

∂x
v. (10)

Upon substituting Eqs. (8) and (9) in Eq. (5),

D =

∫
V

{
[−∂cψ + curl(∂tψ)]× t

}
.V dv

=

∫
L

{[
− ∂ψE

∂c
(x, y, t)− ∂η

∂c
(x, t) + curl(κ t)

]
× (−w,x ê3)

}
vê1 dxdy

=

∫
L

{
− ∂ψE
∂|c|

(x, y, t) sgn(w(x, t))− ∂η

∂|c|
(x, t) sgn(w(x, t)) + κw,xx (x, t)

}
(−w,x ) v dxdy,

(11)

where sgn(w) = c
|c| . The layer averaged stress G(x, t) is introduced as

G(x, t) =
1

2d

∫ +d

−d
−∂ψE
∂|c|

(x, y, t) sgn(w(x, t)) dy, (12)

and the crack energy density contributions Gc(x, t) is given by

Gc(x, t) =
∂η

∂|c|
sgn(w(x, t)). (13)

Hence, the dissipation D is given as
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D =

∫
L

(−v(x, t) w,x (x, t)) [G(x, t)−Gc(x, t) + κw,xx ] dxdy+∫ +W

−W
(−v(x, t)

{
w,x (x, t))

∫ +d

−d

[
− ∂ψE
∂|c|

(x, y, t)−G(x, t)
]
dy

}
dx. (14)

Due to Eq. (12), the second term in Eq. (14) becomes zero. Similar to [50], the driving force
v(x, t) is chosen to be

v(x, t) =
−w,x
Bm|t|m

{
G(x, t)−Gc(x, t) + κw,xx

}
. (15)

Substituting Eq. (15) in Eq. (10), the reduced form of crack evolution law in 1D is given as

∂w

∂t
=
|w,x |(2−m)

Bm

(G(x, t)−Gc(x, t) + κw,xx ), (16)

where the parameter κ regularizes the width of the crack tip, and parameter Bm represents
the drag coefficient, introducing another timescale that controls the crack velocity and bears
the units as Pa.s.m−1. G and Gc represent the driving force generated due to elastic strain
energy and the energy expended to create new crack surfaces, respectively. The exponent m
can take the values 0, 1, 2 and manifest different crack evolution behavior forms. As proposed
in [50], m = 0 gives Non–local Generalized Burger’s (NGB) equation, m = 1 is a Non–local
Level Set (NLS) and m = 2 gives us a Non–local Ginzburg–Landau (NGL) equations. In
the present work, with m = 1, we studied the crack evolution equation of the NLS type.

Finally, for the layer model, the reduced form of crack evolution equation in 1D along
with linear momentum balance in 2D are written as

∇.σ = 0 balance of linear momentum,
σ = C : ε constitutive law,
ε = 1

2
(∇u +∇uT ) strain displacement relation,

∂w
∂t

= |wx|(2−m)

Bm
[G−Gc + κ∂

2w
∂x2

] crack evolution law in 1D.

(17)

The stress fields determined from the mechanical balance provide the driving force for the
crack field. It should be noted that the crack only advances when G >= Gc. The objective
of the present work is to solve the governing laws in Eq. (17) numerically and explore the
FCM model’s versatility in predicting brittle and ductile fracture.
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Fig. 2: Representation of various crack energy density functions as a function of damage |w|.

Fig. 2 shows the possible types of crack energy density functions that are chosen for the
present study. The mathematical forms of η1 and η2 are written as

η(|w|) =



η1(|w|) =

 a

[
1− cos

(
2π|w|
wsat

)]
0 ≤ |w| ≤ w2

0 |w| > w2,

η2(|w|) =

{
η1(|w|) 0 ≤ |w| ≤ w1 =

w2

2

η1(w1) |w| > w1,

(18)

where a represents the magnitude of crack energy density function, η. While the crack passes
from damaged to undamaged regions, η1 has zero energy cost, and η2 (Griffith’s type) has a
finite energy cost during the damage process, which opens the possibility of crack healing.
To prevent crack healing, which does not happen naturally in η2 the crack irreversibility
condition is written as

∂w

∂t
=

 |wx|(2−m)

Bm
[G−Gc + κ∂

2w
∂x2

] if
(

|wx|(2−m)

Bm

[
G−Gc + κ∂

2w
∂x2

])
> 0

0 otherwise.
(19)

Detailed analysis of the nature of crack energy density functions η1 and η2 in dealing with
crack irreversibility constraint is discussed in Section 4.4.

2.2. Models for Strain Energy functions
Various forms of strain energy functions [3, 11, 51] have been proposed in the literature

to capture the fracture process under various loading scenarios. In the current FCM imple-
mentation, we mainly explore two different types of elastic strain energy density functions
(ψEM1

, ψEM2
), which are influenced by the crack fields in different ways. In this regard, ψEM1

and ψEM2
control the crack propagation based on the crack surface normal and volumetric–

deviatoric split of the strain tensor respectively.
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2.2.1. Based on crack normal direction
Following Morin and Acharya [3], the elastic energy density function ψEM1

, function of
strain and damage based on the crack normal direction is given as

ψEM1
= ψEM1

(ε, |w|) = (1−H(|w|))
(
1

2
λtr(ε)2 + µε : ε

)
+

H(|w|)
[(

1

2
λ̃tr(ε)2 + µ̃ε : ε

)
+ (1−H(εn))αε

2
n

]
, (20)

where ϵn in the last term in Eq. (20) introduces the tension compression asymmetry during
fracture. Here ϵn and nc are defined as

ϵn = ε : (nc ⊗ nc), nc =
c
|c| . (21)

Based on the sign of ϵn, the Heaviside function H(εn) is activated and prevents the inter-
penetration of crack flanks during compressive loads. Lame’s constants denoted as λ and µ
are involved. The degraded elastic constants λ̃ and µ̃ are expressed as f(|w|)λ and f(|w|)µ
resepctively, where f(|w|) signifies the degradation function responsible for reducing the
material stiffness. The parameter α is defined by α = λ + 2µ − [λ̃ + 2µ̃] helps to maintain
the tension compression asymmetry. The stress tensor is given as

σ =
∂ψEM1

∂ε
= (1−H(|w|))

(
λtr(ε)I + 2µε

)
+

H(|w|)
[(
λ̃tr(ε)I + 2µ̃ε

)
+ (1−H(εn))αεnnc ⊗ nc

]
. (22)

The fourth order stiffness tensor is defined as

C = (1−H(|w|))
(
λI⊗ I + 2µI

)
+

H(|w|)
[(
λ̃I⊗ I + 2µ̃I

)
+ (1−H(εn))[αnc ⊗ nc ⊗ nc ⊗ nc]

]
. (23)

2.2.2. Based on volumetric–deviatoric split
The elastic strain energy density function based on the volumetric–deviatoric split is given
as

ψEM2
= ψEM2

(tr(ε), |w|) = (1−H(|w|))
(
1

2
Ktr(ε2) + µε

′
: ε

′
)
+

H(|w|)
[
H(tr(ε))

(
1

2
K̃tr(ε2) + µ̃ε

′
: ε

′
)
+ (1−H(tr(ε)))

