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ergy. Their findings indicate that the energy change associated
with the formation of a junction between one micellar end cap
and the cylindrical body of another micelle is small relative to the
elastic bending energy of an end cap.16

A useful tool to quantitatively describe the bending properties
of self-assembled aggregates has been the Canham–Helfrich elas-
tic bending energy density—the elastic bending energy per unit
area at a point on the surface of an aggregate—that was originally
developed for a lipid vesicle, and can be expressed mathemati-
cally as γ◦ + kc(H −H◦)

2 + k̄cK, where γ◦ denotes the interfacial
stretching density known as the surface tension, H and K rep-
resent the mean and Gaussian curvatures of the surface, kc and
k̄c are the splay and saddle-splay moduli, and H◦ is mean curva-
ture of the natural, local shape of the lipid bilayer.25–28 Whereas
γ◦ shows the local stretching energy of the surface, the remain-
ing two terms represent the bending free-energy of the interface
at a constant area in the absence of stretching. The total elastic
free energy of the aggregate is thus obtained by integrating the
Canham–Helfrich elastic bending energy density over the surface
area of the aggregate.

Micellar chains are treated as mesopolymers since they are sub-
ject to breaking and re-shaping.30 They may also become en-
tangled or form branched structures.31 Similar to polymers, the
persistence length 〈lp〉 of a micellar chain is related to its bend-
ing rigidity kc through 〈lp〉 = kc/2kBT , where kB =1.38×10−23

kgm2/(s2K) is Boltzmann’s constant and T denotes the absolute
temperature.32–34 This characteristic length scale determines the
energy cost of linear bending deformations in polymer chains and
similar bio-filaments. The flexural rigidity kc in the Canham–
Helfrich elastic bending energy density carries the dimension of
energy. According to the definition of persistence length of a poly-
mer chain, the application of that term for cylindrical micellar fil-
aments leaves a dimensionless value for persistence length. Con-
sidering this difficulty posed by the application of kc in the def-
inition of persistence length, and further, considering the large
difference between the length and the cross-sectional dimensions
of these nanostructures, an alternative approach might be to con-
sider the energy density of an elastic rod, in which the bending
rigidity carries the dimension of energy times length.21,35

Some prior investigations of micellar self-assembly have fo-
cused on using Canham–Helfrich elastic bending energy density
for cylindrical micellar filaments.36 However, on the basis of the
mentioned similarity between micellar filaments and mesopoly-
mers, existing expressions for the elastic bending energy density
of a polymer chain provide some insight regarding the structure of
the elastic bending energy density of a cylindrical micellar chain.
Liu et al.37 proposed an elastic bending energy density for a semi-
flexible polymer chain with both bending and torsional elasticity
of the form k1κ2+k2(τ−τ◦)

2, where k1, k2, and τ◦ are respectively
the flexural rigidity, torsional rigidity, and intrinsic torsion of the
chain. Following the work of Kratky and Porod,38 who took the
configurational energy of a polymer chain to be a function of both
the curvature and torsion of the chain, Bugl and Fujita39 modeled
a polymer chain as a continuous elastic homogeneous thin wire,
using a slight extension, k1(κ − κ◦)

2 + k2(τ − τ◦)
2 that accounts

for the potential importance of intrinsic curvature κ◦. More gen-

erally, Helfrich40 derived an elastic bending energy density for
a polymer chain that includes chiral effects, and is of the form
k1κ2+k2κ2τ+k3κ4−k4(κ

′2+κ2τ2), in which a prime denotes the
derivative with respect to the arc-length, k1 is the flexural rigidity,
and k2, k3, and k4 are other material parameters. Helfrich’s en-
ergy density incorporates coupling between the curvature and the
torsion of the curve representing the polymer chain. Helfrich’s40

derivation was purely geometrical and did not take into account
the physics of the interactions between the building blocks of the
polymer chain.

