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ABSTRACT The direct separation of variables is used to obtain the closed-form solutions for the
free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived
by using three different methods. It is found that the deflection can be expressed by means of the
four characteristic roots and the two rotations should be expressed by all the six characteristic
roots, which is the particularity of Mindlin plate theory. And the closed-form solutions, which
satisfy two of the three governing equations and all boundary conditions and are accurate for
rectangular plates with moderate thickness, are derived for any combinations of simply supported
and clamped edges. The free edges can also be dealt with if the other pair of opposite edges is simply
supported. The present results agree well with results published previously by other methods for
different aspect ratios and relative thickness.
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I. INTRODUCTION
The rectangular plate is an important design element in many branches of modern technology,

namely mechanical, aerospace, electronic, marine, optical, nuclear and structural engineering. Thus,
the knowledge of its free vibration behaviors is significant to the structural designers. The published
works pertaining to the vibrations of such plates are abundant[1,2]. The classical methods focus on
thin plates and assume a straight line normal to an undeformed middle surface to remain straight and
normal after middle surface deformation. But the neglect of transverse shear deformation and rotary
inertia in thick plate analysis results in an overestimation of natural frequency and buckling load and
underestimation of bending deflection.

The effect of transverse shear deformation and rotary inertia was considered by Reissner[3] and
Mindlin[4] in an effort to develop a more accurate thick plate model. In this first-order shear deformation
theory (FSDT), it is assumed that a straight line originally normal to the middle surface remains straight
but not generally normal to the middle surface after deformation. This relaxation leads to two rotational
degrees of freedom which allow constant transverse shear strain distribution through the thickness. A
shear correction factor was derived to account for the deficiency of linear in-plane displacements through
the thickness and non-vanishing transverse shear strains on the top and bottom surfaces. The assumption
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of constant strain and linear in-plane displacement limits the application of the Reissner-Mindlin model
to the plates with moderate thickness.

Due to the increase of the number of governing equations and independent coordinates, it is more
difficult to obtain the exact solutions for the free vibrations of rectangular plate based on FSDT compared
with thin plate. For this reason many efforts were devoted to develop approximate solutions with a high
level of accuracy based on Mindlin plate theory (MPT). FEM, finite strip method, spline strip method,
Rayleigh-Ritz method and collocation methods have been widely used to study the free vibrations of
Mindlin rectangular plate. Liew et al.[2] have presented a comprehensive literature survey on the research
works up to 1994 on vibrations of thick plates. In the following literature review, more attentions are
paid to the works after 1994, but some literatures in Ref.[2] are quoted here to show the representative
methods.

The methods of studying the free vibrations ofMindlin rectangular plates include analytical approach-
es[5–13], as well as numerical procedures[14–26]. Endo and Kimura[5] proposed a two-variable alternative
formulation for vibrations of Mindlin plates, in which the bending deflection is regarded as a fundamental
variable in place of the rotation angle due to bending. Shimpi and Patel[6] proposed another two-variable
refined plate theory which uses the bending component and the shearing component of lateral deflections
w as the fundamental variables. Hashemi and Arsanjani[7] studied the exact characteristic equations for
some boundary condition combinations wherein at least two opposite edges are simply supported. In fact,
for the case with at least one pair of simply-supported opposite edges, an easier solution method based on
the inverse method had been presented by Brunelle[8]. Gorman employed the superposition methods to
study point supported[9] and completely free[10] Mindlin plates, and the solutions satisfy the governing
differential equations exactly and the boundary conditions approximately. Wang[11] presented an explicit
formula for the natural frequencies of simply-supported Mindlin plates in terms of the corresponding
thin plate frequencies. Xiang[12,13] employed the Levy solution approach associated with the state space
technique to derive the analytical solutions for the vibrations of rectangular Mindlin plates.