(
1

2
Ktr(ε2) + µ̃ε

′
: ε

′
)]
, (24)
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where tr(ε) denotes the trace of strain tensor, and K and µ represent the undamaged bulk
and shear modulus respectively. The damaged bulk and shear moduli K̃(|w|) and µ̃(|w|) are
expressed as f(|w|)K and f(|w|)µ. ε

′ represents the deviatoric strain tensor. Unlike ψEM1

which is a function of normal strain to the crack surface, the distinction between tension
and compression fracture in ψEM2

is influenced by volumetric strains. The stress tensor σ
is given as

σ = (1−H(|w|))
(
Ktr(ε)I + 2µε

′
)
+

H(|w|)
[
H(tr(ε))

(
K̃tr(ε)I + 2µ̃ε

′
)
+ (1−H(tr(ε)))

(
Ktr(ε)I + 2µ̃ε

′
)]
. (25)

The fourth order stiffness tensor for ψEM2
is

C = (1−H(|w|))
(
KI⊗ I + 2µ

(
I− I

3

))
+

H(|w|)
[
H(εkk)

(
K̃I⊗ I + 2µ̃

(
I− I

3

))
+ (1−H(εkk))

(
KI⊗ I + 2µ̃

(
I− I

3

))]
. (26)

The Heaviside function which acts as a controlling parameter to differentiate the damaged
and intact zones is defined as

H(x) =

{
1 if x > 0

0 if x ≤ 0.
(27)

The quadratic degradation function f(|w|) as a function of damage w is given as

f(|w|) =

{
1− 2(1−fm)

w̄
|w|+ (1−fm)

w̄2 |w|2 0 ≤ |w| ≤ w̄

fm |w| > w̄,
(28)

where w̄ represents the threshold of the damage w, and fm is the minimum value of elastic
modulus degradation. Before proceeding to the numerical schemes adopted for the present
study, we first chose to non–dimensionalize the system of governing equations in Eq. (17).
By assuming length (l), which can be domain width or height, load rate (lr) and shear
modulus (µ) as the primary variables, the non–dimensional parameters are given as

σ̃ =
σ

µ
, x̃ =

x

l
, t̃ = lrt, w̃c =

wc
l
, h̃c =

hc
l
, λ̃ =

λ

µ
, ã =

a

µ
, k̃ =

k

µl2
, B̃m =

lBmlr
µ

, (29)

The quasi static non–dimensional system is given as
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
∇̃.σ̃ = 0 balance of linear momentum,
σ̃ = C̃ : ε constitutive law,
ε = 1

2
(∇̃ũ + ∇̃ũT ) strain displacement relation,

∂w
∂t̃

= |wx̃|(2−m)

B̃m
[G̃− G̃c + κ̃∂

2w
∂x̃2

] crack evolution law in 1D.

(30)

From hereon all the ˜ exponents are dropped and all the parameters are non–dimensional
unless explicitly stated.

3. Numerical scheme

To address the system of equations shown in Eq. (30), two distinct solvers are employed
for linear momentum and crack evolution equations. The balance of linear momentum
is tackled using the standard Galerkin finite element approach, while a finite difference
approach, incorporating the upwinding technique [52], is utilized for the time-dependent
crack evolution. The governing equations are solved in a staggered manner as described in
Section 3.1.

Fig. 3: Geometry with refined mesh inside the layer.

The finite element domain discretization is shown in Fig. 3. The mesh is highly refined
inside the layer to accurately capture the stress singularities in the crack region and gradually
transitions to a coarser mesh near the boundary. The mesh inside the layer is completely
structured, incorporating a finite-difference grid. It employs quadrilateral elements with full
integration, totaling approximately 40,000 elements.
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Fig. 4: Schematic showing FD grid embedded in the finite element mesh inside the layer.

As mentioned in [50], the layer stress G in Eq. (12) corresponding to finite difference
grid is calculated as follows. The finite element mesh inside the layer and the insertion of
the finite difference grid are shown in Fig. 4. It is also shown that each element in the
finite element mesh contains four Gauss points, and each column is assigned to a finite
difference grid point. The number of rows of elements and columns in the layer are M
and N respectively. Then the center of each column in the (M+1)/2 row inside the layer
corresponds to a grid point in the finite difference grid. Let ψE,w (l, k) denote the value of
integrand in Eq. (12) at grid point k and Gauss point l respectively. Then the value of G
at grid point xk is calculated as

G(xk) =
1

Nl

Nl∑
k=1

ψE,w (l, k), (31)

where Nl denotes the number of Gauss points in column N .

3.1. Algorithm for crack evolution
For the sake of completeness, the crack evolution algorithm which incorporates the up-

winding feature initially proposed by [52] and subsequently modified by [50] is presented in
the current section. It is worth emphasizing that the crack evolution equation, sub–equation
4 of Eq. (17) bears a resemblance to the evolution of the plastic distortion tensor outlined
in [50, 52]. As elucidated in [50], the fundamental concept behind the linearization of crack
evolution algorithm involves deducing the direction of wave propagation and incorporating
it into the actual non-linear crack evolution equation. In this regard, we consider the first
variation of the sub–equation 4 of Eq. (17), and the initial term in Eq. (32) signifies the
linearized wave-like behavior, a concept also discussed in references [50, 52]. Assuming ∆h
and ∆t represent the spatial and temporal increments respectively, the linearization of the
crack evolution equation given in Eq. (17)4 is as follows
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δwkt (xh) = −(2−m)

[
−sgn(wkx(xh))

Bm

]
|wkx(xh)|1−m

[
Gk(xh)−Gk

c (xh) + κwk+1
xx (xh)

]
+
|wkx(xh)|2−m

Bm

[
κδwkxx(xh)

]
+
|wkx(xh)|2−m

Bm

[
G

′

c(xh)δw
k(xh)

]
, (32)

where wk(xh) represents the value of damage at kth time step and hth grid point respectively.
The velocity of the crack tip at grid point xh and time step k is given as

Ck(xh) = (2−m)

[
−sgn(wkx(xh))

B̃m

]
|wkx(xh)|

[
Gk(xh)−Gk

c (xh) + kwk+1
xx

]
. (33)

By using central difference to approximate the first and second order derivatives of the crack
field are given as,

wkx(xh) =
wk(xh+1)− wk(xh−1)

2∆h
, (34)

wkxx(xh) =
wk(xh+1) + wk(xh−1)− 2wk(xh)

∆h2
. (35)

Depending on the sign of velocity Ck(xh) the upwinding is calculated as

wkx =


1
∆h

(wk(xh+1)− wk(xh)) if Ck(xh) < 0
1
∆h

(wk(xh)− wk(xh−1)) if Ck(xh) > 0
1

2∆h
(wk(xh+1)− wk(xh−1)) if Ck(xh) = 0.