Recently, we derived an elastic bending energy density function
for cylindrical micellar filaments based on the interactions be-
tween their constituent molecules.21 In so doing, we treated the
molecules comprising the micellar filament as one-dimensional
rigid rods. The resulting function was found to contain a ho-
mogeneous contribution, as well as quadratic terms in curva-
ture and torsion of the centreline of the micellar filament, as
ψ◦+kcκ2+ktτ

2. Here, we first review a synopsis of the calculation
of the elastic bending energy density on the micellar body. We
then apply the same methodology to obtain the elastic bending
energy corresponding a hemispherical end cap in open cylindrical
micellar filaments. Next, the continuum description of a cylindri-
cal micellar filament is explored using constrained Cosserat rod
theory.43,44 We then apply Atomic force microscopy (AFM) to es-
timate the elastic modulus of the micellar filaments both on the
micellar body and at the end caps.

The remainder of this article is planned as follows. Section 2
includes the details of the micro-mechanical model; in particular,
the underlying assumptions are presented in 2.1, the necessary
geometrical quantities, notation, and concepts are briefly pre-
sented in 2.2, and the synopsis of the calculation of the elastic
bending energy density of the cylindrical body, and the detailed
calculation of the end cap elastic bending energy are provided
in 2.4 and 2.5. In Section 3, we use the constrained Cosserat
rod model to find the continuum description of the elastic bend-
ing energy of a cylindrical micellar filament. The differences be-
tween the micro-mechanical and continuum models are discussed
in Section 4. Details of the experiments such as sample prepa-
rations, AFM imaging, and force spectroscopy are presented in
Section 5. The findings and implications of the study, and and
propose directions for further research are discussed in Section 6.
The conclusions appear in Section 7. A detailed account of the
calculations of the elastic bending energy of the end caps is con-
tained in the Appendix 9.1.

2 Micro-mechanical model

Our micro-mechanical model stems from the probabilistic and mi-
croscopic concepts of statistical mechanics. This approach en-
ables us to extend the laws of thermodynamics to cases such as
microscopic systems, which are not considered in classical ther-
modynamics. It further provides expressions for kinetic variables
based on a selected interaction potential in combination with
the ensemble properties. Here we apply this perspective to find
the elastic bending energy of a cylindrical micellar filament, in
terms of an arbitrary interaction potential between its constituent
molecules. To do so, a set of meaningful simplifying assumptions
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|χχχ − χχχ ′| more than a fixed cutoff distance δ vanishes. In the
present setting, δ is required to be small relative to the minimum
radius of curvature ℓ introduced in assumption iii,21,47 so that
δ ≪ ℓ. Also, since the potential between a molecule at a given
point on the micellar body and other molecules does not exist for
the whole length of the micelle, the cutoff distance δ is assumed
to be much smaller than the length L of the filament. Hereafter,
we restrict attention to intermolecular potentials that are of the
form Ω(χχχ,χχχ ′,d,d′), but are also frame indifferent.52 It then fol-
lows that Ω(χχχ,χχχ ′,d,d′) may depend on the positions χχχ and χχχ ′ and
the directors d and d

′ only through the length |χχχ −χχχ ′| of the vec-
tor between χχχ and χχχ ′, the dot products (χχχ −χχχ ′) ·d and (χχχ −χχχ ′) ·d′

formed by the directors and that vector, and the dot product d ·d′

formed by the directors. Like Keller and Merchant,51 we assume
that the dependence of the intermolecular potential on the length
of the relative position vector r = χχχ −χχχ ′ is scaled by the ratio ε.
Therefore, we define Ω̃

(

ε−2|r|2,r ·d,r ·d′,d ·d′
)

= Ω(χχχ,χχχ ′,d,d′)/2

as the new form of the interaction potential (for more details, see
Refs.21,47). The particular choice of the arguments of the inter-
molecular potential in its new form is in accord with those of the
interaction potential between a pair of protein monomers forming
a lipid bilayer, in which the pairwise intermolecular potential is a
function of the relative position of the two protein particles and
the orientation of each of the particles.47,53 As a consequence of
the foregoing discussion, the net free-energy ψb of the cylindrical
body of the micelle can be expressed as