The most widely used numerical procedure is Rayleigh-Ritz method adopting different kinds of
admissible functions. Liew et al.[14–16] adopted two dimensional polynomials and one dimensional Gram-
Schmidt polynomials as the admissible functions of the plate, and obtained excellent results. Cheung
and Zhou[17] studied the vibrations of moderately thick rectangular Mindlin plates in terms of a set
of static Timoshenko beam functions made up of the static solutions of a Timoshenko beam under a
series of sinusoidal distributed loads. Shen et al.[18] developed a new set of admissible functions for the
free vibration analyses of moderately thick plates with four free edges, and the admissible functions
satisfy both geometrical and natural boundary conditions. Liu and Liew[19] developed a two dimensional
differential quadrature element method (DQEM) for the free vibrations of thick plates, and a semi-
analytical DQEM was given by Malekzadeh et al.[20]. Hou et al.[21] gave a DSC-Ritz method which takes
the advantage of both the local bases of the discrete singular convolution (DSC) algorithm and the pb-2
Ritz boundary functions to arrive at a new approach. Diaz-Contreras and Nomura[22] derived numerical
Green’s functions by using the eigenfunction expansion method, and Sakiyama and Huang[23] presented
a Green function method for analyzing the free vibration of thin and moderately thick rectangular plates
with arbitrary variable thickness. Lee and Kim[24] gave an iterative method in which Mindlin plate
characteristic functions were derived in general forms by the Kantorovich method[25] initially starting
with Timoshenko beam functions consistent with the boundary conditions of the plate, and confirmed
that the iteration method is superior to the Rayleigh-Ritz analysis or the FEM analysis in accuracy
and computational efficiency. Ma and Ang[26] studied the free vibrations of Mindlin plates based on
the relative displacement plate element.

To date, the exact solutions for the free vibrations have been obtained for the thick rectangular
plates with four simply supported edges[27,28] and with at least two simply-supported opposite edges[7].
It is well-known that the characteristic equations are the most important for finding exact solutions by
means of the direct separation of variables, and there are few literatures pertaining to this subject. It is
noteworthy that the closed form solutions are valuable in studying the effects of material and structural
parameters on the mechanical properties, but the closed-form solution are available in the literature
only for the plates with at least two opposite edges simply supported.

In this context, the objective of present work is to study the characteristic equations, to investigate
the reasons why the numbers of characteristic roots employed to determine the deflection and the
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rotations are different as in literature, and to obtain the closed-form solutions for the free vibrations
of rectangular Mindlin plates with any combinations of simply supported and clamped edges.

II. GOVERNING EQUATIONS
Consider a thick rectangular plate of length a,

width b and uniform thickness h, oriented so that its
undeformed middle surface contains the x and y axes
of a Cartesian coordinate system (x, y, z), as shown
in Fig.1. Three fundamental variables are used to
express the displacements in x, y and z directions in
MPT, which are

Fig. 1 The coordinates of the rectangular plate.

u = −zψx (x, y, z, t) , v = −zψy (x, y, z, t) , w = w (x, y, z, t) (1)

where t is the time, w the transverse deflection of the middle surface, ψx and ψy are the rotations of a
normal line due to plate bending. The resultant bending moments Mx and My, the twisting moments
Mxy, and the transverse shear forces Qx and Qy can be obtained by integrating the stresses and the
moment of stresses through the thickness of the plate, namely

Mx = −D

(
∂ψx

∂x
+ ν

∂ψy

∂y

)
, My = −D

(
∂ψy

∂y
+ ν

∂ψx

∂x

)
(2a)

Mxy = −
1

2
(1− ν)D

(
∂ψx

∂y
+
∂ψy

∂x

)
(2b)

Qx = C

(
∂w

∂x
− ψx

)
, Qy = C

(
∂w

∂y
− ψy

)
(2c)

where ν, D = Eh3/[12(1− ν2)] and C = κGh are Poisson’s ratio, the flexural rigidity and the shear
rigidity respectively, here κ is the shear correction factor. G = E/[2(1 + ν)] is the shear modulus.

The governing equations for the free vibrations are given by

−
∂Mx

∂x
−
∂Mxy

∂y
+Qx − ρI

∂2ψx

∂t2
= 0 (3a)

−
∂Mxy

∂x
−
∂My

∂y
+Qy − ρI

∂2ψy

∂t2
= 0 (3b)

∂Qx

∂x
+
∂Qy

∂y
− ρh

∂2w

∂t2
= 0 (3c)

where I = h3/12 is moment of inertia. For harmonic normal vibration, it is assumed that

ψx = Ψx (x, y) eiωt, ψy = Ψy (x, y) eiωt, w = W (x, y) eiωt (4)

Substitution of Eqs.(4) into Eqs.(2) and the resulting Eqs.(2) into Eqs.(3) lead to the governing equations
in terms of displacements as

∂2Ψx

∂x2
+ ν1

∂2Ψx

∂y2
+ ν2

∂2Ψy

∂x∂y
+
C

D

(
∂W

∂x
− Ψx

)
+
γ4

D
Ψx = 0 (5a)