(36)

To ensure the stability of the solution, the chosen timestep for a particular iteration must
adhere to the CFL conditions. The calculation of the timestep is as follows

∆tk = min

[
∆h

C(xk)
,

B̃m

|ϕx(xk)|2−m(−Gc(xk))
′

]
. (37)

The crack field is updated as

wk+1(xh)−κ∆tk
|wk(xh)|2−m

Bm

wk+1
xx (xh) = wk(xh)+∆tk

|wk(xh)|2−m

Bm

[
Gk(xh)−Gk

c (xh)

]
. (38)

Eq. (38) yields a linear system of equations for all the finite difference grid points where
wk+1 is calculated. The proposed staggered scheme for brittle fracture problem is shown in
Algorithm 1.
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Algorithm 1: Staggered algorithm for brittle fracture using FCM from tn → tn+1

Input: Initialize the primary variables displacement u = un and crack field w = wn
1 . /* The initial crack field at to is the equilibrated field. */
2 while n = 1 : nsteps do

/* Loop over load steps */
3 Update the prescribed loading at tn+1. Solve for un+1 by keeping crack field wn

frozen.
/* Solve mechanical balance using standard Galerkin Finite Element appraoch.

*/
4 while |R|<tol do

/* Iterate over Newton--Raphson loop until residue is below tolerance. */
5 Calculate material property matrix C(ε) from Eq. (23) or Eq. (26).
6 Calculate tangent stiffness KT =

∫
BTC(ε)B.

7 Calculate Residue R = Fint − Fext.
8 Solve δu using KT δu = −R.
9 un+1 ← un + δu.

10 Update elastic strain energy G and crack energy density Gc contributions inside
the layer.

/* Solve crack evolution equation using finite difference upwind scheme */
11 By keeping displacement un+1 frozen find wn+1 using the linearly implicit

scheme as shown in Section 3.1.
12 Update the time step and repeat the above procedure

3.2. A rate–dependent Drucker–Prager plasticity for ductile fracture
To predict the ductile fracture due to permanent deformation or plastic strains, a rate–

dependent power law based model is utilized as detailed in the present section. In the
context of non–associated flow rule, the plastic potential and yield functions are considered
to be separate. However, in rate–dependent plasticity, the plastic strain rate is given as

ε̇p = ϑ
∂g

∂σ
, (39)

where ϑ is the plastic multiplier and g(σ) is the plastic potential function. The plastic
potential is defined as

g = τ − αψp, (40)
where αψ is the tangent of the dilatation angle. p and τ are the pressure and effective
deviatoric stress, respectively, and are defined as

p =
−σkk
3

; τ =

√
σ′ : σ′

2
, (41)

where σkk and σ
′ represent the trace and deviatoric part of stress tensor respectively. The

yield function Y is given as
14



Y = τ − αp−K(ep), α = tan(β), (42)
where α and ep are the tangent of the friction angle (β) and effective plastic strain respec-
tively. The linear isotropic hardening function K(ep) is given as

K(ep) = σyo +Hep, (43)
where σyo is the yield stress and H is the hardening constant. The perfect plasticity is
obtained by setting H = 0. The plastic multiplier and normal to the plastic potential are
given as

ϑ =
ėp

ηg
,

∂g

∂σ
=
αψ
m

I+
σ′

2τ
, ηg =

∥∥∥∥ ∂g∂σ
∥∥∥∥, (44)

where ηg is the magnitude of ∂g
∂σ

. By substituting Eq. (44) in Eq. (39), the plastic strain
rate is given as

ε̇p =

(
∥τ−αp∥
K(ep)

) 1
m

ηg

∂g

∂σ
. (45)

The staggered rate–dependent plasticity algorithm chosen for ductile fracture is shown in
Algorithm 2. To make the implementation simpler, plastic strains are updated explicitly.
Therefore, the material property matrix and the stress tensors remain the same as in a brittle
fracture. However, the only difference is that all the concerned quantities are evaluated based
on elastic strains instead of total strains. The time step calculation in the ductile case is
given as

∆t = min

[
∆h

max(C(xk))
,

B̃m

max(|ϕx(xk)|2−m(−Gc(xk)
′))
, dtf

(
0.002

max(ėp)

)]
, (46)

where dtf is a factor ranging from 0.1− 1.0 is chosen for the stability of the solution.
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Algorithm 2: Staggered algorithm for ductile fracture using FCM from tn → tn+1.
Input: Initialize the primary variables displacement u = un, crack field w = wn and

plastic strain tensor εp = εpn
1 . /* The initial crack field at to is the equilibrated field */
2 while n = 1 : nsteps do

/* Loop over load steps */
3 Update the prescribed loading at tn+1. Solve for un+1 by keeping crack field wn

frozen.
/* Solve Mechanical balance using standard Galerkin Finite Element approach.

*/
4 while |R|<tol do

/* Iterate over Newton Raphson loop until residue is below tolerance. */
5 Calculate material property matrix C(εe) from Eq. (23) or Eq. (26) using

elastic strain tensor, εe = ε− εp.
6 Calculate tangent stiffness KT =

∫
BTC(εe)B.

7 Calculate Residue R = Fint − Fext.
8 Solve δu using KT δu = −R.
9 un+1 ← un + δu.

10 Update plastic strain tensor as εpn+1 = εpn +∆tε̇p.
11 Update elastic strain energy G and crack energy density Gc contributions inside

the layer.
/* Solve crack evolution equation using finite difference upwind scheme */

12 By keeping displacement un+1 frozen find wn+1 using the linearly implicit
scheme as shown in Section 3.1.

13 Update the timestep and repeat the above procedure.

4. Numerical studies

In the present section, we demonstrate a few benchmark cases based on the FCM model using
the numerical implementation as shown in Section 3. Noteworthy is that many of these case
studies are motivated by the work of [3]. The initial geometry setup under consideration
is shown already in the Fig. 1. The domain contains a central crack of width wc = 0.3
and thickness 2d = 0.002 positioned inside the layer. The near tip analytical solution for
normal stress given by Westergaard [53] for an infinite plate with a central crack of width
2wc subjected to a remote mode-I loading of σ∞ is given as

σ22 =
σ∞√

1− (wc

x
)2
. (47)

First, the static crack tip stresses are compared for mode-I and mode-II loading against their
analytical counterparts. Fig. 5 shows the comparison of averaged normalized σ22/σ∞ stress
for mode-I and σ12/σ∞ for mode-II inside the layer. A good match is observed for both
the elastic strain energy functions (ψEM1

, ψEM2
) under consideration. It is evident that the
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stresses away from the crack tip reach σ∞. From Fig. 5 it is evident that the FCM model
can capture the inverse square root singularities near the crack tip precisely. Additionally,
it is important to note that stresses within crack regions are not entirely zero; instead, they
are influenced by the fm value as defined in Eq. (28). For the sake of numerical convenience,
the fm has been set to 0.001 in the current study.

(a) (b)

Fig. 5: Comparison of normalized analytical and numerical stresses for different strain energy models under
(a) Mode-I and (b) Mode-II loading conditions.