ψb =
∫ L

0

1

2

(

∫

2π

0

E (s,θ)dθ

)

D(s)ds, (6)

where the integrand of the inner integral, E (s,θ), is

E (s,θ) =
∫ L

0

∫

2π

0

2Ω̃(H1,H2,H3,H4)D(t)dη dt, (7)

with H1 = ε−2|χχχ(s)−χχχ(t)|2, H2 = (χχχ(s)− χχχ(t)) · d(s,θ), H3 =

(χχχ(s)−χχχ(t)) ·d(t,η), and H4 = d(s,θ) ·d(t,η). Eq. (7) represents
the total energy due to the interactions between the molecule
with director d(s,θ) at χχχ(s) and all other molecules. A factor of
one-half in (6) compensates for the double counting of interac-
tions arising from integrating over both s and t from 0 to L. From
(6), the elastic bending energy density ψ(s) at position χχχ(s) on C

is simply

ψ(s) =
1

2

(

∫

2π

0

E (s,θ)dθ

)

D(s). (8)

Upon Taylor expanding the right-hand side of (8) up to two
derivatives, the final form of the elastic bending energy density
of the filament is found to be

ψmic = ψ◦+ kcκ2 + ktτ
2 (9)

which is in terms of the curvature κ and torsion τ of the cen-
treline C . The configuration of the filament in the absence of
stretch is uniquely determined, up to a rigid transformation, by
the curvature κ and torsion τ of its centreline C .54 Notice that
expression (9) is valid on the interior of C for δ < s < L− δ . In
other words, the domain of interaction for molecules within the
distance δ from an end cap includes the molecules at that end cap.

This is not consistent with our underlying arguments. However,
since δ ≪ L, it is reasonable to assume that (9) is valid within the
whole domain 0 < s < L.

The sum of the quadratic terms on the right-hand side of the
elastic bending energy density (9) resembles the corresponding
bending free-energy functions for polymer chains,38,39,55 FtsZ
filaments,56 and helical supramolecules such as DNA.58,59 The
term ψ◦ in the right-hand side of (9) represents a general inhomo-
geneous stretching energy density, which describes elongation. As
shown in Eq. A.10 in Ref.,21 this term depends upon the molecu-
lar distribution D , as well as molecular dimensions. The bending
rigidity kc =

∂ 2ψ
∂κ2 κ=0

in (9) quantifies the resistance of the micellar
body against deviations from a uniform curvature, and takes pos-
itive values for stable aggregates to exist. Thus, mono-disperse
objects with uniform rigid shapes are expected to possess large
bending stiffness kc, while poly-disperse flexible structures that
are geometrically heterogeneous, are expected to have low val-
ues of this quantity. The torsional rigidity kt =

∂ 2ψ
∂τ2 τ=0

denotes
the resistance of the micellar body against the torsion of C at
each point. Both kc and kt , depend not only upon the size, com-
position, and distribution of amphiphiles along C , but also on the
temperature and the concentration of the solution.57

2.5 Elastic bending energy of an end cap

According to our micro-mechanical model,21 the elastic bending
energy of an end cap in an open micellar filament is determined
by the interactions between the molecules located at the end cap
and the ones located within the portion of the cylindrical body of
the filament that lies within the cutoff distance δ . The schematic
of the end point χχχL of C is shown in Figure 5. By assumptions i
and ii in section 2.1, each of the end caps is a hemisphere with
radius equal to the length of an amphiphile (Figure 2). Following
such assumptions, since the number of the molecules at the end
caps and their distribution are considered to be the same, the ge-
ometries of the two end caps are identical. Therefore, the elastic
bending energy of the two end caps is the same. In other words,
the only reason we can distinguish the end caps is because we
have oriented the filament. Thus, according to assumption iv,
if we flip the orientation, the elastic bending energy does not
change. Here, we derive an expression for the elastic bending
energy of the end cap at χχχL.

