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ments using micro-mechanical and continuum theories, and Atomic Force Microscopy. Following
our micro-mechanical elasticity model for micellar filaments [Asgari, Eur. Phys. J. E 2015, 38(9)],

the elastic bending energy of hemispherical end caps is found. The continuum description of the
elastic bending energy of a cylindrical micellar filament is also derived using constrained Cosserat
rod theory. While the continuum approach provides macroscopic description of the strain energy
of the micellar filament, the micro-mechanical approach has a microscopic view of the filament,
and provides expressions for kinetic variables based on a selected interaction potential between
the molecules comprising the filament. Our model predicts the dependence of the elastic modulus
of the micellar filaments on their diameter, which agrees with previous experimental observations.
Atomic force microscopy is applied to estimate the elastic modulus of the filaments using force
volume analysis. The obtained values of elastic modulus yield the persistence length of micellar
filaments on the same order of the previously reported values. Consistent with previous studies,
our results indicate that semi-flexible linear micelles have a relatively large local strain energy at
their end points, which explains their tendency to fuse to minimize the number of end caps at
relatively low total surfactant volume fractions. Also, the elastic modulus of micellar filaments was
found to increase when the indentation frequency increases, a finding which agrees with previous
rheological observations on the bulk shear modulus of micellar solutions.

1 Introduction

Surfactants are amphiphiles composed of two parts: a long hy-
drophobic tail, and a hydrophilic head group with a high affin-
ity with water. In aqueous solutions of different concentrations,
these amphiphiles self-assemble reversibly into a variety of spa-
tially organized structures such as spherical micelles, cylindrical
micellar filaments, disk micelles, toroidal micelles, hexagonal lig-
uid crystals, lamellar liquid crystals, and vesicles, in all of which
the hydrophobic tails tend to avoid contact with water. 112 A
spherical micelle may grow into short cylindrical micellar fila-
ments. %13 The ends of a cylindrical micellar filament are as-
sumed to be capped by identical hemispheres.!* Adding more
amphiphiles to the solution at certain temperatures may cause
the formation of long, branched or unbranched, cylindrical mi-
cellar filaments often called wormlike micelles.1>-1® According

to Oelschlaeger et al. 1! and Cates and Candau,? if the sufficient
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energy for creating two hemispherical end caps from a very long
micellar filament is relatively large and the solution is sufficiently
dilute, short micellar filaments might merge to reduce the num-
ber of end caps.

Cylindrical micellar filaments are often modeled as sphero-
cylinders, comprised of a relatively long cylindrical body, capped
by two hemispheres at their ends whose radii are assumed to be
equal to that of the cylindrical middle part.1%:2% Such micelles are
mostly characterized by their persistence length, which can be ob-
tained from bending free energy. 21-24 Thus, the concept of elastic
free-energy plays an important role in studying these nanostruc-
tures.

It is widely accepted that bending elasticity of self-assembled
aggregates plays a crucial role in describing their mechanical be-
haviour and equilibrium configurations. May et al. 1° considered
the extent to which the bending elasticity of cylindrical micel-
lar filaments influences their tendency to join and form branched
structures. In their work, the free-energy density of a cylindri-
cal micelle is comprised of the chain conformational energy, the
end cap contribution, and the hydrocarbon-water interfacial en-
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ergy. Their findings indicate that the energy change associated
with the formation of a junction between one micellar end cap
and the cylindrical body of another micelle is small relative to the
elastic bending energy of an end cap. 16

A useful tool to quantitatively describe the bending properties
of self-assembled aggregates has been the Canham-Helfrich elas-
tic bending energy density—the elastic bending energy per unit
area at a point on the surface of an aggregate—that was originally
developed for a lipid vesicle, and can be expressed mathemati-
cally as ¥, + k.(H — H,)? + k.K, where ¥, denotes the interfacial
stretching density known as the surface tension, H and K rep-
resent the mean and Gaussian curvatures of the surface, k. and
k. are the splay and saddle-splay moduli, and H, is mean curva-
ture of the natural, local shape of the lipid bilayer.2>-28 Whereas
% shows the local stretching energy of the surface, the remain-
ing two terms represent the bending free-energy of the interface
at a constant area in the absence of stretching. The total elastic
free energy of the aggregate is thus obtained by integrating the
Canham-Helfrich elastic bending energy density over the surface
area of the aggregate.

Micellar chains are treated as mesopolymers since they are sub-
ject to breaking and re-shaping.3? They may also become en-
tangled or form branched structures.3! Similar to polymers, the
persistence length (/,) of a micellar chain is related to its bend-
ing rigidity k. through (I,) = k./2kgT, where kg =1.38x10~23
kgm2/ (s2K) is Boltzmann’s constant and T denotes the absolute
temperature. 3234 This characteristic length scale determines the
energy cost of linear bending deformations in polymer chains and
similar bio-filaments. The flexural rigidity k. in the Canham-
Helfrich elastic bending energy density carries the dimension of
energy. According to the definition of persistence length of a poly-
mer chain, the application of that term for cylindrical micellar fil-
aments leaves a dimensionless value for persistence length. Con-
sidering this difficulty posed by the application of k. in the def-
inition of persistence length, and further, considering the large
difference between the length and the cross-sectional dimensions
of these nanostructures, an alternative approach might be to con-
sider the energy density of an elastic rod, in which the bending
rigidity carries the dimension of energy times length. 213

Some prior investigations of micellar self-assembly have fo-
cused on using Canham-Helfrich elastic bending energy density
for cylindrical micellar filaments.3® However, on the basis of the
mentioned similarity between micellar filaments and mesopoly-
mers, existing expressions for the elastic bending energy density
of a polymer chain provide some insight regarding the structure of
the elastic bending energy density of a cylindrical micellar chain.
Liu et al.37 proposed an elastic bending energy density for a semi-
flexible polymer chain with both bending and torsional elasticity
of the form k; k2 +ky (T — 7o )2, where ki, k», and 1, are respectively
the flexural rigidity, torsional rigidity, and intrinsic torsion of the
chain. Following the work of Kratky and Porod, 38 who took the
configurational energy of a polymer chain to be a function of both
the curvature and torsion of the chain, Bugl and Fujita3? modeled
a polymer chain as a continuous elastic homogeneous thin wire,
using a slight extension, k;(k — k.)> + k(T — 7,)? that accounts
for the potential importance of intrinsic curvature x,. More gen-
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erally, Helfrich4? derived an elastic bending energy density for
a polymer chain that includes chiral effects, and is of the form
k12 +ky 2T+ k3 k* — kg (k"2 + k272), in which a prime denotes the
derivative with respect to the arc-length, k; is the flexural rigidity,
and ky, k3, and k4 are other material parameters. Helfrich’s en-
ergy density incorporates coupling between the curvature and the
torsion of the curve representing the polymer chain. Helfrich’s4°
derivation was purely geometrical and did not take into account
the physics of the interactions between the building blocks of the
polymer chain.

Recently, we derived an elastic bending energy density function
for cylindrical micellar filaments based on the interactions be-
tween their constituent molecules.?! In so doing, we treated the
molecules comprising the micellar filament as one-dimensional
rigid rods. The resulting function was found to contain a ho-
mogeneous contribution, as well as quadratic terms in curva-
ture and torsion of the centreline of the micellar filament, as
Yo +ke k2 +k;72. Here, we first review a synopsis of the calculation
of the elastic bending energy density on the micellar body. We
then apply the same methodology to obtain the elastic bending
energy corresponding a hemispherical end cap in open cylindrical
micellar filaments. Next, the continuum description of a cylindri-
cal micellar filament is explored using constrained Cosserat rod
theory. 44* We then apply Atomic force microscopy (AFM) to es-
timate the elastic modulus of the micellar filaments both on the
micellar body and at the end caps.

The remainder of this article is planned as follows. Section 2
includes the details of the micro-mechanical model; in particular,
the underlying assumptions are presented in 2.1, the necessary
geometrical quantities, notation, and concepts are briefly pre-
sented in 2.2, and the synopsis of the calculation of the elastic
bending energy density of the cylindrical body, and the detailed
calculation of the end cap elastic bending energy are provided
in 2.4 and 2.5. In Section 3, we use the constrained Cosserat
rod model to find the continuum description of the elastic bend-
ing energy of a cylindrical micellar filament. The differences be-
tween the micro-mechanical and continuum models are discussed
in Section 4. Details of the experiments such as sample prepa-
rations, AFM imaging, and force spectroscopy are presented in
Section 5. The findings and implications of the study, and and
propose directions for further research are discussed in Section 6.
The conclusions appear in Section 7. A detailed account of the
calculations of the elastic bending energy of the end caps is con-
tained in the Appendix 9.1.