4.1. Initial crack equilibrium
For the initial crack field under consideration, even in the absence of external loading,

i.e., G = 0, some equilibrium may exist due to the interplay between the crack–tip energy
density (Laplacian term) and crack energy density contribution. Here, the equilibrium is
investigated for the crack energy density function η2 with zero surface energy cost. Defining
ϱ = κ/a as the ratio of crack–tip energy density and the magnitude of crack energy density
term. Different values of ϱ are investigated over a range of [0, 0.1, 1000]. With no external
energy supplied and ϱ = 0 or when the crack–tip energy density is null, any chosen crack
field is already in equilibrium, and no motion in the crack is observed. Fig. 6 shows the
effect of ϱ for 0.1 and 1000 respectively. In Fig. 6a it can be noted that there is no noticeable
change from the initial to the equilibrated positions. The crack energy density term tries to
balance with the crack–tip energy density and acquires a stable position of the crack field.
However, as shown in Fig. 6b for ϱ = 1000, no stable equilibrium for the crack field is found
because the crack–tip energy density dominates the crack energy density making the initial
crack field diffuse over the layer completely. So, this high ϱ value choice makes it unsuitable
to maintain the sharp crack fronts. In the forthcoming sections, for all the case studies under
consideration, unless explicitly stated to maintain sharp crack fronts, ϱ = 0.1 is maintained.
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(a) (b)

Fig. 6: Effect of ρ, the ratio of crack–tip energy density and the magnitude of crack energy density function
on the crack equilibria corresponding to (a) ϱ = 0.1, (b) ϱ = 1000. The inward arrays shows the direction
diffused crack.

4.2. Brittle fracture
In this section, using the layer model in FCM, we present several paradigmatic examples

related to brittle fracture. For all the case studies under consideration, an equilibrated crack
field with sharp crack fronts is assumed as the initial condition prior to loading.

4.2.1. Central crack subjected to Mode-I loading
Here, the response of crack evolution under pure mode-I loading is presented. Since the

simulations are quasi–static, a small drag parameter Bm, is chosen for a constant loading rate
lr. The sensitivity study on the stress–strain curves for different Bm values is shown in Fig. 7.
As the drag parameter Bm decreases, the crack finds enough time to progress, which triggers
the early softening response or the loading behavior becomes rate–independent. However,
as shown in Eq. (37) reducing Bm also impacts the time step, which in turn increases the
computational cost. Therefore, in the present work, a convenient value of Bm = 0.01 is
chosen for all the simulations unless explicitly stated.

It should be noted that the same (see Fig. 7) rate–independent behavior can also be
achieved by reducing the load rate at a constant Bm. Different parameters chosen for the
present numerical simulations are shown in Table 1. Before loading the specimen, an initial
equilibrated crack field is attained by maintaining the ratio between the crack–tip energy
density and magnitude of crack energy density term to 0.1. The small ratio of ϱ also helps
to keep the crack fronts sharp instead of diffusing, as shown in Fig. 6b. To achieve a better
numerical convergence by avoiding a sharp contrast modulus between the intact and the
damaged regions, the degradation parameter fm is chosen to be 0.001 and not null. The
ratio between Lame’s parameters (λ/µ) is chosen to be 2.
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Fig. 7: Sensitivity study of drag parameter Bm on stress strain behaviour.

Table 1: Non–dimensional parameters for Mode-I loading.

Crack evolution Bm 5e-7
κ 1e-5
m 1.0
lr 1.0
2d 0.002

Degradation function fm 0.001
w̄ 1.0

Crack energy density function a 1e-4
wsat 1.0

(a) (b)

Fig. 8: Crack propagation (a) and associated softening in stress–strain curve (b) representing different phases
of propagation for the elastic strain energy function, ψEM1

under mode-I loading.
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(a)

(b)

Fig. 9: Distribution of displacement u2 (a) and stress fields σ22 (b) in y-direction, under mode-I loading for
ψEM1

following different stages of crack propagation in Fig. 8b from left to right.

(a) (b)

Fig. 10: Crack propagation (a) and associated softening in stress–strain curve (b) representing different
phases of propagation for the elastic strain energy function, ψEM2

under mode-I loading.

The evolution of crack field and its influence on stress–strain curves for the strain energy
functions under consideration are shown in Figs. 8 and 10 respectively. Different phases in
crack evolution under mode-I loadings are as follows
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• A linear evolution accompanies the first phase in stress strain curve 0 – 1 where no
physical movement of the crack is visible. In this regime, the strain energy release rate
is less than the crack energy density contribution, i.e., G < Gc, which results in no
net driving force for the crack to move.

• A stable crack movement is followed with a linear regime from 1 – 2 that corresponds
to G = Gc where strain energy release rate balances the crack energy density rate,
resulting in stable crack propagation. However, in this regime, crack propagation is
possible only with an increase in loading.

• Beyond the position 2 , the crack movement happens without any increase in the
external load. It results in a softening phase where the crack moves entirely inside
the layer, breaking the specimen into two halves. Position 2 also suggests threshold
stress, which is similar to Peierls stress for dislocations. It is also worth mentioning
that the present crack evolution model is similar to the continuum dislocation theory
of Zhang [50]. The third phase corresponds to a softening regime from 2 – 3 .

• It is to be noted that both the strain energy models can predict the mode-I crack
behavior as suggested by the classical fracture mechanics.

• The displacement and stress contours for mode-I loadings are shown in Figs. 9a and 9b.
The stress concentration near the cracktips is clearly visible in Fig. 9b. It is also worth
mentioning that as the crack propagates, there is an elevation in concentration of σ22
component near crack tips which might accelerate the crack.

4.2.2. Influence of the magnitude of crack energy density function
The study on mode-I crack propagation presented in Section 4.2.1 highlights the fact that

if the energy release rate is more than the magnitude of the crack energy density function, it
imparts a net driving force for the crack motion. Therefore, the onset of crack propagation
is dictated by the crack energy density function magnitude. Further analysis was performed
for a/µ = 10−6, 10−5, 10−4. Fig. 11a shows the sensitivity on stress–strain curves for mode-
I loading. The FCM model captures all the crack propagation phases i.e. linear regime,
stable and unstable phases, respectively. Larger a/µ magnitude delays the crack motion,
indicating that more energy needs to be supplied for the crack with higher crack energy
density. Fig. 11b shows that the non–dimensional term max(σ̄22/µ)/

√
a/µ is scaled to be a

constant value or insensitive to a/µ.
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(a) (b)

Fig. 11: Influence of a/µ (non–dimensional crack energy density) ratio on (a) stress strain curves, (b) scaling
of non–dimensional peak stress with a/µ.

4.2.3. Strength and toughness predictions of FCM model
Further, predicted critical strength σc and fracture toughness KIc by the FCM model

are analyzed for the crack energy density functions η1 and η2 subjected to mode-I tensile
loading. The study is about obtaining the threshold normal stress values for the crack widths
ranging from 0.2–0.4. The macroscopic tensile stress, σ̄22/µ and crack tip stresses at the
onset of crack propagation are shown in Fig. 12a and Fig. 12b respectively. It is observed
that the macroscopic stress increases with the diminution of crack width wc/l. It indicates
that cracks with smaller widths require more energy to evolve. From Fig. 12b, it is also
evident that crack tip stresses scale to some constant value up to the crack width of 0.4,
beyond which the crack tip stresses exhibit a different scaling. It shows the prediction of
critical stress σc to some constant value indicating some local stress criterion by the FCM
model. The probable reason for the different scaling behavior of crack tip stresses might
be the effect of thickness, which is not considered in the present study. The mode-I stress
intensity factor for a central crack of width 2wc is given as

KI = σ̄22
√
πwc. (48)

Fig. 13 shows the variation of non–dimensional stress concentration factor KI/(µ
√
κ/a) vs.

the crack width wc/l. It is worth mentioning that the stress intensity factor is scaled to
a constant value, that represents the prediction of apparent fracture toughness KIc of the
material. The predictions made by the FCM model agree with [54] where both strength and
fracture toughness criteria must simultaneously be fulfilled for the crack to grow. It is also
worth mentioning that both the crack energy density functions under consideration in the
FCM model made similar predictions on σc and, KIc respectively.
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(a) (b)

Fig. 12: Influence of wc/l (non–dimensional crack width) on average macroscopic stress (a) and corresponding
cracktip stress (b) for the crack energy functions η1 and η2.