The elastic bending energy ψ̄ cap of the end cap at χχχL is given by

ψ̄ cap =
∫ π

2

0

∫

2π

0

1

2
Ec(θ ,φ)De dθ dφ , (10)

where

Ec(θ ,φ) =
∫ L

0

∫

2π

0

Ω̃

(

H̄1,H̄2,H̄3,H̄4

)

D(t)dη dt, (11)

in which H̄1 = ε−2|χχχL −χχχ(t)|2, H̄2 = (χχχL − χχχ(t)) ·d(L,θ), H̄3 =

(χχχL − χχχ(t)) ·d(t,η), and H̄4 = d(L,θ) ·d(t,η) with r̄ = χχχL − χχχ(t).
Upon replacing Ec(θ ,φ) from (11) to (10), and Taylor expanding
the right-hand side of (10) up to two derivatives, the specific steps
of which appear in Appendix 9.1, the final form of the elastic

1–17 | 5
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the particular form

m = kc(κ sinγ d1 +κ cosγ d2)+kt(τ + γ̇)d3, (22)

or, equivalently, in the Frenet frame, as

m = kcκ b+kt(τ + γ̇) t. (23)

The local equilibrium equations (21) together with the constitu-
tive model (22) constitute three vectorial equations, which incor-
porate the local basis {d1,d2,d3}, the internal force f, and the
internal moment m. Since d1, d2, and d3 are assumed to be or-
thonormal, and that d3 = χ̇χχ, only one of the directors {d1,d2}

needs to be found through (21) and (22). Hence, the system of
three vectorial equations (21) and (22) is determined. The arc-
length derivative of the internal moment m in (23) takes the form

ṁ = kcκ̇ b+kt τ̇ t+(kt −kc)κτ n. (24)

Using (24) in (21)2 while ignoring the effects of the body force γγγ

and body couple βββ , yields

f× t = kcκ̇ b+kt τ̇ t+(kt −kc)κτ n. (25)

Performing cross-product of both sides of (25) by the unit tangent
t, and using the vectorial identity u× (v×w) = (u ·w)v− (w ·v)v,
we obtain

f = ft t−kcκ̇ n+(kt −kc)κτ b, (26)

where ft = f · t. The strain energy F of the rod is then obtained
by71

F =
1

2

∫ L

0

m ·uds =
∫

C

ψcon. (27)

In view of (20) and (23), the strain-energy density ψcon in (27),
which is quadratic in the components of the twist vector u, is
obtained with the particular form

ψcon =
1

2
m ·u =

1

2
kc κ2 +

1

2
kt(τ + γ̇)2. (28)

According to the elementary mechanics of materials,69 if we as-
sume a linear isotropic elastic constitutive model for the rod, the
flexural rigidities k1 and k2, and the twisting stiffness kt can be
expressed in terms of the principal second moments of inertia I1

and I2 about the directors d1 and d2 (which denote the principal
axes of the cross-section of the rod), the polar moment of inertia
J, the elastic modulus E, and the shear modulus G, as k1 = EI1,
k2 = EI2, and k3 = JG. Alternatively, for a cylindrical rod of ra-
dius ξ , we can say I1 = I2 = πξ 4/4, and J = 2I1. Thus, kc and kt

can be expressed as kc = EI = πEξ 4/4 and kt = GJ = πGξ 4/2, re-
spectively. Hence, the resulting strain-energy density ψcon in (28)
takes the form of the commonly used function for linear isotropic
elastic cylindrical rods with no axial extension,65 as

ψcon =
1

2
EI κ2 +

1

2
JG(τ + γ̇)2 =

πξ 4E

8
κ2 +

πξ 4G

4
(τ + γ̇)2. (29)

In view of G = E/2(1+ν), (29) simplifies to

ψcon =
πξ 4E

8(1+ν)

(

(1+ν)κ2 +(τ + γ̇)2

)

. (30)

The elastic bending energy density ψcon in (30) contains two ma-
terial parameters: the elastic modulus E and the Poisson’s ratio
ν . These two material parameters can be measured through rel-
evant experiments. The majority of the previous studies on bio-
filaments take Poisson’s ratio ν as 0.5 by assuming incompress-
ibility of the filament.