2 Micro-mechanical model

Our micro-mechanical model stems from the probabilistic and mi-
croscopic concepts of statistical mechanics. This approach en-
ables us to extend the laws of thermodynamics to cases such as
microscopic systems, which are not considered in classical ther-
modynamics. It further provides expressions for kinetic variables
based on a selected interaction potential in combination with
the ensemble properties. Here we apply this perspective to find
the elastic bending energy of a cylindrical micellar filament, in
terms of an arbitrary interaction potential between its constituent
molecules. To do so, a set of meaningful simplifying assumptions

This journal is © The Royal Society of Chemistry [year]
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are essential.

2.1 Simplifying assumptions

As previously, we assume the amphiphiles forming the micellar
filament to be physiochemically identical.?! Each amphiphile is
considered as a one-dimensional rigid rod with the length &.21:47
Further, according to the observation that the hydrophobic tails
of the molecules are oriented along the normal of the cylindrical
interface, 148 the amphiphiles at any interior point of the cen-
treline € are assumed to be perpendicular to ¥ with a uniform
angular distribution (see Figure 1). Hence, it is concluded that
the spherical head-groups of amphiphiles lie on a cylindrical sur-
face with a constant circular cross-section. In line with the new
assumptions below, we model a cylindrical micellar chain as a
cylindrical domain of a constant cross-sectional radius &, capped
by two hemispheres of radius £ at its ends. The centreline of such
a domain is denoted by the curve & of length L.

(1) - Amphiphiles forming the end caps are distributed uni-
formly in the radial direction;

(i) - End caps have the same number of amphiphiles;

(iii) - The length of a cylindrical micellar chain is larger than its
radius (i.e., L>> &). Thus, when the end caps are molded
into their final shape, they are assumed to have the same
radius as the cylindrical body. 42 Further, the maximum cur-
vature that the micelle may exhibit at each point is denoted
by 1/¢. The curve ¥ is further assumed to be free of self-
contact;

(iv) - The micelle is assumed to be symmetric with respect to
rotation around its centreline ¥, and also with respect to
reflection through the plane perpendicular to € between
the two end caps.

Items (i) and (ii) are simplifying assumptions for the arrangement
of the molecules at the end caps. Assumption (iii) allows the
filament to be identified with its centreline ¥. It further ensures
that the cylindrical body of the filament does not contact itself.

2.2 Geometry and Kinematics

In this section, the geometry of the micro-mechanical model for
an open cylindrical micellar filament is introduced. Such a micelle

/d(s,e)
€

™ s

dL(9a¢)

1

Fig. 1 Schematic of the centreline ¥ of an open cylindrical micellar
filament, and arbitrary molecules located on end caps and on the
interior of €. On the basis of our previous modeling assumptions, 2! the
configuration of each amphiphile in the filament can be described by a
point on ¥ and a unit vector (i.e., a director), with the point representing
the end of the rod and the director representing its orientation. Without
loss of generality, the director tips are assumed to point toward the
headgroups of the amphiphiles.

This journal is © The Royal Society of Chemistry [year]
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Fig. 2 An arbitrary molecule located on the end cap at x(L) = x;,
expressed as a linear combination of unit tangent t, unit normal n, and
unit binormal b at the end point. The length of the molecule is denoted
by &, and its orientation is represented by d.(6,¢).

possesses a cylindrical body capped by two hemispheres at its two
ends. Hereafter, we consider a space curve & : s — x(s) represent-
ing the centreline of a cylindrical (or linear) micelle in Euclidean
space R, parametrized by arc-length s, with 0 < s < L, where L is
the total length of the centreline. Then, on using a superposed dot
to denote differentiation with respect to arc-length s, the curva-
ture k and (the geometric) torsion 7 of € are given by x = |§(s)|
and 7= g(s) - (X(s) x (5))/|Z(s)|>. In general, the curve ¥ is de-
termined, up to a rigid translation, by these two locally invariant
quantities. The unit tangent t, unit normal n, and unit binormal
b of the Frenet frame {t,n,b} of ¥ are given in terms of ¥(s)
by t(s) = Z(s), n(s) = £(s)/|Z(5)], and b(s) = (% (s) x £(5))/|Z(S)]-
At a point with nonzero curvature, these three unit vectors are
related through the coupled system of equations

t=xn, n=-«xt+tb, & b=—1n, €))

called the Frenet-Serret equations.? If the curvature x and the
torsion 7 of € are known for 0 <s < L, the Frenet frame {t,n,b}
can be obtained as the unique solution of the Frenet—Serret equa-
tions (1). In other words, the orthogonal triad {t,n,b} on ¥
evolves in space according to the Frenet-Serret equations (1).

Let s belong to the open interval (0,L), so that ¥(s) is interior
to %, and let 6 denote the angle measured counterclockwise from
n(s). Consider a molecule with tail at ¥(s). The head groups of
the molecules at () lie on the boundary of a disk (of radius £) in
the plane spanned by n(s) and b(s). Relative to the Frenet frame,
the director of a molecule with orientation 6 at x(s) can therefore
be expressed as d(s,8) = (cos 8)n(s) + (sin6)b(s) (Figure 1). By
Assumption i, the molecules at the endpoints ¥(0) and ¥ (L) of
¢ are arranged radially on hemispheres of radius £. Consider
the endpoint ¥(L). Let ¢ denote the angle measured clockwise
from t(L). Relative to the Frenet frame, the director dz.(6,¢) of a
molecule with orientation (6, ¢) at ¥ (L) can thus be expressed as

d.(6,0) =ty (L) + 4 b(L) + 1 (L), 2)
with 1} = (sing)(cos8), 1f = (sin¢)(sin®), and t* = cos¢ (Fig-

ure 2). Similarly, the director d,(6,¢) of a molecule with orienta-
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80 100

o =R/

Fig. 3 Graph of the molecular packing parameter v/a.& against the ratio
@ = R/& based on our model. As observed in the plot, when @
increases, the packing parameter ¥ = v/a,& approaches the value of
CMC=1/2 for long cylindrical micellar filaments.

tion (6, ¢) at ¥(0) can be expressed as

do(6,¢) = 1,n(0) + 1, b(0) +1,(0), (3)

with ¢ =}, 1y =1}, and ¢y = —i}. It should be noted that ¢ in

(3) is measured clockwise from —t(0).

2.3 Molecular distribution and packing

The distribution of the molecules at a generic point s in the open
interval (0,L) along ¢ is denoted by the molecular density func-
tion 2 = 2(s,0). It follows from our previous assumptions that
the integral N, = [i-f3™ P(s) d8 ds=2x [ 9(s) ds, represents the
total number N, of amphiphiles comprising the cylindrical body of
the micellar filament. According to item ii in section 2.1, end caps
are assumed to have the same number of molecules. Let Z,(9, ¢)
denote the molecular number density of the end caps at the end-
points s = 0 and s = L. The number N, of amphiphiles in either of
the end caps is thus given by N, = Oﬂ/z 027: Z.(0,0) d6de.

The volume V; of a filament is the sum of the volume V,,; of the
cylindrical body and that of the end caps, as V; = Veyl +2Veap. On
denoting the hydrocarbon core volume of an amphiphile by v, N,
and N, are obtained as N = Viy1 /v = n&2L/v, and 2N, = Veap /v =
4m&3 /3v. According to Israelachvili et al.,? the molecular packing
parameter ¥ of an amphiphile is defined as the ratio v/a & of the
liquid hydrocarbon core volume v to its surface area a; multiplied
by the hydrocarbon length &, and can be derived for simple mi-
cellar topologies from geometric arguments. For an amphiphilic
system with the local radii of curvature R; and R,, the packing
parameter v/as€ is obtained as 2

282 —3¢E(Ry +R2).

9=1
T 6R|R,

4)

For an open cylindrical micellar filament of length L with two
end caps and no junctions, two conditions must be satisfied in
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order for N = N, + 2N, amphiphiles to form such a geometry:
Nag=4nE? 4 27&L, and Nv = nE?L+-4r&3 /3. Solving these equa-
tions for the ratio v/a;&, while defining F := £/L < 1 for long
cylindrical micellar filaments, yields

3+4F) 1

ﬂzphglo(ﬁﬂzf —7 )

According to the derivation of the micro-mechanical model for
a filament of diameter 2,2 Ry in (4) is equal to & and thus,
the packing parameter ¥ in (4) becomes (3R—&)/6R, where
R = 1/x denotes the radius of curvature of the centreline of the
filament. Thus, the molecular packing parameter ¥ for long
cylindrical micellar filaments for which & < R, is obtained as
v/asé = limg_e (22=1) = 1/2, with @ := R/E. The plot of the
packing parameter ¢ versus the ratio @ = R/& has been shown in
Figure 3. Similar to the previous studies, when @ increases, the
packing parameter ¢ approaches the value of 1/2 for long cylin-
drical micellar filaments. The value of © for spherical micelles
without void is 1/3. For a short cylindrical micellar filament, ¢ is
between 1/3 and 1/2.