Fig. 13: Predictions of stress intensity factor KI for mode-I loading using FCM model.

4.2.4. Mode-II Loading
The response of the FCM model under the shear test or mode-II loading is discussed in

this section. The same square domain as shown in Fig. 1 with central crack of width wc = 0.3
is considered, and a shear strain ε12 is applied on the top surface. The boundary conditions
are applied such that the vertical surfaces are maintained parallel to each other by restricting
the y-direction displacement to zero. The drag parameter, Bm value of 5e-7 is maintained to
precisely capture the onset of unstable crack propagation. For the strain energy functions
under consideration Figs. 14 and 15 shows different phases of crack propagation along with
their stress-strain curves. It is worth mentioning that the FCM model can capture all the
phases of crack propagation from a linear regime 0 – 1 , stable phase 1 – 2 and unstable
region 2 – 3 . In Fig. 16a it is observed that due to cracking, the top portion of the domain
slides for the bottom portion near the crack surface. The stress concentration near crack
tips is growing in Fig. 16b which indicates the acceleration of the crack as it evolves.
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(a) (b)

Fig. 14: Crack propagation (a) and associated softening in stress-strain curve (b) representing different
phases of propagation for the elastic strain energy function, ψEM1

under mode-II loading.

(a) (b)

Fig. 15: Crack propagation (a) and associated softening in stress-strain curve (b) representing different
phases of propagation for the elastic strain energy function, ψEM2

under mode-II loading.
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(a)

(b)

Fig. 16: Distribution of displacement u1 (a) and stress fields σ12 (b) in y-direction, under mode-II loading
for ψEM1

following different phases of crack propagation in Fig. 14b from left to right.

4.2.5. Single and multiple edge cracks
The purpose of this case study is to show that the current implementation is not limited

by the periodic boundary conditions associated with FFT implementation of [3]. Due to
the FE framework, there is no restriction on implementing the type of initial and boundary
conditions. Following Miehe et al. [51], the geometric setup and boundary conditions for the
single edge crack specimen subjected to tensile load are shown in the Fig. 17. As detailed
in [50], it is important to highlight that, the FCM model produces identical equations as
phase field only with m = 2. But the current choice of m = 1 retains the gradient of the
crack field in the evolution equation, Eq. (17). According to Section 5.1, Eq. (47) in [51],
the Lame’s parameters λ and µ are set to 121.15 KN/mm2 and 80.77 KN/mm2 respectively.
The same values are adopted for the current FCM model as well. As shown in [51], for the
phase field model the critical energy release rate gc and length scale parameter l are 0.0027
KN/mm and 0.015 mm respectively. Thus, the non–dimensional critical energy release rate
is computed as gc/(lµ) resulting in 0.0023. For the current FCM model, a nearby value
of 0.0027 is chosen for better comparison. Fig. 18 shows the comparison of stress–strain
response of single edge crack with the literature [51] and a good match is observed. The
displacement and stress field distributions at different instants during crack propagation are
shown in Figs. 19a and 19b.
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Fig. 17: Initial setup for a single edge crack specimen with boundary conditions.

Fig. 18: Comparison of stress – strain response for an single edge notched specimen against literature [51].
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(a)

(b)

Fig. 19: Distribution of displacement u2 (a) and stress fields, σ22 (b) for a single edge crack.

Depending on the relative position and orientation of the crack fields, the local stress
fields are severely affected by the neighboring cracks. During the process of interaction,
the adjacent cracks may magnify or diminish the stress fields. Three cracks C1, C2 and C3

(see Fig. 21b) of equal width wc are placed in three different layers. Pre–existing cracks C1

and C3 start from the right boundary whereas C2 starts from the left boundary. The crack
evolution and its associated stress strain response are shown in Fig. 20. The softening curve
contains two softening zones where the first softening happens due to crack C2 and the long
softening zone is due to cracks C1 and C3 respectively. From Fig. 20 it is evident that the
C1 and C3 crack fields influence the early motion of the crack tip of C2. Accordingly, the
displacement contours in the y direction, u2 showing different phases in crack propagation
are evident in Fig. 21a. It is interesting to observe that the entire domain is fractured into
four pieces due to the presence of three parallel cracks. The respective stress contours are
shown in Fig. 21b. It is clear that during the initial loading phases, the crack tip C2 has
been exposed to a higher level of stress concentration when compared to their counterparts.
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(a) (b)

Fig. 20: Crack propagation (a) and associated softening in stress-strain curve (b) representing different
phases of propagation for multiple single edge cracks subjected to mode-I loading.

(a)

(b)

Fig. 21: Distribution of displacement u2 (a) and stress fields σ22 (b) in the y-direction, for a multiple single
edge cracks following different phases of crack propagation in Fig. 20 from left to right.
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4.2.6. Coalescence of cracks in single planar layer
In this section, using the FCM model, the coalescence of coplanar cracks of the same

width, which are placed at a finite distance s (ligament length) is demonstrated. Several
micro–cracks will develop during loading and coalesce by making a large fatal crack that
affects overall structural behavior. Numerous experimental and numerical studies [55, 56]
also show that the crack merging process in brittle materials is imminent. Upon defining
the cracks as C1 (left) and C2 (right), and crack tips as A,B and C,D (see Fig. 23b) different
phases of crack propagation and their merging process as predicted by FCM is shown in
Fig. 22.

• 0 – 1 shows a stable linear phase with no crack motion. 1 – 2 shows a stable
crack propagation. Beyond instant- 2 it shows unstable crack propagation with steep
softening. Precisely at the instant 4 the merging of cracks can be observed. Later at
instant 5 due to coalescence, a big crack is formed.

• The displacement fields in the y direction are shown in Fig. 23a. Fig. 23b shows the
σ22 stress fields during the coalescence process. The variation of crack tip stresses (σ22)
for A and B crack tips is shown in Fig. 24. As the two cracks approach each other,
the crack tip near the neighboring crack, i.e., crack tip ’B’, experiences more stress
than crack tip ’A’. (It is worth noting that a similar type of behavior for the coplanar
cracks is presented in [57] where an elevation of stress intensity factors near the crack
tip that is facing the neighboring crack is shown in Fig. 2.58, of Chapter–2.)

(a) (b)

Fig. 22: Crack propagation (a) and associated softening in stress-strain curve (b) representing different
phases of propagation during coalescence of two cracks placed in a single planar layer when subjected to
mode-I loading.
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(a)

(b)

Fig. 23: Distribution of displacement u2 (a) and stress fields σ22 (b) in the y-direction, during coalescence
of cracks following different phases of crack propagation in Fig. 22 from left to right. Cracktips from A,B
and C,D are shown in snapshot.

