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Figure 1. lllustration of a bilayered plate

As illustrated in the Fig. 1, a bilayered plate consists of lower layer and upper layer labeled by
subscripts 1 and 2 respectively. & and &, are equi-biaxial residual strains (e.g., due to lattice
mismatch or thermal expansion mismatch). The location of the neutral plane is denoted by z = a,
to be determined.

Under a combined in-plane deformation and bending, the in-plane strain components are
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where &y &y and &y are the strains at the neutral plane (z = a) and related to the displacements

as
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In the linear analysis, the nonlinear terms are ignored. As a result, the strain components at the

neutral plane are independent of bending deflection w. In other words, the strain due to bending

is zero at the neutral plane.

By Hooke’s law the in-plane stresses are:
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The in-plane membrane forces are,
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The location of the neutral plane should be determined such that the resultant membrane

forces ( N,,N,N, ) vanish under an arbitrary pure-bending deformation (i.e,

= &, = &, =0). This condition leads to three equations:
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In general, however, a single-valued location z = a cannot satisfy all the three equations and thus
an ideal neutral plane does not exist. Two special cases are noted here. First, under a cylindrical

bending of the bilayered plate (e.g., w, =w, =0), only Eq. (11) needs to be satisfied for the

neutral plane, and thus the location of the neutral plane is determined:
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where E = E/(1—v?) is the plane strain modulus for each layer. For a narrow beam, the location
of the neutral plane is determined by replacing the plane strain modulus with Young’s modulus
in Eq. (14). Second, under a general two-dimensional bending, Egs. (11-13) collapse into one

when the Poisson’s ratios for the two layers are identical (i.e., v, =v,). In this case, the location



of the neutral plane is uniquely determined by Eq. (14), irrespective to plane-strain or plane-
stress modulus.

For the case with identical Poisson’s ration, the bending moments are:

M, = —Johax(z —a)dz = —fl—gl(i - ahlj —i(u — ahZ]

-\ 2 1-v, 2
S ICREO AN (L0 )
% 3 1-v; 3
+W V1E1 [(hl—a)3+a3J VzEz ((h_a)s_(hl_a)Sj
Y 1-v} 3 1-v2 3
oS- Ea( )
s ((rll—afwﬂ+ 3 ((rm—af—(hl—a)j
P17 3 1-v} 3 |
+Wxx_ V1E12((h1_a)3+a3]+ VzEzz[(h_a) _(hl_a)aj
1=y 3 1-v; 3