2.4 Review of the derivation of the elastic bending energy
density

The elastic bending energy of a cylindrical micellar filament in-
cludes two main parts: the elastic bending energy of the cylin-
drical body, and that of the end caps. Branched micelles include
more than two end caps along with Y-junctions that contribute to
the net elastic energy of the micelle. 1550 To find the elastic bend-
ing energy density of the cylindrical body at a point g, the inter-
actions between all amphiphiles within a cutoff distance § from
the ones at ¥ are taken into account (Figure 4). Amphiphiles
are modelled as one-dimensional rigid rods, perpendicular to the
centreline ¥ of the filament (Figure 1). Our derivation relies on
applying the Taylor series expansion with respect to a dimension-
less parameter € := 8 /¢ <« 1, where ¢ represents the smallest ra-
dius of curvature that the centreline ¥ is capable of exhibiting.
The elastic energy of an open filament results from integrating
this density over the centreline ¥ and adding the elastic energy
due to end caps.

Consider two molecules, with directors d and d’, located re-
spectively at positions ¥ and ¥’ interior to ¥. Let the the inter-
molecular potential (encompassing steric, electrostatic, Van der
Waals, and other relevant effects) between the molecules un-
der consideration be denoted by Q(x,%’.d’,d’). Following Keller
and Merchant,®! we assume that the intermolecular potential
Q(x.x’.d,d") between two molecules separated by a distance

Fig. 4 Position x(z,) and its vicinity, in which the interactions between
the molecules located at x(z,) and other molecules exist. The radius of
the vicinity is the cutoff distance 6.

This journal is © The Royal Society of Chemistry [year]
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|2 — x'| more than a fixed cutoff distance § vanishes. In the
present setting, & is required to be small relative to the minimum
radius of curvature ¢ introduced in assumption iii,?!**” so that
6 < L. Also, since the potential between a molecule at a given
point on the micellar body and other molecules does not exist for
the whole length of the micelle, the cutoff distance & is assumed
to be much smaller than the length L of the filament. Hereafter,
we restrict attention to intermolecular potentials that are of the
form Q(x,x’,d,d’), but are also frame indifferent.>? It then fol-
lows that Q(x,x’,d,d’) may depend on the positions x and %’ and
the directors d and d’ only through the length |x — x’| of the vec-
tor between j and x’, the dot products (3 — x’)-d and (3 — x')-d’
formed by the directors and that vector, and the dot product d - d’
formed by the directors. Like Keller and Merchant,>! we assume
that the dependence of the intermolecular potential on the length
of the relative position vector r = § — %’ is scaled by the ratio ¢.
Therefore, we define Q(e2|r|*,r-d,r-d’,d-d') =Q(x.x',d.d’)/2
as the new form of the interaction potential (for more details, see
Refs.2147). The particular choice of the arguments of the inter-
molecular potential in its new form is in accord with those of the
interaction potential between a pair of protein monomers forming
a lipid bilayer, in which the pairwise intermolecular potential is a
function of the relative position of the two protein particles and
the orientation of each of the particles.4”->3 As a consequence of
the foregoing discussion, the net free-energy y;, of the cylindrical
body of the micelle can be expressed as

L1 27
v, = / 7( g(s,e)de) P(s)ds, )
0o 2\Jo
where the integrand of the inner integral, &(s, 0), is
L2n
£(.0)= [ [T 2006.6.06 )70 dn @, @)

with 4 = e72(x(s) - 2(1)°, 5 = (x(s) — (1)) - d(s,6), H4 =
(x(s)—x(2))-d(¢,n), and 543 = d(s,0)-d(r,n). Eq. (7) represents
the total energy due to the interactions between the molecule
with director d(s,6) at x(s) and all other molecules. A factor of
one-half in (6) compensates for the double counting of interac-
tions arising from integrating over both s and ¢ from 0 to L. From
(6), the elastic bending energy density y/(s) at position x(s) on &
is simply

w(s) = % ( /0 "o (s, e)de) Ps). ®)

Upon Taylor expanding the right-hand side of (8) up to two
derivatives, the final form of the elastic bending energy density
of the filament is found to be

V/miC - l’/o + kC Kz + k[ Tz (9)

which is in terms of the curvature x and torsion 7 of the cen-
treline 4. The configuration of the filament in the absence of
stretch is uniquely determined, up to a rigid transformation, by
the curvature k and torsion 7 of its centreline %.%* Notice that
expression (9) is valid on the interior of € for § <s <L—4. In
other words, the domain of interaction for molecules within the
distance 6 from an end cap includes the molecules at that end cap.
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This is not consistent with our underlying arguments. However,
since é < L, it is reasonable to assume that (9) is valid within the
whole domain 0 < s < L.

The sum of the quadratic terms on the right-hand side of the
elastic bending energy density (9) resembles the corresponding
bending free-energy functions for polymer chains,383%°5 FtsZ
filaments,>® and helical supramolecules such as DNA.%859 The
term y, in the right-hand side of (9) represents a general inhomo-
geneous stretching energy density, which describes elongation. As
shown in Eq. A.10 in Ref.,2! this term depends upon the molecu-
lar distribution 2, as well as molecular dimensions. The bending
rigidity k. = ‘SZ—K‘Q/L:O in (9) quantifies the resistance of the micellar
body against deviations from a uniform curvature, and takes pos-
itive values for stable aggregates to exist. Thus, mono-disperse
objects with uniform rigid shapes are expected to possess large
bending stiffness k., while poly-disperse flexible structures that
are geometrically heterogeneous, are expected to have low val-
ues of this quantity. The torsional rigidity k; = %‘QIL:O denotes
the resistance of the micellar body against the torsion of ¥ at
each point. Both k. and k;, depend not only upon the size, com-
position, and distribution of amphiphiles along &, but also on the
temperature and the concentration of the solution. >”

2.5 Elastic bending energy of an end cap

According to our micro-mechanical model,?! the elastic bending
energy of an end cap in an open micellar filament is determined
by the interactions between the molecules located at the end cap
and the ones located within the portion of the cylindrical body of
the filament that lies within the cutoff distance 6. The schematic
of the end point x; of ¥ is shown in Figure 5. By assumptions i
and ii in section 2.1, each of the end caps is a hemisphere with
radius equal to the length of an amphiphile (Figure 2). Following
such assumptions, since the number of the molecules at the end
caps and their distribution are considered to be the same, the ge-
ometries of the two end caps are identical. Therefore, the elastic
bending energy of the two end caps is the same. In other words,
the only reason we can distinguish the end caps is because we
have oriented the filament. Thus, according to assumption iv,
if we flip the orientation, the elastic bending energy does not
change. Here, we derive an expression for the elastic bending
energy of the end cap at % .

The elastic bending energy ¥ of the end cap at x; is given by

Tremq
qf@:// ~£.(0,0)2.d0do, (10)
0Jo 2
where
L2 _ _ _ _ _
60.0)= [ [ 0(oA,5.08,8) 2@ anar. A

in which J4 = e 72|, — x(1)*, 56 = (X, — x(1))-d(L,6), 54 =
(%, —x(t))-d(t,n), and 5% =d(L,0)-d(t,n) with t = x, — x(t).
Upon replacing &,(0,¢) from (11) to (10), and Taylor expanding
the right-hand side of (10) up to two derivatives, the specific steps
of which appear in Appendix 9.1, the final form of the elastic
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Fig. 5 Schematic of a hemispherical end cap attached to the cylindrical
body, in which the caps have the same radius as the cylindrical body.
The position x, represents the centre of the hemisphere.

bending energy of the end cap at ¥; is obtained as
P = P R ETR (12)

where k. and 7. denote the curvature and torsion of ¥ at the
end point under consideration. The parameters ., k., and k
are given as integral representations in terms of the molecular
densities &, and &, and molecular dimensions in Appendix 9.1.
Similar to the structure of (9), (12) is quadratic in the curvature
and torsion at the endpoint under consideration.