Fig. 24: Variation of crack tip stresses with the reduction in distance between the coplanar cracks.
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4.3. Crack propagation under compressive loadings
According to classical fracture mechanics theory, it is believed that crack arrest is in-

evitable if the specimen is subjected to fully compressive loads. The compressive loads
result in a zero energetic driving force on crack tips and merges the crack flanks. However,
there is substantial experimental evidence to prove that cracks indeed propagate under
compressive loading [58–61]. During compression, the fracture process is initiated due to
locally developed tensile stresses near crack tips [62]. Unlike for tensile fracture, the brittle
crack growth under compression is not responsible for the overall failure [63]. Further, in
compressive loading, the extension of many micro-cracks is responsible for the catastrophic
fracture. Formation of non–coplanar cracks or wing cracks [64] is a common phenomenon
in uniaxial, bi/triaxial compressive loading. For an angular crack subjected to compressive
loading, primary wing cracks (tensile) and secondary sliding/friction cracks emanate from
the crack tips. The wing cracks try to orient themselves in the major principal compressive
direction and propagate only with the external load increase. It probably explains the stress
differential effect between tensile and compressive failures, where the latter requires large
compressive loads for the cracks to propagate. A detailed analysis of brittle fracture using
the FCM model subjected to uniaxial/biaxial compressive loads is presented in this section.

4.3.1. Biaxial compression
The present numerical experiment investigates the crack growth under biaxial compres-

sion. Many experimental pieces of evidence [59, 61, 65, 66] suggest that under biaxial
compressive loadings, cracks do propagate due to the locally developed tensile stress at the
crack tips. The initial setup for biaxial loading is similar to the previous case studies where
a square specimen with a central crack is oriented in the x direction. In biaxial loading the
specimen is subjected to compressive strains in both x and y directions ie., (ε11 < 0, ε22 < 0).
The compressive strain is gradually applied in the y direction, whereas in the x direction
parallel to the crack axis, constant compressive strain is maintained throughout the loading.
Fig. 25 shows the stress–strain curves for two different pre–strain levels as ε11 =0.004 and
0.005. It is interesting to note that due to the presence of ε11, the initial stress is non-
zero. Due to the increase in ε11 from 0.004 to 0.005, initial stress rises from 0.016 to 0.02,
which indicates the early crack propagation. The stress fields in x direction under biaxial
compression are shown in Fig. 26.
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(a) (b)

Fig. 25: Crack propagation (a) and associated stress–strain curve (b) representing different phases of prop-
agation subjected to biaxial compressive loading.

Fig. 26: Stress fields in x-direction, σ11 subjected to biaxial compressive loadings following different phases
of crack propagation in Fig. 25 from left to right.

4.3.2. Brazilian test
Brazilian test is often referred to as indirect tensile test [59] where the crack extension

happens due to Poisson’s effect during compression. Similar to the experimental studies by
[59], the setup for the present numerical study is shown in the Fig. 27. The setup contains
a cylindrical specimen subjected to an equal magnitude of P pressure from top and bottom
along the diametrical axis. To avoid rigid body motion, displacements in x and y directions
are restrained at the center portion of the cylinder. The specimen radius is R, and the initial
crack width is wc. The crack is oriented vertically along the diametrical plane, with both
the crack tips subjected to compressive loads.
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Fig. 27: Initial setup for Brazilian test with a central crack placed in the vertical postion and pressure is
applied aling the diametral axis over an angle of 2α.

(a) (b)

Fig. 28: Crack propagation (a) and associated stress-strain curve (b) representing different phases of prop-
agation when subjected to Brazilian test on a circular cylinder.

Various phases of crack propagation and the corresponding stress–strain curve for the
Brazilian test are shown in Fig. 28. Since the crack is not oriented perpendicular to the
loading direction, no steep softening in the stress–strain curve is noted. Fig. 29a shows
the displacement fields in the x direction, and the splitting of the Brazilian disc along the
compressive direction or the diametrical axis is observed. The stress fields in the y direction
corresponding to different phases of crack propagation are shown in Fig. 29b. It is interesting
to note that the stress states near the crack tips are tensile, whereas the remaining portion of
the disc is compressive. The same is shown in Fig. 30 where the normal stress perpendicular
to crack, i.e., σ11 is positive near the crack tips.
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(a)

(b)

Fig. 29: Distribution of displacement u1 (a) in the x-direction and stress field σ22 (b) in the y-direction, in
Brazialian test following different phases of crack propagation in Fig. 28 from left to right.

Fig. 30: Evolution of σ11 stress at different stages of crack propagation.

4.3.3. Three point bending test
A classical three point bending test problem which is often studied in the literature

[51, 67] is presented in the current section. The initial geometric configuration and associated
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boundary conditions are illustrated in Figs. 31a and 31b. Also, Figs. 31c and 31d represent
the discretization of the beam using quadrilateral elements. Notably, a finely refined mesh
is employed in the proximity of the crack region. Simultaneously, a displacement of ũ is
applied in the negative y direction at the center of the beam (see Fig. 31a). The parameters
relevant to the current study are detailed in Table 1. Two cases are examined: one involving
symmetric loading with a crack positioned precisely at the center of the beam, and another
with an asymmetric crack offset by 0.2 units from the center line. The former corresponds to
a pure mode–I loading, while the latter, with an eccentric crack, represents a mixed–mode
loading.

(a) (b)

(c) (d)

Fig. 31: Initial setup of three point bending beam with boundary conditions of (a) symmetric and (b)
asymmetric crack and their respective (c), (d) geometric discretizations.

(a) (b)

Fig. 32: Distribution of stress σ22 in a three point bending beam under (a) symmetric and (b) asymmetric
crack.

The extent of the mode-II fracture contribution can be adjusted by varying the crack
offset distance. The resulting crack propagation and stress distribution are shown in Fig. 32.
It is noteworthy that, owing to our assumed layer model, the crack path remains confined
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to the layer even in the case of an eccentric crack without any deflection due to mode-II
influence. Section 2.1 discusses the main assumption behind the governing equations of the
layer model. The crack field in this model (see Eq. (8)) has only one non–zero component
in the crack’s normal direction, restricting movement to a single layer and predicting lin-
ear trajectories. To capture crack motion beyond this layer for 2D/3D crack branching,
the full governing equations with all crack field components, as shown in Eq. (1), must be
addressed. The finite element approach demonstrated in Section 3.1 requires modification
to accommodate these crack field components effectively. Furthermore, enhancing the cur-
rent approach involves avoiding the finite difference approach for solving the layer equation.
Instead, employing a finite element approach to solve both the crack field and linear momen-
tum equations, with crack field components as finite element degrees of freedom [68]), can
enhance numerical efficiency. The stress–strain curves for both symmetric and asymmetric
cracks are shown in Fig. 33. It can be observed that the peak stress is higher in the case of
an asymmetric crack when compared to a symmetric crack. It is worth noting that a similar
type of behavior is observed in [69].

Fig. 33: Stress–strain response for a three point bending test with (a) symmetric and (b) asymmetric cracks.