∂2Ψy

∂y2
+ ν1

∂2Ψy

∂x2
+ ν2

∂2Ψx

∂x∂y
+
C

D

(
∂W

∂y
− Ψy

)
+
γ4

D
Ψy = 0 (5b)

∂2W

∂x2
+
∂2W

∂y2
−

(
∂Ψx

∂x
+
∂Ψy

∂y

)
+
β4

C
W = 0 (5c)

where

ν1 =
1− ν

2
, ν2 =

1 + ν

2
, γ4 = ω2ρI, β4 = ω2ρh (6)
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III. CHARACTERISTIC EQUATIONS
The characteristic equation method is usually used to obtain the general solutions for homogeneous

ordinary equations. Here the authors of this paper use it to obtain the general solutions for vibrating
Mindlin plates governed by partial differential equations. The most important step of using the direct
separation of variables to solve Eqs.(5) is to obtain its characteristic equations first. In what follows,
three different methods are used to derive the characteristic equations.

The first is the algebraic method wherein the particular solutions of Eqs.(5) are written as

W (x, y) = peμxeλy, Ψx (x, y) = qeμxeλy, Ψy (x, y) = reμxeλy (7)

where μ and λ are the eigenvalues with respect to coordinates x and y respectively. Substituting Eqs.(7)
into Eqs.(5) and according to the condition of nontrivial solution for q, q and r, one can obtain a
characteristic equation including the sixth power of μ and λ as follows[(

μ2 + λ2
) D
C
ν1 +B

]
×

[(
μ2 + λ2

)2
+A

(
μ2 + λ2

)
+B

β4

D

]
= 0 (8)

where

A =
β4

C
+
γ4

D
, B =

γ4

C
− 1

Therefore there are six roots for μ and λ respectively by which the general expressions of the deflection
W (x,y) and the rotations Ψx and Ψy may be determined for isotropic and composite materials, and it
is not difficult to solve the roots of Eq.(8) .

The second is the eliminating method. To eliminate Ψx and Ψy from Eqs.(5), one can obtain

∇
4W +A∇2W +B

β4

D
W = 0 (9)

Substitution of Eq.(7a) into Eq.(9) leads to a characteristic equation including the fourth power of μ
and λ as (

μ2 + λ2
)2

+A
(
μ2 + λ2

)
+B

β4

D
= 0 (10)

It is noteworthy that Eq.(10) is a factor of Eq.(8), which means the roots of Eq.(10) are also the roots
of Eq.(8). It follows from Eqs.(9) and (10) that the general expression of deflection W (x,y) can be
determined by using the roots of Eq.(10) or only four roots of Eq.(8). This approach is consistent with
the solution methods of thin plates.

The third is also the eliminating method. EliminatingW (x,y) from Eqs.(5) results in two independent
equations as follows:

∇
4Ψ +A∇2Ψ +B

β4

D
Ψ = 0 (11)

(
D

C
ν1∇

2 +B

)
∂Ψx

∂y
=

(
D

C
ν1∇

2 +B

)
∂Ψy

∂x
(12)

where

Ψ =
∂Ψx

∂x
+
∂Ψy

∂y

Equation (11) can be rewritten as

(
∇

4 +A∇2 +B
) ∂Ψx

∂x
= −

(
∇

4 +A∇2 +B
) ∂Ψy

∂y
(13)

To eliminate Ψy or Ψx from Eqs.(12) and (13), one can obtain

(
∇

4 +A∇2 +B
)(D

C
ν1∇

2 +B

)
∇

2Ψx = 0 (14a)

LiuBo
Pencil
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or

(
∇

4 +A∇2 +B
)(D

C
ν1∇

2 +B

)
∇

2Ψy = 0 (14b)

Substituting Eq.(7b) into Eq.(14a) or Eq.(7c) into Eq.(14b) yields a characteristic equation[(
μ2 + λ2

)2
+A

(
μ2 + λ2

)
+B

]
×

[
D

C
ν1

(
μ2 + λ2

)
+B

]
×

(
μ2 + λ2

)
= 0 (15)

which includes the eighth power of μ and λ, and Eq.(8) is a factor of Eq.(15). Without considering the
factor

(
μ2 + λ2

)
= 0, Eq.(8) and Eq.(15) are the same, and Ψx and Ψy should be determined by using the

six roots of Eq.(15). It is worthy to recall that the roots of Eq.(10) or only four roots of Eq.(8) are needed
to express the deflection W (x,y). As is well known, the characteristic equations obtained by elimination
methods and algebraic method should be the same for simultaneous linear differential equations. But
it is apparent from above derivation that the different characteristic equations are obtained by using
three different methods, which is the particularity of Mindlin plate theory (MPT).