A single open (unbranched) cylindrical micellar filament pos-
sesses two hemispherical end caps. The net elastic bending en-
ergy y® of such a filament with centreline ¥ is simply the sum
of the elastic bending energy of the tubular body, and twice
the elastic bending energy Ww*® corresponding to an end cap.
Hence, é; = [, wds+2 ™", which, by (6)-(9) and (12), yields

aﬁ:/{wds+2v70+l€?"(1<§+K£)+l€?"(r§+r£). (13)

In (13), the subscripts o and L are used to denote the values of
the curvature x and the torsion 7 of ¥ at endpoints ¥, and ¥;.
In dilute systems, surfactant exchange plays the most significant
role in micellar growth. However, coalescence of short micelles is
the primary cause of growth in highly concentrated micellar sys-
tems. In semi-dilute micellar systems, the end cap elastic bending
energy is reported to be relatively high.4142 As a consequence,
the elastic bending energy of a collection of cylindrical micellar
filaments at equilibrium is minimized by reducing the number of
end caps. Under certain conditions, this may be accompanied by
elongation of micellar filaments. 42

3 Continuum mechanical model

Continuum mechanics applies the principles of classical mechan-
ics to a body regarded as a continuous medium. Using field equa-
tions such as the balance of mass, the balances of linear and an-
gular momentum, and the balance of energy (i.e., the first law
of thermodynamics), a set of coupled differential equations are
obtained that govern the evolution of the body. The resulting the-
ory is applicable to an arbitrary body that undergoes an arbitrary
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deformation. Our aim here is to find the continuum description
of the elastic bending energy density of a cylindrical micellar fil-
ament. We assume that the length of the filament is much larger
than its characteristic cross-sectional dimensions. Hence, we may
employ the rod theory in our description of a micellar filament.

Cosserat medium (or directed continuum) denotes a mate-
rial that possesses an internal microstructure, which affects
its mechanical behaviour when considered as a continuous
medium. *3#%53 The Cosserat rod theory models the structure of
a rod as a general curve furnished with two additional directors
at each point. Such directors may denote the material lines in the
cross-section. The material lines can stretch. They can also shear
relative to each other as well as relative to the normal plane of the
curve. In the context of constrained Cosserat rod theory, such di-
rectors might be considered as two orthogonal unit vectors lying
within the cross-section, and perpendicular to the centreline.*3

Here we apply constrained Cosserat rod theory to find the
strain energy of a cylindrical micellar filament in the static state
in the absence of extension of its centreline.

3.1 Kinematics of a constrained Cosserat rod

In the context of rod theory, the centreline ¥ of a rod is indi-
cated by a curve in the three-dimensional Euclidean space R3. A
family of two-dimensional sets is also endowed to the centreline
%, to describe the material cross-section at each point. Hence, a
rod with finite cross-sectional dimensions may be regarded as the
mapping of the set (s,&1, £2) € R3 (with s €[0,L], & (E1,E%) € als))
into the three-dimensional Euclidean space R, with a(s) denoting
the area of the cross-section of the rod at point s. Within the con-
text of Cosserat rod theory,*® the three-dimensional vector ¥(s)
denotes the position of the centreline ¥ of the rod relative to
some fixed coordinate system. Further, each point on the centre-
line ¥ corresponds to a value of s, and is endowed with a right-
handed coordinate frame {d;,d;,d3} of three linearly indepen-
dent vectors (called directors). The director d; is taken to be the
tangent field t(s) = g(s). Notice that the directors d; and d, are
not necessarily unit vectors, nor perpendicular to each other. 43

The position of a material point in the rod is then represented
by63,64

2
25,6567 = 2(5)+ Y §%dals). (14)
a=1

A Kirchhoff rod (i.e., a constrained Cosserat rod *3), is identified
by a collection of triples®*

{0<s<Lls— (2(s).di(s),da(s)) € R}, (15)

in which the directors d; and d, may be selected to be or-
thonormal, and also perpendicular to the unit tangent t so that
d; - (dy xt) = 1. In this case, the material cross-section at any
point of the centreline ¥ of the rod is assumed to lie within the
plane orthogonal to the centreline at that point. Let the two per-
pendicular directors d; and d; denote the orientation of the two
principal axes of inertia of the cross-section of the rod. Since the
directors dy and d, lie within the plane spanned by the unit nor-
mal n and unit binormal b of the Frenet frame of the centreline

This journal is © The Royal Society of Chemistry [year]
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Cl

) s+ As

Fig. 6 Schematic of a material line element with the director d, at the
cross sections of the rod at s and s+ As with As being an infinitesimal
increment of arc-length. The parameter y represents the angle between
the material line element and the unit normal n at the cross-section at s,
and y+ Ay denotes the same quantity at the cross-section at s +As. The
relative rotation of the material line element within the plane spanned by
b and n is denoted by Ay.

%, they are related to n and b by a rotation about the unit tangent
t through an angle y = y(s), such that

d; = (cosy)n(s) + (siny) b(s),
(16)
dy = —(sinp)n(s) + (cos7)b(s)

Further, dy x d» =d3 =t. Thus, {d;,d>,d3} form a triad at each
point. The evolution of directors along the centreline ¥ is ob-
tained by d; = u x d; for i = {1,2,3}, where u denotes the strain

vector 84,65

3 3

1 .
u:Z”idiZEZ(diXdi)’ (17)
with components u; = Z?:l 22:1 Eijk d;-d;/2, where &;jx denotes
the usual permutation symbol (€153 = €31 = €310 =1, €321 = €130 =

&13 = —1, and ¢ = 0 if any two of 4, j, k are equal). Thus,

1 . .
1231 :E(d2~d37d3~d2),

1 . .
Mzzi(d3'd1*d1'd3)7 . (18)

1. . .
uz = E(dl'dZ*dZ'dl)

Since {d;,d,,ds} is selected to be an orthonormal basis, d;-d; =
6;j for i, j = {1,2,3}, where the Kronecker delta §;; is 1 for i = j,
and O for 17é 7. ThUS, dl 'dz = *dl 'dz, dl 'd3 = *dl 'd3, and
d,-d; = —d,-ds. Hence, the components u; (i =1,2,3) of the twist
vector u = u;d; in (18) are obtained in terms of the curvature k¥
and twist 7+ ¥, with respect to the {d;,d,,ds} triad, as

un = (ksiny)d; + (kcosy)d, + (T +7)ds3. 19)

Equivalently, using (16) in (19) gives the twist vector u with the
following form in the Frenet basis

u=xb+ (t+7)t. (20)

This journal is © The Royal Society of Chemistry [year]
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The curved shape of the centreline of a rod is completely deter-
mined by its two reference parameter fields (i.e., bending density
or curvature k, and torsion 7). The twist density in a rod is de-
fined as the sum of the torsion 7 of the centreline ¢, and the
term ¥, and is obtained by 7+ 7 =Y} ,(d; x d;) -t. Consider two
material cross sections of the rod at points corresponding to s
and s+ As, with As being a small increment of arc-length. The
parameter y represents the angle between the material line el-
ement represented by the director d; and the unit normal n at
the cross-section at s, and y+ Ay denotes its counterpart at the
cross-section at s+ As, as depicted schematically in Figure 6. The
quantity ¥ = lima;_,o Ay/As measures the rotation of the material
line element with orientation d; about the unit tangent t in the
cross-section of the rod. The curvature x and the twist density
T+ 7 together with the Frenet frame {b, t,n} define the strain field
u expressed in (20).

3.2 Linear and angular momentum balances

To reiterate, we consider the micellar filament to be made of a
sequence of infinitesimal disks perpendicular to its centreline.
Consider a traction vector f(s) corresponding the internal con-
tact forces in the structure of a rod, and a couple force field m(s)
corresponding the internal moment of the rod. In the absence of
external force and external moment, the local forms of the linear
and angular momentum balances for the rod in the static (i.e.,
time-independent) state are given by the two independent vecto-
rial equations %366

fry=0, and m-+gxf+p=0, (21)

with %(s) = t(s), and y(s) and B(s) representing, respectively,
the external body force and external body couple per unit arc-
length, applied on the cross section at x(s). Various effects such
as gravity, electrostatics or self-contact interactions between dif-
ferent parts of the rod, or interaction with solvent, can be mod-
eled by using different functional forms of the body force y(s) and
body couple B(s).