4.4. Discussion on crack irreversibility
In the present section, the influence of crack energy density functions (see Fig. 2) on the

healing characteristics of crack in FCM model is discussed. It is shown in Section 4.1 that in
the absence of external loading, i.e., G = 0, the crack energy density function η1 admits an
equilibrated position for small values of ϱ maintaining sharp crack fronts. Essentially, the
parameter ϱ does not indicate whether a crack heals, but only signifies the regularization
of the crack tip thickness. Thus, by eliminating the effects of ϱ by assuming a value of 0.1,
for η2 (Griffith type crack energy density energy function) a similar analysis on the possible
equilibrated condition is carried out, and the observations are as follows.

• Fig. 34a shows the annihilation process of crack at several time instances for the
absence of external loading. Furthermore, It is evident that regardless of the ϱ value,
no equilibrium position can be attained for the crack energy density energy function
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η2. The non–zero surface beyond w2 (see Fig. 2) for η2 helps smear out the crack
completely and enforces the irreversibility constraint separately.

• However, Fig. 34b suggests that with the enforcement of crack irreversibility condition
as shown in Eq. (19), the crack indeed finds a stable position. No signs of crack healing
are observed with the enforcement of irreversibility condition.

(a) (b)

Fig. 34: Crack healing observed in η2 crack energy density function (a) without enforcing irreversibility
constraint, (b) with irrversibility constraint.

• As emphasized in Section 1, the novel feature of FCM model is the inbuilt irreversibil-
ity, i.e., no need to satisfy the irreversibility constraint separately. Fig. 35 demon-
strates this fact where the crack finds an equilibrated position with or without the
enforcement of irreversibility condition.
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Fig. 35: Equilibrated positions of crack for η1 crack energy density energy function with irreversibility
condition on and off.

4.5. Crack propagation in ductile materials
In structural materials, ductile fracture primarily arises from the processes of void nu-

cleation, growth, and coalescence. As mentioned in [70], void nucleation stems from the
decohesion of multiphase particles, and these voids subsequently enlarge due to the plastic
deformation of the matrix. Furthermore, the coalescence of voids occurs due to the localized
shearing or necking between the adjacent voids [71, 72].

Recently, various models addressing the extension of phase field brittle fracture to duc-
tile fracture in small deformation [39, 40, 73] and finite deformation regimes [74] have been
proposed. Typically, in phase-field approach, the free energy function is supplied with an
additional energy term for plasticity, along with elastic strain energy density and surface
energy terms. Certain models, like those suggested by [39, 73], do not modify the plastic en-
ergy term based on the phase field. Conversely, in the models presented by [38, 74], a plastic
degradation function influences the plastic energy function. As a result, the effectiveness of
these models is significantly influenced by the coupling between phase-field and plasticity.
In contrast, the current implementation does not involve any modifications to the degrada-
tion function or crack energy density functions. Instead, it employs a straightforward yet
effective approach to ductile fracture.

Typically, ductile materials show hardening followed by linear elastic behavior and grad-
ual softening, eventually leading to failure. A rate–dependent Drucker–Prager (DP) plas-
ticity model is chosen for the present study, as detailed in Section 3.2. Various parameters
involved in the plasticity model are given in Table 2. The parameters α and αψ, which
include the effect of pressure, are considered to be zero. Effectively, the DP plasticity re-
duces the conventional J2 plasticity. To mimic the rate–independent behavior, the rate
sensitivity parameter m = 0.02 is chosen to be very small. The drag parameter Bm = 0.01
is maintained the same as in the case of brittle fracture.
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Table 2: Material parameters for ductile fracture.

Bm m α αψ
0.01 0.02 0.0 0.0

To simulate the effect of plasticity in crack propagation, an identical setup for brittle
fracture, as shown in Section 4.2.1, subjected to mode-I loading is chosen. Additionally,
linear isotropic hardening (see Eq. (43)) with parameters hardening constant H = 0.2 and
the non–dimensional yield value σyo = 0.002 are considered.

(a) (b)

Fig. 36: Crack propagation (a) and associated stress–strain curve (b) representing different phases of prop-
agation when subjected to mode-I tensile loading for the case of ductile fracture with hardening.

The crack propagation and the associated ductile stress–strain curve is shown in Fig. 36.
It can be observed that similar to brittle fracture, the crack propagation during ductile
failure also passes through different phases before failure. The observations are as follows

1. Initially, from 0 – 1 represents the linear phase where no crack propagation occurs.

2. The linear regime is followed by a hardening zone from 1 – 2 where the specimen
strengthens with hardening. No crack motion is visible in this phase also. When the
applied strain reaches the instant 2 , the energy supplied exceeds the magnitude of
surface. It results in a net driving force on the crack.

3. Beyond 2 , the motion of the crack is accompanied by the hardening until the strain
reaches 0.07. Later, a gradual softening happens from 3 – 4 and finally, the specimen
fails at instant 4 .

4. The displacement fields u2 at different snapshots of crack motion are shown in Fig. 37.
The components of stress and plastic strain fields in the y direction are shown in
Figs. 38a and 38b respectively. It is evident that the plastic strain fields are forceful
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near the crack tips and slowly spread to the neighboring regions as the crack propa-
gates.

Fig. 37: Displacement fields in the y-direction, u2 under mode-I loading for ductile fracture. The displace-
ment fields are related to the crack propagation at snapshots 2 , 3 and 4 respectively.

(a)

(b)

Fig. 38: Distribution of stress σ22 (a) and plastic strain field ε22 (b) in the y-direction, under mode-I loading
for ductile fracture.The displacement fields are related to the crack propagation at snapshots 2 , 3 and 4
respectively.
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4.6. Sensitivity analysis
In the present section, the impact of different parameters such as yield strength σyo,

friction angle β, and hardening constant H, is presented. A square domain, featuring a pre-
existing central crack (see Fig. 1), is subjected to mode-I loading. As discussed in Section 4.1,
the crack is equilibrated before the loading is applied. Fig. 39 illustrates the stress–strain
response to varying values of the parameters σyo (ranging from 0.001 to 0.003), β (ranging
from 0 to 30◦), and H (ranging from 0.1 to 0.3), while the remaining parameters are held
constant. The corresponding crack motion at a fixed applied strain (ε22 = 0.08 for σyo &
H, and ε22 = 0.125 for β = 0.125) is presented in Fig. 40. Elevated values of yield stress
and hardening constants impart the crack with greater energy, resulting in swifter motion.
This also leads to a more rapid softening response in the stress-strain curve. The behavior
is also evident in Figs. 39a and 39b where the blue curves, representing higher yield stress
(σyo = 0.003) and hardening constant (H = 0.3) exhibit a quick softening stress–strain
response. The corresponding crack motion is shown in Figs. 40a and 40b. On the contrary,
as the friction angle increases, there is a rise in the magnitude of plastic strains, leading to
a slower response in crack motion. This trend is evident in Fig. 39c, where the black curve
(with a lower friction angle of β = 0◦) experiences rapid softening in comparison to the
blue curve (β = 30◦), which corresponds to the highest friction angle. The corresponding
variation in crack movement under a constant applied strain of ε22 = 0.125 with different
friction angles is shown in Fig. 40c.