In Eqs.(8) and (15), there is a common factor as follows

D

C
ν1(μ

2 + λ2) +B = 0 (16)

which is identical with the characteristic equation for the free vibration of membrane on elastic foun-
dation. For the free vibrations of thick plates with four edges simply supported, the roots of Eq.(16)
have no influence on the two rotations Ψx and Ψy

[8], which means the defection and the rotations can be
expressed by the same four characteristic roots. In point of fact, accurate results can also be obtained
for moderately thick plates with other boundary combinations through W (x,y), Ψx and Ψy determined
by the four roots of Eq.(10), this will be presented below.

IV. NATURAL MODES
For simplicity and showing a practical approach, the natural modeW (x,y), Ψx andΨy are represented

only by the four roots of Eq.(10). The roots of characteristic Eq.(10) have the form

μ2 + λ2 = −R2
1 and μ2 + λ2 = R2

2 (17)

where

R2
1 =

β4

C
+
γ4

D
+

√(
β4

C
−
γ4

D

)2

+
4β4

D
, R2

2 = −

(
β4

C
+
γ4

D

)
+

√(
β4

C
−
γ4

D

)2

+
4β4

D

Solving Eqs.(17), one can have

μ1,2 = ±iΩ, μ3,4 = ±Λ (18a)

λ1,2 = ±iT, λ3,4 = ±Z (18b)

where

Ω =
√
R2

1 + λ2, Λ =
√
R2

2 − λ
2 (19a)

T =
√
R2

1 + μ2, Z =
√
R2

2 − μ
2 (19b)

Thus the general expression in the form of the separation of variables for W (x,y) is

W (x, y) = φ (x)ψ (y) (20)

where

φ (x) = A1 cos(Ωx) +B1 sin(Ωx) + C1 cosh(Λx) +D1 sinh(Λx) (21)

ψ (y) = E1 cos(Ty) + F1 sin(Ty) +G1 cosh(Zy) +H1 sinh(Zy) (22)
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According to the assumption of MPT, Ψx and Ψy can be assumed to be

Ψx (x, y) = g (x)ψ (y) , Ψy (x, y) = φ (x) h (y) (23)

where

g (x) = q1Ω [−A1 sin(Ωx) +B1 cos(Ωx)] + q2Λ [C1 sinh(Λx) +D1 cosh(Λx)] (24)

h (y) = r1T [−E1 sin(Ty) + F1 cos(Ty)] + r2Z [G1 sinh(Zy) +H1 cosh(Zy)] (25)

from which one can see that Ψx = q∂W/∂x, Ψy = r∂W/∂y, and the case q = r = 1 corresponds to thin
plate theory. The coefficients q and r can be obtained by substituting Eqs.(20) and (23) into Eqs.(5a)
and (5b)

q1 = r1 =

[
1−

ν2D

C

(
R2

1 −
β4

C

)][
1 +

ν1D

C

(
R2

1 −
γ4

ν1D

)]−1

(26a)

q2 = r2 =

[
1 +

ν2D

C

(
R2

2 +
β4

C

)][
1−

ν1D

C

(
R2

2 +
γ4

ν1D

)]−1

(26b)

It is apparent that if C → ∞ and ρI → 0, q1 = r1 = q2 = r2 = 1 and one has the solutions of thin
plate problems. From above derivation it can be seen that W (x,y), Ψx and Ψy defined by Eqs.(20) and
(23) satisfy Eqs.(9), (5a) and (5b). And Eq.(9) can be considered as an extension of thin plate theory
based on Kirchhoff assumption.