3.3 Constitutive model

Regardless of the body force and body couple, the number of
unknowns in (21) exceeds the number of available equations.
Hence, to close the system, additional information relating the
kinetic quantities (i.e., local forces and moments) to the kine-
matic ones (i.e., curvature and torsion) are required. Following
van der Heijden, ®® we consider linear constitutive relations be-
tween the components of the internal moment m = Z?:l m;d;, and
those of the strain vector u = Z?:l w;d; as my = kquy, my = koup,
and m3 = ksu3, where k; and k, denote, respectively, the flex-
ural rigidities of the rod about the principal axes of its cross-
section whose orientations are represented by the directors d;
and d,. Further, k3 represents the twisting stiffness of the rod
about d3 = t. According to the symmetry of the cross-section in
our model, the flexural rigidities of the rod about the directors d;
and d, are equal, and thus, k; =k, = k.. As a consequence, the
internal moment m is expressed in terms of the curvature k and
twist 7+ 7 of the centreline ¥ in the {d;,d,,ds} frame through
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the particular form
m = k.(xsinyd; + kcosydy) + k(7 + 7)d3, (22)
or, equivalently, in the Frenet frame, as
m=k.xb+k (t+7)t (23)

The local equilibrium equations (21) together with the constitu-
tive model (22) constitute three vectorial equations, which incor-
porate the local basis {d;,d,d3}, the internal force f, and the
internal moment m. Since d;, d,, and dj3 are assumed to be or-
thonormal, and that d3 = J, only one of the directors {d;,d,}
needs to be found through (21) and (22). Hence, the system of
three vectorial equations (21) and (22) is determined. The arc-
length derivative of the internal moment m in (23) takes the form

=k kb +k tt+ (k —ko)kTn. (24)

Using (24) in (21), while ignoring the effects of the body force y
and body couple B, yields

fxt=kekb+ktt+ (k —ko)kTn. (25)

Performing cross-product of both sides of (25) by the unit tangent
t, and using the vectorial identity u x (v x w) = (w-w)v— (w-v)y,
we obtain

f=fit—kckn+ (k; —ke)xTh, (26)

where f; =f-t. The strain energy .# of the rod is then obtained
by71

1 L
9‘:5/0 m'UdSZ'[gllfcon- 27)

In view of (20) and (23), the strain-energy density Weon in (27),
which is quadratic in the components of the twist vector u, is
obtained with the particular form

Yeon = %m-u: %kc K‘z—i-%k,(f-i-’)'/)z. (28)
According to the elementary mechanics of materials, ®® if we as-
sume a linear isotropic elastic constitutive model for the rod, the
flexural rigidities k; and kj, and the twisting stiffness k; can be
expressed in terms of the principal second moments of inertia /;
and I, about the directors d; and d, (which denote the principal
axes of the cross-section of the rod), the polar moment of inertia
J, the elastic modulus E, and the shear modulus G, as k; = EI,
k, = EL, and k3 = JG. Alternatively, for a cylindrical rod of ra-
dius &, we can say I; = I, = n£%/4, and J = 2I;. Thus, k. and k,
can be expressed as k. = EI = tEE? /4 and k; = GJ = nGE? /2, re-
spectively. Hence, the resulting strain-energy density Weon in (28)
takes the form of the commonly used function for linear isotropic
elastic cylindrical rods with no axial extension, ®° as

nE'E 2 nE4G

+2=2Z(t+7)% (29

= —FElx“+-JG(7T =
Yeon = 5 +5 (t+7) 3 )

In view of G = E/2(1+ V), (29) simplifies to

Veon = %((Hv)xu(rwﬂ. 30)
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The elastic bending energy density yeon in (30) contains two ma-
terial parameters: the elastic modulus E and the Poisson’s ratio
v. These two material parameters can be measured through rel-
evant experiments. The majority of the previous studies on bio-
filaments take Poisson’s ratio v as 0.5 by assuming incompress-
ibility of the filament.

4 Comparative merits of the two models

The continuum description of the elastic bending energy density
of micellar filaments is found to resemble the previously derived
micro-mechanical perspective. However, the terms correspond-
ing to torsion and twist are found to be different. The micro-
mechanical model considers the cross-section of the micelle as
a set of amphiphiles with a uniform angular distribution. The
amphiphiles are assumed to be free to rotate relative to each
other, and thus, their rotation within the cross-section (i.e., the
plane spanned by the unit normal n and binormal b) does not ex-
pend energy. Consequently, within the micro-mechanical setting,
the term 7 does not appear in the resulting elastic bending en-
ergy density function (9). However, in the continuum model, the
cross-section of the micellar filament is observed as a continuous
area whose material lines are not free to rotate relative to each
other. Hence, within the continuum mechanical setting, any rela-
tive rotation between the material fibers within the cross-section
has an energy cost. Thus, the relative rotation 7 does appear in
the continuum model. In other words, the continuum mechanical
model includes the relative rotation of the material line elements
within the cross-section through the term y. Intuitively, the rota-
tion of a generic point on the cross-section of the filament is the
sum of the rotation of the centreline (represented by the torsion
7), and the rotation of the cross-section relative to the centreline
(i.e., the twist angle of the cross-section about the centreline, de-
noted by the term 7). Consequently, the torsional rigidity k; in the
micro-mechanical model (9) is not the same as the macroscopic
twisting rigidity k, in the continuum model (28).

Contrary to the continuum mechanical model that does not
yield specific expressions for the flexural and twisting rigidities
of the micellar filament, the derivation of the micro-mechanical
model establishes unique relationships between those material
parameters of the micellar filament at any point, and the micro-
scopic features such as molecular size, molecular distribution, and
molecular interactions. Such relationships appear in the form of
integral representations for the elastic moduli of the micellar fila-
ment in terms of a generic interaction potential. To compute the
flexural and torsional rigidities k. and k; at the end caps, we apply
an anisotropic Gaussian potential, which describes the interaction
between axisymmetric rod-like molecules.®%61 However, a sim-
plifying assumption must be imposed: that the molecules com-
prising the filament are identical and uniformly distributed. The
resulting moduli are described in terms of several parameters.
Aside from the molecular distribution function, these parameters
fall into two separate categories: those appearing in the structure
of the interaction potential, and those determined by molecular
dimensions. The interaction between two rod-like molecules with
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Fig. 7 (a) Plot of the dimensionless flexural rigidity . /(2%c3{.,) against the molecular aspect ratio ¢ = £, /¢, as a consequence of applying modified
Berne—Pechukas interaction potential for selected values of the dimensionless cutoff distance x = §/4,; (b) Plot of the dimensionless elastic modulus
El,]2*¢, against the molecular aspect ratio ¢ = ¢, /¢, for different choices of x = §/¢,. The flexural rigidity k. is a mechanical characteristic, which
combines a geometric feature (i.e., the second moment of inertia 7} and a material property (i.e., the elastic modulus E).

the orientations d and e in such a potential, is given by
A 3 a
Q(r,d,e) =[] G(r:d,e), (31)
i=1

where (d,e),(#,d,e) denotes the strength parameter, with
¢1(d,e) and {(F,d, e) respectively expressed as

4[:0 H
() (32
and / , o
¥ (#-drie)?  (B-d—i-e) 2
(17?( 1+x'd-e + 1—y'd-e )) . (33)

Further, fg,(f',d,e) represents the distance parameter with the
form Z5(f,d,e) = exp(—|r[2/62(r,d,e)).5! In (32), . is a fitting
parameter, 4 and p, denote parameters specifying the type of
amphiphiles, and ¥ represents the unit vector corresponding to
the intermolecular vector r. The parameter y in (32) is related
to the anisotropy in the shape of the molecule, and is given in
terms of the ratio ¢ = 4. /45 of the length ¢, of the molecule to its
breadth /5 by x = (¢2—1)/(¢?+1). Also, ¥’ in (33) is given by
% = (/2 —1)/(8"/"2 1 1), where & = &, /e, denotes the ratio of
the strength parameter for end-to-end and side-to-side configura-
tions. Also, 6(,d,e) is called the range parameter and is given

b o 1/2
by 6/245 = 1/(279{( (ﬂ"i;ﬁ,?z + (rli;fi?z)) g . The parameters

w1 and ji» are selected to be —1 and 2 respectively. °2 The flexural
rigidity k. was previously obtained in terms of the constant molec-
ular distribution function 2, the fitting parameter &, the length
scale /,, and the dimensionless parameter x = § /4, (Eq. 41 in
Ref.21). The bending rigidity k. of a rod with a circular cross-
section of radius 4, is EI = ﬂE(‘e} /4. This, together with £, = V24,
gives the local elastic modulus of the filament as

E 27 (2L +.7) +xPxe (22 -3).F

_ , (34
492 kT 3mctlokpT (34)

This journal is © The Royal Society of Chemistry [year]

where "erf" represents the error function and £ is the sum of
# and _¢, two integral representations in Eq.(43) in Ref.?!
Here we use the dimensions of a specific amphiphile (CTA-
Sal/NaSal/Water).*® The length of this particular amphiphile
from head-group to tail is about 2 nm, and the diameters of the
head-group and tail are 0.85 nm and 0.5 nm, respectively. Set-
ting the length and volume of the amphiphile equal to those of
the replacing spheroid, the aspect ratio 4,/4; is found to be ~
5.2! Figures 7, & 7; display the dimensionless flexural rigidity
k./(%*632{,) and the dimensionless elastic modulus E¢, /2>, of
the cylindrical body of the filament against the molecular aspect
ratio ¢ = £, /{s, for selected values of the dimensionless cutoff dis-
tance x = §/4.. A consequence of (34) is that the elastic mod-
ulus E increases as the dimensionless cutoff distance x = 6 /4,
increases for fixed values of the molecular aspect ratio ¢ = £, /¥;.
Thus, the model predicts a monotonic increase in the local flexu-
ral rigidity of the filament when increasing the molecular aspect
ratio (see Figure 7,). Also, as Figure 7, depicts, the elastic modu-
lus £ diminishes as the molecular aspect ratio ¢ = £, /¥, increases
for fixed values of x = §/4.. (Molecular dimensions determine
the diameter of the filament.) This finding is consistent with the
results of Jennings et al.,®” who reported that the elastic mod-
ulus of the micelles depends upon micellar diameter. According
to their findings,®” an increase in the diameter of the micellar
filament is accompanied by a decrease in the elastic modulus of
the filament. The decrease in the elastic modulus E is compen-
sated by the increase in the second moment of inertia 7 = w&* /4,
as the molecular aspect ratio, or equivalently, the diameter 2 of
the filament increases. The consequence is an increase in the lo-
cal flexural rigidity EI as a result of an increase in the micellar
diameter.