41



(a) (b)

(c)

Fig. 39: Influence of (a) yield stress, (b) hardening constant, and (c) friction angle on stress–strain curve.
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(a) (b)

(c)

Fig. 40: Schematic showing the crack propagation under the influence of (a) yield stress (at ε22 = 0.08), (b)
hardening constant (at ε22 = 0.08) and (c) friction angle (@ ε22 = 0.125).

Overall, in this work, a crack evolution equation is solved using the upwinding finite
difference technique and the balance of linear momentum with a finite element framework.
Several benchmark tests are illustrated, including mode-I/II loading on central and edge
cracks, assessments of crack coalescence, and investigations of crack propagation under com-
pressive loading for brittle fracture. Additionally, mode-I loading for ductile fracture is also
demonstrated. It is established that the current implementation of FCM can reproduce the
essential features of classical fracture mechanics. These preliminary investigations on the
FCM model restricted to a single fault layer give us a fundamental insight into the model’s
basic capabilities. It is worth emphasizing that in Section 2.1, the primary assumption
underlying the development of governing equations for the layer model is discussed. The
vectorial crack field in the layer model (see Eq. (8)) exhibits only one non-zero component
in the normal direction of the crack. Consequently, this constrains the crack’s movement
to a single layer, resulting in the limitation of the current implementation to predicting lin-
ear trajectories. However, it is important to note that this represents a simplified scenario
compared to the complex governing equations outlined in Eq. (1), which are designed to
capture full 3D and non-linear crack trajectories. Although the current implementation has
limitations, such as crack propagation is restricted to a single fault layer, it is shown in the
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present study that many paradigmatic problems related to classical fracture mechanics can
be solved with reasonable accuracy. Nevertheless, implementing a full field crack evolution
law in 3D without any restrictions to a layer is of immediate importance. While the current
implementation of ductile fracture exhibits fundamental features of metal plasticity, it is im-
portant to note the existence of a comprehensive FCM framework that considers the effects
of porosity evolution on degrading moduli, as described in [4]. We look forward to future
studies exploring this aspect in greater detail. Additionally, the exploration of dynamic
crack propagation within the current numerical framework is left for future studies.

5. Conclusions

Numerical implementation of a novel rate–dependent field crack mechanics based model
for fracture is demonstrated. Proposed by Acharya [2] for brittle fracture, and implemented
for 3–D by Morin and Acharya [3], the present work extends it to ductile fracture as well.
A few important results are summarized in the following.

1. The model captures different phases of crack propagation, such as stable and unstable
crack propagation for various loading conditions. The model predicts the threshold
stress for the crack motion, which is similar to the Peierls stress associated with dis-
location motion.

2. A special feature of the FCM model is the regularization of the crack tip by Laplacian
term. A detailed study about the effect of the parameter ϱ = κ/a (ratio of crack–tip
energy density and the magnitude of crack energy density) that regulates the crack
tip is also discussed.

3. The present variant of the FCM model is inherently rate–dependent, and the param-
eter Bm controls the drag related to the crack motion. The sensitivity of the crack
propagation under the influence of Bm is also discussed. It is shown that as Bm → 0,
the rate–independent limit is achieved.

4. Another remarkable characteristic of the FCM model is that the crack irreversibility is
a built–in phenomenon. In this context, it is shown that the model can utilize a variety
of crack energy density functions, and if it is zero surface energy, no extra irreversibility
constraint is required. In contrast, if the surface energy function contains a finite value
behind the crack tip (like Griffith’s case), then only irreversibility must be satisfied.

5. Extension of brittle fracture to ductile is a straightforward process, and a rate–
dependent, pressure–sensitive, Drucker–Prager plasticity is coupled with the current
implementation. It is shown that the developed model can predict the ductile fracture
when subjected to mode-I loading. The retardation of the crack propagation due to
plastic strains is also shown.
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Appendix A.

For completeness the derivation of the dissipation shown in Eq. (5) is provided here. As
mentioned in Section 1, the free energy density function is given as

ψ(εe, c, curl(c)) = ψE(ε
e, c) + φ(c, curl(c)). (A.1)

By considering the power contribution from external and internal sources, the dissipation
inequality is written as,

D =

∫
∂V

tf.u̇ da+
∫
V

b.u̇ dv − d

dt

∫
V

ψ dv − d

dt

∫
V

1

2
ρo|u̇|2 dv, (A.2)
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where tf, b are the traction and body forces respectively. u̇ is the velocity field and ρo is the
mass density. The first term in Eq. (A.2) can be modified as∫

∂V

tf.u̇ da =

∫
∂V

T~n.u̇ da =

∫
V

(
u̇.divT + T : grad(V)

)
dv. (A.3)

Substituting Eq. (A.3) in Eq. (A.2) and rearranging the terms

D =

∫
V

(divT + b− ρoü).u̇ dv +
∫
V

T : grad(V) dv − d

dt

∫
V

ψ dv. (A.4)

From the balance of linear momentum the first term in Eq. (A.4) becomes zero. Hence, the
dissipation can be represented as

D =

∫
V

T : grad(V) dv − d

dt

∫
V

ψ dv. (A.5)

Upon substituting the free energy density function Eq. (A.1) in Eq. (A.5) the dissipation
can be written as

D =

∫
V

T : grad(V) dv − d

dt

∫
V

ψ(εe, c, curl(c)) dv. (A.6)

By taking the time derivative inside the integral, Eq. (A.6) can be written as

D =

∫
V

T : grad(V) dv −
∫
V

(
∂ψ

∂εe
ε̇e ++

∂ψ

∂c ċ + ∂ψ

∂t ṫ
)
dv. (A.7)

With elastic strain εe = ε− εp, in Eq. (A.7)

D =

∫
V

T : grad(V) dv −
∫
V

(
∂ψ

∂εe
(ε̇− ε̇p) +

∂ψ

∂c ċ + ∂ψ

∂t ṫ
)
dv. (A.8)

Utilizing Eq. (1) and rearranging the terms

D =

∫
V

(T− ∂ψ

∂εe
) : grad(V) dv +

∫
V

∂ψ

∂εe
ε̇p dv −

∫
V

∂ψ

∂c .(t×V) dv−∫
V

∂ψ

∂t .(−curl(ċ)) dv.
(A.9)

The third term in Eq. (A.9) can be written as∫
V

∂ψ

∂c .(t×V) dv =

∫
V

(∂cψ × t).V. (A.10)

Similarly, the fourth term in Eq. (A.9) can be modified as
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∫
V

∂ψ

∂t .(curl(ċ)) =
∫
V

ċ.(∇× ∂tψ) dv −
∫
∂v

(∂tψ × ċ) da

=

∫
V

(t×V).(curl(∂tψ)) dv −
∫
∂v

(∂tψ × (t×V)) da

=

∫
V

(curl(∂tψ)× t).V dv +

∫
∂v

V.[(∂tψ × n)× t] da.

(A.11)

Finally, substituting Eq. (A.10) and Eq. (A.11) in Eq. (A.9) the dissipation can be written
as,

D =

∫
V

(T− ∂εeψ) : grad(V) dv+∫
V

T : ε̇p dv +

∫
V

{
[−∂cψ + curl(∂tψ)]× t

}
.V dv +

∫
∂v

V.[(∂tψ × n)× t] da. (A.12)
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