4 Comparative merits of the two models

The continuum description of the elastic bending energy density
of micellar filaments is found to resemble the previously derived
micro-mechanical perspective. However, the terms correspond-
ing to torsion and twist are found to be different. The micro-
mechanical model considers the cross-section of the micelle as
a set of amphiphiles with a uniform angular distribution. The
amphiphiles are assumed to be free to rotate relative to each
other, and thus, their rotation within the cross-section (i.e., the
plane spanned by the unit normal n and binormal b) does not ex-
pend energy. Consequently, within the micro-mechanical setting,
the term γ̇ does not appear in the resulting elastic bending en-
ergy density function (9). However, in the continuum model, the
cross-section of the micellar filament is observed as a continuous
area whose material lines are not free to rotate relative to each
other. Hence, within the continuum mechanical setting, any rela-
tive rotation between the material fibers within the cross-section
has an energy cost. Thus, the relative rotation γ̇ does appear in
the continuum model. In other words, the continuum mechanical
model includes the relative rotation of the material line elements
within the cross-section through the term γ̇. Intuitively, the rota-
tion of a generic point on the cross-section of the filament is the
sum of the rotation of the centreline (represented by the torsion
τ), and the rotation of the cross-section relative to the centreline
(i.e., the twist angle of the cross-section about the centreline, de-
noted by the term γ̇). Consequently, the torsional rigidity kt in the
micro-mechanical model (9) is not the same as the macroscopic
twisting rigidity kt in the continuum model (28).

Contrary to the continuum mechanical model that does not
yield specific expressions for the flexural and twisting rigidities
of the micellar filament, the derivation of the micro-mechanical
model establishes unique relationships between those material
parameters of the micellar filament at any point, and the micro-
scopic features such as molecular size, molecular distribution, and
molecular interactions. Such relationships appear in the form of
integral representations for the elastic moduli of the micellar fila-
ment in terms of a generic interaction potential. To compute the
flexural and torsional rigidities k̄c and k̄t at the end caps, we apply
an anisotropic Gaussian potential, which describes the interaction
between axisymmetric rod-like molecules.60,61 However, a sim-
plifying assumption must be imposed: that the molecules com-
prising the filament are identical and uniformly distributed. The
resulting moduli are described in terms of several parameters.
Aside from the molecular distribution function, these parameters
fall into two separate categories: those appearing in the structure
of the interaction potential, and those determined by molecular
dimensions. The interaction between two rod-like molecules with
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may not be reached in high loading rates. Detailed studies of
viscoelastic properties of micellar filaments and associated me-
chanical models are also a subject for future research.

7 Concluding remarks

Although experiments reveal many geometric features of micel-
lar filaments, theoretical modeling is required to expand our un-
derstanding of these observed experimental systems, and to pro-
vide predictive tools for the kinetic features in similar studies.
In the present study, the previously developed micro-mechanical
model for the elasticity of micellar filaments was extended to ob-
tain the elastic bending energy of the hemispherical end caps in
open cylindrical micellar filaments. The resulting bending en-
ergy at each end cap was found to incorporate quadratic terms
in curvature and torsion at that point as well as a homogeneous
contribution. This term was found to be insensitive to the shape
of the end cap, and may have implicit dependence upon effects
like temperature, concentration, and electromagnetic fields.