By applying the interaction potential (31) on (12) using (40),
the dimensionless form 5 /(2 Z.¢. () of the homogeneous term
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Fig. 8 (a) & (b): Plots of the dimensionless parameter ¥ /(22,(,¢.), and the dimensionless flexural rigidity &5 /(22,03 ¢,) against the ratio §/¢, as
a result of applying modified Berne—Pechukas interaction potential for different choices of the aspect ratio ¢ = ¢, /4;. As is evident from the plots,
negligible change in ¥ /(22.0,(,) and k2 /(22.£3L,) is observed for § /£, > 5. Hence, an effective cutoff distance after which the potential decays
rapidly can be reasonably approximated by 8 = 54,; () & (d): Plots of ¥ /(22,0,(,) and k2 /(2 2,63 ¢,) in terms of the molecular aspect ratio

¢ = L./, for different values of the dimensionless cutoff distance x = 6 /(..

@™ at the end cap is obtained as

U DDelols
kgT  16kgT

{ x( I+ _5) (ﬁerf(x) e )

2vmed() (22 (fa— S2)+ 55) } 35)
Also, the end cap bending rigidity k¥* /(2 Z.£2{.) is obtained as

kc o @@eegé:o 2 2
kBT = W 3\/%@1'1:()6) (j] — X jz +4% j}))

e 2 ((2x2 +3)(A* A - ) - 12%2‘]3) } bl

where #1-%; and _¢1—_¢s are integral representations shown
in Appendices 9.2 & 9.3. These two material parameters are
plotted against the parameter x = 6/4, for different choices of

10| Journal Name, [year], [vol.], 1-17

the molecular aspect ratios £./¢; between 1 and 5 (Figure 8).
Figures 8,, 8;, 8., & 8; show, respectively, the dimensionless
forms of the parameter W5 /(2 %.4.C,) and the flexural rigidity
kP /(22.£3C,) at the end points against the ratio x = §/4, for
different values of the aspect ratio ¢ = ¢./¢s, and those dimen-
sionless parameters versus the aspect ratio ¢ = £ /s, for different
values of the ratio x = §/4,. As Figures 8, & 8, display, negligi-
ble changes in W< /(2Z.£.¢.) and k& /(D Det3L,) are observed
for 6 /¢, > 5. Hence, an effective cutoff distance for the end caps
after which the potential decays rapidly, can be reasonably ap-
proximated by 6 = 5/,. As Figure 8, displays, the dimensionless
form of the homogeneous contribution W&* /(2 %e4-{.) remains
insensitive to an increase in the molecular aspect ratio { = £, /¢s
for fixed values of x = §/4,. As an approximation, when { > 8,
w5 reaches a horizontal asymptote. This homogeneous contribu-
tion to the end cap elastic bending energy is thus considered to
be insensitive to the shape of the end cap, but may have implicit
dependence upon effects such as temperature and solution con-
centration. The local flexural rigidity ki at the end cap, however,

This journal is © The Royal Society of Chemistry [year]
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Fig. 9 Representative atomic force microscopy (AFM) contact mode
images of spherical and cylindrical micelles; (a) & (b) Height images of
spherical micelles in a dehydrated sample of dilute micellar system; (c)
& (d) Vertical deflection images of a network of disseminated branched
micelles with Y-junctions in a semidilute system in the dehydrated state
and room temperature, formed through inter-micellar interactions;2° (e)
& (f}y VD images of disseminated cylindrical micellar filaments as
separated strands in hydrated state at room temperature. In semidilute
and dense systems, the population of linear micelles increases and
dominates when surfactant density increases. 2!

shows sensitivity to the molecular aspect ratio { = 4,/ at any
fixed dimensionless cutoff distance x = 6 /£, which is consistent
with the previous observations (Figure 8;). Figures 8, and 8,
show that as /4, increases, W&® and k& approach asymptotes.
As is evident from the results of Figure 8, when the aspect ratio of
the molecules increases, the flexural rigidity ki increases. When
the aspect ratio of the molecules increases, a larger number of
amphiphiles may aggregate at an end point. Hence, the filament
is expected to be stiffer at those locations.

Each of the developed models for micellar filaments includes a
number of material parameters that need to be found using dif-
ferent experiments. Some researchers fit the histogram of the
experimental data (obtained from the size of the micellar chains)
to a Gaussian function (i.e., the total volume fraction density, ex-
pressed in terms of the net elastic bending energy) to find the
flexural rigidity of the filaments. Another experimental technique
to measure the flexural rigidity of micellar filaments is small-angle
neutron scattering (SANS).”7 Other studies suggest experiments
such as the three-point bending test to find the elastic modulus £

This journal is © The Royal Society of Chemistry [year]
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and the resulting flexural rigidity k. of micellar filaments. Here
we apply the nano-indentation test to measure the elastic mod-
ulus E of the tubular body of such filaments and that of the end
caps. The indentation depth is related to the applied indentation
force F and the stiffness of the AFM cantilever and that of the
micellar filament. According to the Hertzian model, the elastic
modulus £ of the filament is expressed in terms of the applied
load F by E = 3F(1 —v?)/4AVRA, where v denotes Poisson’s ra-
tio of the filament (selected to be 0.5), A is the indentation depth,
and R represents the effective radius, given as R=R1R,/(R1 +R»),
in terms of Ry and R,, the radii of the applied AFM probe and the
micellar filament.

5 Experimental section

Here we apply Atomic Force Microscopy (AFM) to measure the
elastic modulus £ of the micellar filaments through the indenta-
tion test using force volume analysis.

5.1 Materials and sample preparation

The dilute and semi-dilute micellar solutions included Hexadecy-
itrimethylammonium bromide (CTAB 50 mM, Sigma-Aldrich Cor-
poration, ON, Canada) and the organic salt Sodium salicylate
(NaSal 16 mM, Sigma-Aldrich Corporation, ON, Canada) with
molar ratios NaSal/CTAB=0.05 and 0.3 respectively, dissolved in
sterile deionized water (ddH,0) at room temperature.’? Deion-
ized water was added drop-wise using a calibrated pipette with
100 pL increments. To prepare the samples for AFM, 50 uL of
the solution was deposited on a microscope slide for imaging
and force spectroscopy. After 30 minutes, the sample was gen-
tly washed with deionized water. The sample was then set to dry
in air at room temperature. Micellar filaments adhered strongly
to the slide.

5.2 Atomic Force Microscopy

Atomic force microscopy (AFM) is a useful tool for exploring
properties of materials at the micro and nano scales. It is able to
quantify phenomena such as van der Waals interactions, electro-
static forces, and molecular bonds. It has extensive applications
in fields such as polymers, DNA analysis, proteins, and biomate-
rials. 4546 Using this powerful tool, various aspects of materials
such as their topographical information, electrical conductivity,
and mechanical stiffness can be investigated. Another feature of
AFM is its ability to produce high-resolution images of materials.
A sharp tip mounted on an AFM cantilever scans the surface of the
sample, providing access to its topography at the nano scale. As
the tip approaches the surface, the cantilever deflects due to the
interactions between the tip and the surface. As the tip scans over
the sample, a laser beam is focused on the back of the cantilever,
whose deflection is measured by a detector. The measured deflec-
tions are reconstructed to create an image of the topography of
the surface of the sample.

We used a JPK Atomic Force Microscope (JPK Nano-wizard@3
Bio-Science, Berlin, Germany) for imaging and force spectroscopy
of micellar filaments. A biotool high resolution qp-BioAC/Quartz
cantilever with a 2 nm defined conical tip, a spring constant of
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Fig. 10 AFM contact mode vertical and lateral deflection images of networks of disseminated open cylindrical micellar filaments with spherical end
caps in the dehydrated state in a semi-dilute system at room temperature. For micellar filaments made of amphiphiles with a cylindrical packing
characteristic, it has been reported that the final shape of the end caps is revealed once the micellar length is significantly greater than its
cross-sectional dimensions.*2 As reported by May and Ben-Shaul 2 and observed here, the dimensions of end caps in shorter cylindrical micellar
filaments are larger than those of their cylindrical body. However, when the end caps are molded into their final shape, they have the same radius as

the cylindrical body. 42

0.1 N/m, a nominal resonance frequency of 50 kHz in air, and a
length of 60 um (Nanotools USA LLC, Henderson, NV) was used
for high resolution imaging of spherical micelles with radii from
10 to 75 nm“® (Figures 9, & 9;), and micellar filaments with or
without Y-junctions (Figures 9.-9y), or end caps (Figure 10). We
used a Nanotools CONTR B50 cantilever with a spherical tip of
50 nm + 10% and a spring constant of 0.2 N/m, a nominal res-
onance frequency of 13 kHz, and a length of 450 um (Nanotools
USA LLC, Henderson, NV) for indentation. Targeted filaments,
which did not overlap, were located and indented. The indenta-
tion frequency was selected between 1 and 200 Hz. The deflec-
tion sensitivity of the piezo module was established by probing
the surface of the mica substrate. A thermal tuning method was
used to calibrate the stiffness of the cantilever. A force map con-
taining 128 x 128 indentation points was created for each sample.
The majority of the indented points within the created force map
were analyzed using v = 0.5 and Ry=50 nm. The approaching
force-indentation depth curve was applied to estimate the elastic
modulus of the filaments.*> AFM data analysis was carried out
using the native JPK data processing software. Statistical signif-
icance was investigated using a paired student’s t-test, and the
differences were considered significant at p<0.05.

6 Results and discussion

Although some studies consider flexural rigidity as a material pa-
rameter,3® our model accounts for flexural rigidity as the product

12| Journal Name, [year], [vol.], 1-17

of the second moment of inertia / of the micellar cross-section
(i.e., a geometrical feature), and the elastic modulus E of the
micelle (i.e., a material parameter). Thus, this mechanical char-
acteristic depends upon the micellar diameter 2&, and its elastic
modulus E, as shown in Figures 7 & 8. Figure 11 displays var-
ious types of cylindrical micellar filaments with different bend-
ing rigidities, such as thick bundles of micellar filaments, bundles
of packed parallel straight filaments, distinct mixed micellar fila-
ments with curvilinear centrelines, and distinct parallel filaments
with curvilinear centrelines. The flexural rigidity E/ takes differ-
ent values for these topologies, depending on their elastic modu-
lus E and diameter 2€. In samples of similar geometries such as
the ones in Figure 11; and Figure 11, the sample with a higher
value of elastic modulus E tends to be straight, whereas the sam-
ple with lower value of E adopts a curvilinear geometry. Accord-
ing to Gohy et al.,”? cylindrical micellar filaments tend to form
bundles of closely-packed parallel filaments in the dehydrated
state (Figure 11;). This arrangement has not been detected in
micellar solutions by light scattering technique, and thus appears
to be formed during the dehydration process.

The elastic modulus of micellar filaments can be determined us-
ing different experiments such as indentation test, and the three-
point bending test. Here, AFM was used to measure the elastic
modulus E of a sample of micellar filaments through the indenta-
tion test. The elastic modulus was evaluated using the Hertzian
contact mechanics model. Figure 12, displays the distribution
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Fig. 11 Contact mode AFM images of micellar filaments in a semi-dilute
solution, obtained in the dehydrated state at room temperature; (a), (b),
(c), & (d) exhibit, respectively, thick bundles of cylindrical micellar
filaments, bundles of packed parallel straight filaments, distinct mixed
micellar filaments with curvilinear centrelines, and distinct parallel
filaments with curvilinear centrelines.

of the measured elastic modulus from different cylindrical micel-
lar filaments in a dehydrated state. The red rectangular columns
show the histogram of the experimental data, and the solid line
is an exponential fit to the data. Figure 12, shows an AFM height
image of an example of a created force map with a few selected
spots for indentation on a cylindrical micellar filament. The black
dots represent the selected positions in which the indentation was
performed. In a dehydrated state, the elastic modulus of filaments
was found to be ~ 0.863 + 0.316 MPa. The nano-indentation test
was also performed on end caps to investigate the elastic modulus
at those points (Figure 12;). Consistent with previous observa-
tions, the elastic modulus, and consequently, the elastic bending
energy at the end points of the filaments were found to be at
least one order of magnitude higher than those within the cylin-
drical body. This contribution is crucial in determining the final
topology of the filaments in micellar solutions at different con-
centrations, and explains the tendency of the micelles to grow
in a semi-dilute solution, in order to reduce the number of end
caps and reach the minimum elastic bending energy at equilib-
rium. The energy required to create two end caps from a very
long cylindrical micellar filament is known as the scission en-
ergy. This energy is large relative to the elastic bending energy
of the micellar body. For this reason, when the total surfactant
volume fraction is relatively low, the semi-flexible cylindrical mi-
cellar filaments may elongate and become entangled with each
other in order to reduce scission energy. The topology of micel-
lar filaments is essentially determined by the balance between
the conformational entropy, the elastic free energy of the micellar
body, and most importantly, the excess energy coming from the

This journal is © The Royal Society of Chemistry [year]
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end caps of open filaments. Our results indicate that semi-flexible
linear micelles have a relatively large local strain energy at their
end points, which explains their tendency to fuse to minimize
the number of end caps. Detailed studies investigating the elastic
properties of micellar filaments, with associated mechanical tests,
will be the subject of future research.

To apply the Hertzian contact model, the strains are assumed to
be infinitesimal and below the elastic limit. Up to an admissible
approximation, this condition is satisfied in our experiments. The
indentation depth (~5-10 nm) is selected to be small to avoid the
effects of the substrate and also nonlinear or inelastic material
behaviour in higher strains. Further, the indentation depth is se-
lected to be much smaller than the radius of the indenting sphere
and the diameter of the filaments. Considering the small diameter
of micellar filaments, an indentation depth of 5 nm or less would
have been ideal to measure their elastic modulus. However, since
such filaments are very soft, selecting a low indentation depth
would lead to an increase in the signal-to-noise ratio. Thus, lim-
iting the indentation depth to 5 nm or less may yield results that
are indicative of surface properties of the filament rather than
the bulk properties of the filaments. A large indentation depth,
however, might cause the indentation results to be influenced by
the underlying mica substrate and thus the stiffness of micellar
filaments could be slightly overestimated.

Table 1 The measured dynamic elastic modulus E of micellar filaments for
different values of indentation frequency &.

L& M) poguney (i poimts OB
500 1 16159 0.863 £ 0.316
100 5 15441 0.983 +0.279
50 10 16133 1.132+0.383
20 25 16231 1.818 £0.422
10 50 14223 2.662 +0.537
5 100 15372 3.409 £0.407
2.5 200 16083 3.9724+0.623

To investigate the effect of indentation frequency on the elas-
tic behaviour of micellar filaments, additional nano-indentation
tests were performed at different frequencies of 1-200 Hz. The
extend time 7, and retract time 7, in indentation tests were set to
be equal at each frequency. The measured dynamic elastic mod-
ulus E of micellar filaments for different values of indentation
frequency @ = 1/(¢c +1,) from 1 to 200 Hz, is expressed as the
mean + standard deviation in Table 1.

The indentation frequency was found to directly influence the
measured elastic modulus of micellar filaments. The elastic mod-
ulus of the filaments obtained at 200 Hz was found to be greater
than the one obtained at 1 Hz. This finding explains the differ-
ent elastic behaviours that we observe at different loading rates
in a quantitative way. Further, for the same indenting force, the
indentation depth was found to decrease as the loading rate in-
creased from 1 to 200 Hz. This observation suggests that micellar
filaments, like many other bio-filaments, show a higher elastic
modulus at higher loading rates. The increase in elastic modu-
lus at higher frequencies can be regarded as a consequence of
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Fig. 12 Representative indentation results; (a) AFM height image of an example of a created force map with a few selected spots for indentation on a
cylindrical micellar filament. The black dots represent the selected positions in which the indentation was performed; (b) AFM image of a network of
bundles of cylindrical micellar filaments in the dehydrated state at room temperature; (c) Image of an end cap indented in the dehydrated state; (d)
Graph of the distribution of the measured elastic modulus from different cylindrical micellar filaments in the dehydrated state. The red rectangular
columns represent the histogram of the experimental data, and the solid line is an exponential fit to the data; (e) Distribution of the measured elastic
modulus at end caps. In the dehydrated state, the elastic modulus of filaments was found to be ~ 0.863 +0.316 MPa. Also, our resulis indicate that
the elastic modulus of the filament at end caps (~ 10.541 4 3.622 MPa) is at least one order of magnitude higher than that within the cylindrical body.

the viscoelasticity of micellar filaments. Our results are coherent
with most of the previous studies that report the bulk shear mod-
ulus G = E/3 of CTAB/NaSal micellar solutions increasing when
the angular frequency of rheometer increases from 0.01 to 100
Hz.23:73,74 Nevertheless, the value of the elastic modulus of sin-
gle micellar filaments obtained using nano-indentation cannot be
compared with the elastic properties of the bulk solution obtained
using rheometry.