We then applied constrained Cosserat rod theory to obtain the
macroscopic elastic bending energy of such nanostructures. While
the continuum mechanical approach provides macroscopic de-
scription of a micellar filament, the micro-mechanical approach
has a microscopic view of that medium, and provides expressions
for kinetic variables such as forces based on a selected interaction
potential between the molecules comprising the filament. Their
different natures notwithstanding, these two perspectives provide
complementary and consistent information when applied to the
same physical problem. As in the micro-mechanical model, in
the continuum mechanical model the elastic bending energy den-
sity of the filament was found to be quadratic in the curvature of
the centreline. However, unlike the micro-mechanical model, the
continuum description of the elastic bending energy of the fila-
ment was found to incorporate the twisting density rather than
the torsion of the centreline. In other words, we found that con-
tinuum mechanical model includes the relative rotation of the
material line elements within the cross-section.

Unlike the continuum mechanical model, the micro-mechanical
model yields integral representations for elastic modulus as well
as flexural and torsional rigidities in terms of the molecular in-
teractions, molecular distribution function, and molecular dimen-
sions. By applying an anisotropic Gaussian potential in the micro-
mechanical model, the elastic moduli of the filament were ob-
tained in terms of the density of the molecules and their dimen-
sions. Consistent with previous experimental observations, our
micro-mechanical model predicted a monotonic increase in the
local flexural rigidity of micellar filaments when the molecular
aspect ratio increases. Further, the elastic modulus of the micel-
lar filament was found to depend on the size of its constituent
molecules.

Finally, Atomic Force Microscopy was used to perform the in-
dentation test to measure the local elastic modulus of the fila-
ments on the micellar body and at the end points at the indenta-
tion frequency of 1 Hz. Our results indicated that the elastic mod-
ulus of the filament at the end caps (≈ 10.541±3.622 MPa) is at
least one order of magnitude higher than that within the cylin-
drical body (≈ 0.863±0.316 MPa). This finding indicates that

semi-flexible linear micelles have a relatively large local strain
energy at their end points, which might explain their tendency to
fuse to minimize the number of end caps. The effect of indenta-
tion frequency on the elastic modulus of micellar filaments was
also investigated. Indentation tests were performed at frequen-
cies as high as 200 Hz. Consistent with previous experimental
observations on the bulk shear modulus of micellar solutions, it
was found that the elastic modulus of a single micellar filament
at high loading rates is larger than that at low frequencies.
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9 Appendices

9.1 Expansion of the end cap energy

Here we present the expansion of (10) in powers of ε to ob-
tain (12). Using Eqs. (A.3) in Ref.21 and the definition t1 = t◦+sε,
the four arguments of the interaction potential in (7) are obtained
in terms of the arc-length s and the dimensionless parameter ε

as21,47

ε−2|χχχ(t◦)−χχχ(t1)|
2 = s2 +B1ε2s4 +o(ε2),

〈

χχχ(t◦)−χχχ(t1)
〉

·d(t◦,θ) = B2ε2s2 +o(ε2),

〈

χχχ(t◦)−χχχ(t1)
〉

·d(t1,η) = B3ε2s2 +o(ε2),

〈

d(t◦,θ) ·d(t1,η)
〉

= B◦+B4εs+B5ε2s2 +o(ε2), (37)

where B◦ = cos(θ − η), B1 = −κ2/12, B2 = −κ cosθ/2, B3 =

κ cosη/2, B4 = τ sin(θ − η) and 2B5 = τ̇ sin(θ − η) + 4B2B3 −

τ2
B◦. Let Ec(θ ,φ) in (10) be replaced from (11). Using the ex-

pansions (37) while replacing Ec(θ ,φ) from (7), and performing
the change of variables L− t◦ = εs (neglecting terms proportional
to ε3 and higher), the right-hand side of (10) takes the form