The Gaussian regression functions in our indentation analysis
of individual micellar filaments in a dehydrated state reaches a
maximum at 0.863 +0.316 MPa for the elastic modulus £ at the
loading rate of 1 Hz. Indentation measurements on the same
sample at the loading rate of 200 Hz yield a larger elastic mod-
ulus ranging from =~ 3-5 MPa with a peak at 3.972 + 0.623 MPa.
Statistically significant differences were found between the elastic
moduli at 1 and 200 Hz. Our results indicate a good correspon-
dence with most of the previously obtained values of the elastic
modulus and flexural rigidity for micellar filaments in the dehy-
drated state.23:57.77-79 However, like other bio-filaments, elastic

14| Journal Name, [year], [vol.], 1-17

moduli of the dehydrated samples of micellar filaments are ex-
pected to be at least a few orders of magnitude larger than those
of the hydrated ones.*® The obtained value of 0.863 + 0.316 MPa
for the elastic modulus E yields the persistence length (I,) of
~210-200 nm for micellar filaments of different radii. This value
for the persistence length is on the same order as previously re-
ported values for CTAB-based micellar solutions.”7-8%-81 It should
be noted that various factors influence the elastic modulus of
micelles. For instance, previous experimental observations have
indicated that adding salt significantly increases the mechanical
stiffness of micellar filaments.’® Here we used specific concentra-
tions of NaSal/CTAB. Detailed investigation of the effect of salt
concentration on micellar elastic modulus are considered as a
subject for future research.

Previous studies on other bio-filaments have reported that de-
hydration can result in a large increase, up to a few orders of mag-
nitude, in the elastic modulus of such filaments.*® Those studies
argue that the modulus of bio-filaments reaches a plateau in fre-
quencies as low as 1 Hz. However, such an equilibrium state
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may not be reached in high loading rates. Detailed studies of
viscoelastic properties of micellar filaments and associated me-
chanical models are also a subject for future research.

7 Concluding remarks

Although experiments reveal many geometric features of micel-
lar filaments, theoretical modeling is required to expand our un-
derstanding of these observed experimental systems, and to pro-
vide predictive tools for the kinetic features in similar studies.
In the present study, the previously developed micro-mechanical
model for the elasticity of micellar filaments was extended to ob-
tain the elastic bending energy of the hemispherical end caps in
open cylindrical micellar filaments. The resulting bending en-
ergy at each end cap was found to incorporate quadratic terms
in curvature and torsion at that point as well as a homogeneous
contribution. This term was found to be insensitive to the shape
of the end cap, and may have implicit dependence upon effects
like temperature, concentration, and electromagnetic fields.

We then applied constrained Cosserat rod theory to obtain the
macroscopic elastic bending energy of such nanostructures. While
the continuum mechanical approach provides macroscopic de-
scription of a micellar filament, the micro-mechanical approach
has a microscopic view of that medium, and provides expressions
for kinetic variables such as forces based on a selected interaction
potential between the molecules comprising the filament. Their
different natures notwithstanding, these two perspectives provide
complementary and consistent information when applied to the
same physical problem. As in the micro-mechanical model, in
the continuum mechanical model the elastic bending energy den-
sity of the filament was found to be quadratic in the curvature of
the centreline. However, unlike the micro-mechanical model, the
continuum description of the elastic bending energy of the fila-
ment was found to incorporate the twisting density rather than
the torsion of the centreline. In other words, we found that con-
tinuum mechanical model includes the relative rotation of the
material line elements within the cross-section.

Unlike the continuum mechanical model, the micro-mechanical
model yields integral representations for elastic modulus as well
as flexural and torsional rigidities in terms of the molecular in-
teractions, molecular distribution function, and molecular dimen-
sions. By applying an anisotropic Gaussian potential in the micro-
mechanical model, the elastic moduli of the filament were ob-
tained in terms of the density of the molecules and their dimen-
sions. Consistent with previous experimental observations, our
micro-mechanical model predicted a monotonic increase in the
local flexural rigidity of micellar filaments when the molecular
aspect ratio increases. Further, the elastic modulus of the micel-
lar filament was found to depend on the size of its constituent
molecules.

Finally, Atomic Force Microscopy was used to perform the in-
dentation test to measure the local elastic modulus of the fila-
ments on the micellar body and at the end points at the indenta-
tion frequency of 1 Hz. Our results indicated that the elastic mod-
ulus of the filament at the end caps (= 10.541 + 3.622 MPa) is at
least one order of magnitude higher than that within the cylin-
drical body (= 0.863+0.316 MPa). This finding indicates that
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semi-flexible linear micelles have a relatively large local strain
energy at their end points, which might explain their tendency to
fuse to minimize the number of end caps. The effect of indenta-
tion frequency on the elastic modulus of micellar filaments was
also investigated. Indentation tests were performed at frequen-
cies as high as 200 Hz. Consistent with previous experimental
observations on the bulk shear modulus of micellar solutions, it
was found that the elastic modulus of a single micellar filament
at high loading rates is larger than that at low frequencies.
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9 Appendices

9.1 Expansion of the end cap energy

Here we present the expansion of (10) in powers of &€ to ob-
tain (12). Using Eqs. (A.3) in Ref.2! and the definition t; =1, +s¢,
the four arguments of the interaction potential in (7) are obtained

in terms of the arc-length s and the dimensionless parameter &
as21.47

e22(to) — 2 (1> = 5>+ B1e2s* +o(e?),
(2(to) — 2(11)) - d(to,0) = Bre?s” +0(£?),
(x(to) — 2(11)) -d(t1,m) = B3e2s* + o(€?),

(d(t5,0)-d(t1,n)) = B + Baes + Bse?s” + o(€?), 37)

where B, = cos(6 — 1), By = —x2/12, By = —Kkcos0/2, By =
Kcosn/2, By = 7sin(0 — 1) and 2B5 = Tsin(6 — ) + 4B,B; —
72B,. Let &:(0,¢) in (10) be replaced from (11). Using the ex-
pansions (37) while replacing &.(0,¢) from (7), and performing
the change of variables L —t, = &s (neglecting terms proportional
to €3 and higher), the right-hand side of (10) takes the form

g = e/oL/e/oM/oM/o% O (e (s) . 7(s) -e(6,6), F(s) - d(5,1),

e(6,9) -d(s.,T]))%@(L—se) dododnds, (38)

where F(s) = x(L) — x(L — s¢). Applying the Taylor expansion for
Q and 2 in (38) results in

P = o R KT (39)
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in which
wo_e//2727 ( (2()+ (s )es+@()8222)
—Q(5,0,¢,1)cos 07, (@(s)£s+ Q(S)ezsz)

+Q05(s5,0,0,1) cos® ¢ _@eﬁ(s)&isz) d¢dednds,

Reap — —&’ / /2”/2” DeD(s)s* sm(j)(cos(@ 1)Q4(s5,0,0,1)

—sin?(8 — 1) sing Quas, 9,¢7n)) d¢dednds,

i = //2”/er ~2.9(s (Ql(swn)

+sin¢cosecoan4(s79,¢,n)) dgdednds, (40)

where Q(s,0,¢,1) := (

-,11(5791(1)?77) Qi (
{17273,4}.

,0,0,B), Q(5,6,9,m) :=Q,(s*,0,0,8),
,0,0,B), and B =sin¢ cos(6 —n) for i €

9.2 Integral representations in Eq. (35)
2ne2me T 1
A=
07070 \/1 — x2cos2(6 —n)sin® ¢

2m 2 5 cos?(6 —1)sin’ ¢
5= o
0JoJo \/1

x2cos2(6 —1n)sin® ¢

dodedn,

dgdedn,

n) sin2 i)
)sin2 0

/ 727‘ 2 cosmcosBcos(f —

dodedn. (41
0 \/1 x2cos?(0

9.3 Integral representations in Eq. (36)

2121 cos? ¢y /1 — x2 cos2 (8 — 1) sin?
:///2 ‘P\/ X ( _n) ¢d¢d9dn,
Jo Jo Jo 1—xcos(6—n)sing

2m2mE cos2 ¢/ 1 — x2cos?(8 —n)sin ¢
o [P RO e
‘ 0JoJo 1+ xcos(6 —n)sin¢

2121 T cos (p\/lfx cos2(6 —n)sin® ¢
<k ///0 x'cos(0 —n)sing + 1 dgdedn,

7 cos ¢\/1 x2cos2(6 —1n)sin® ¢
/// x'cos(6—1n)sing —1 dpdodn,

/5:/0270270% V1-22co2(0—n)sin*pdgdodn.  (42)
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