ψ̄ cap = ε

∫ L/ε

0

∫

2π

0

∫

2π

0

∫ π
2

0

Ω̃

(

ε−2|r̃(s)|2, r̃(s) · e(θ ,φ), r̃(s) ·d(s,η),

e(θ ,φ) ·d(s,η)
)

DeD(L− sε) dφ dθ dη ds, (38)

where r̃(s) = χχχ(L)− χχχ(L− sε). Applying the Taylor expansion for
Ω̃ and D in (38) results in

ψ̄ cap = ψ̄◦+ k̄cap
c κ2

c + k̄
cap
t τ2

c , (39)
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in which

ψ̄◦ = ε

∫ ℓ

0

∫

2π

0

∫

2π

0

∫ π
2

0

(

Ω̄(s)De

(

D(s)+ Ḋ(s)εs+ D̈(s)
ε2s2

2

)

− Ω̄2(s,θ ,φ ,η)cosφDe

(

D(s)εs+ Ḋ(s)ε2s2

)

+ Ω̄22(s,θ ,φ ,η)cos
2 φ DeD(s)ε2s2

)

dφ dθ dη ds,

k̄
cap
t =

−ε3

2

∫ ℓ

0

∫

2π

0

∫

2π

0

∫ π
2

0

DeD(s)s2
sinφ

(

cos(θ −η)Ω̄4(s,θ ,φ ,η)

− sin
2(θ −η)sinφ Ω̄44(s,θ ,φ ,η)

)

dφ dθ dη ds,

k̄
cap
c =

ε3

2

∫ ℓ

0

∫

2π

0

∫

2π

0

∫ π
2

0

−DeD(s)s2

( s2

6
Ω̄1(s,θ ,φ ,η)

+ sinφ cosθ cosη Ω̄4(s,θ ,φ ,η)
)

dφ dθ dη ds, (40)

where Ω̄(s,θ ,φ ,η) := Ω̃(s2,0,0,β ), Ω̄,i(s,θ ,φ ,η) := Ω̃,i(s
2,0,0,β ),

Ω̄,ii (s,θ ,φ ,η) := Ω̃,ii (s
2,0,0,β ), and β = sinφ cos(θ −η) for i ∈

{1,2,3,4}.

9.2 Integral representations in Eq. (35)

I1 =
∫

2π

0

∫

2π

0

∫ π
2

0

1
√

1−χ2 cos2(θ −η)sin
2 φ

dφ dθ dη ,

I2 =
∫

2π

0

∫

2π

0

∫ π
2

0

cos
2(θ −η)sin

2 φ
√

1−χ2 cos2(θ −η)sin
2 φ

dφ dθ dη ,

I3 =
∫

2π

0

∫

2π

0

∫ π
2

0

cosη cosθ cos(θ −η)sin
2 φ

√

1−χ2 cos2(θ −η)sin
2 φ

dφ dθ dη . (41)

9.3 Integral representations in Eq. (36)

J1 =
∫

2π

0

∫

2π

0

∫ π
2

0

cos
2 φ

√

1−χ2 cos2(θ −η)sin
2 φ

1−χ cos(θ −η)sinφ
dφ dθ dη ,

J2 =
∫

2π

0

∫

2π

0

∫ π
2

0

cos
2 φ

√

1−χ2 cos2(θ −η)sin
2 φ

1+χ cos(θ −η)sinφ
dφ dθ dη ,

J3 =
∫

2π

0

∫

2π

0

∫ π
2

0

cos
2 φ

√

1−χ2 cos2(θ −η)sin
2 φ

χ ′ cos(θ −η)sinφ +1
dφ dθ dη ,

J4 =
∫

2π

0

∫

2π

0

∫ π
2

0

cos
2 φ

√

1−χ2 cos2(θ −η)sin
2 φ

χ ′ cos(θ −η)sinφ −1
dφ dθ dη ,

J5 =
∫

2π

0

∫

2π

0

∫ π
2

0

√

1−χ2 cos2(θ −η)sin
2 φ dφ dθ dη . (42)
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