V. BOUNDARY CONDITIONS
In the natural mode functions given in Eqs.(20) and (23), there are altogether eight integral constants,

which can be determined by eight boundary conditions. There are three boundary conditions for each
edge of rectangular Mindlin plate, but all twelve boundary conditions of rectangular plate with simply-
supported and clamped edges can be satisfied by the solutions (20) and (23), because Ψs = 0 (s denotes
the tangent of the edge) is satisfied naturally. As for the free edge, the normal bending moment and
total shear force are assumed to be zeros here. This approach is the same as that in thin plates, and is
more reasonable and more accurate for practical problems compared with the original approach.
(1) Simply-supported edge

The other two simple support boundary conditions except Ψs = 0 can be written as

W = 0,
∂Ψn

∂n
= 0 (27)

where n denotes the normal of the edge.
(2) Clamped edge

The other two clamped boundary conditions except Ψs = 0 have the form

W = 0, Ψn = 0 (28)

(3) Free edge
The three free boundary conditions are

Mn = 0, Mns = 0, Qn = 0 (29)

and none of them can be satisfied naturally. Therefore the same approach as in thin plate theory must
be used here, that is

Mn = 0, Qn +
∂Mns

∂s
= 0 (30)

which can be further rewritten in terms of displacements as

∂Ψn

∂n
+ ν

∂Ψs

∂s
= 0,

∂2Ψn

∂n2
+ (1− ν)

∂2Ψn

∂s2
+
∂2Ψs

∂n∂s
+
ω2ρI

D
Ψs = 0 (31)

It should be pointed out again that the closed-form solutions can be obtained for any combinations
of simply-supported and clamped edges, which is done below. The free edges can also be dealt with if
another two opposite edges are simply supported.
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VI. EIGENVALUE EQUATIONS AND EIGENFUNCTIONS
Regardless of the two opposite edges being S-C, or others, the eigenvalue equations and the corre-

sponding eigenfunctions can be derived in the same way, so only the case S-C is analyzed here. Assume
the edge x = 0 is simply supported (S) and the edge x = a is clamped (C), the boundary conditions
(S-C) have the form

φ(0) = 0, g′(0) = 0; φ(a) = 0, g(a) = 0 (32)

Substitution of Eqs.(21) and (24) into Eq.(32) yields

A1 = C1 = 0 (33)

and [
sin(Ωa) sinh(Λa)

q1Ω cos(Ωa) q2Λ cosh(Λa)

] [
B1

D1

]
=

[
0
0

]
(34)

Due to the conditions of nontrivial solutions, the eigenvalue equation can be obtained

q2Λ tan(Ωa) = q1Ω tanh(Λa) (35)

Using Eq.(21) in conjunction with Eq.(34a), one can obtain the normal eigenfunction as

φ (x) = sin(Ωx) −
sin(Ωa)

sinh(Λa)
sinh(Λx) (36)

Similarly, the eigenvalue equations and eigenfunctions can also be obtained for any combination of
simply-supported and clamped edges, including the free edge when the other pair of opposite edges
is simply supported. Some closed-form eigensolutions are listed in Table 1. For any two eigenvalue
equations in Table 1, there are five quantities, i.e., ω, Ω, Λ, T and Z, so we need additional three
relations. One can obtain a relation from Eq.(19a) as

Ω2 + Λ2 = R2
1 +R2

2 (37)

And substitution of μ = iΩ into Eq.(19b) results in another two relations

T =
√
R2

1 −Ω
2, Z =

√
R2

2 +Ω2 (38)

Solving Eqs.(37) and (38) together with the two eigenvalue equations in Table 1, one can obtain
the natural frequencies, the eigenvalues and the normal eigenfunctions. And the normal modes are
determined by the multiplications of the two normal eigenfunctions, see Eqs.(20) and (23).

VII. NUMERICAL COMPARISONS
Numerical calculations have been carried out for several different combinations of clamped, simply

supported and free edge conditions. The frequencies for the plates with four simply-supported edges
as well as the cases without simply-supported opposite edges are compared with Liew’s[14] in which
the pb-2 Rayleigh-Ritz method was adopted, as shown in Tables 2-5 wherein the frequency parameter
λ = (ω2b2/π2)

√
ρh/D are given for relative thickness ratios h/b = 0.001, 0.1 and 0.2, aspect ratio

a/b = 0.4, 0.6, Poisson’s ratio ν = 0.3 and κ = 5/6. MP denotes the present results. It follows from
Table 2 that the present results are exact for the plates with four edges simply supported, which means
the three governing equations are satisfied exactly.

The results for the plates with two opposite edges simply supported are compared with Hashemi’s[7],
as shown in Tables 6-10 wherein the frequency parameter λ = (ω2a2/π2)

√
ρh/D are presented. The

relative thickness ratios h/a = 0.01, 0.1 and 0.2 and the aspect ratio b/a = 0.4, 0.5 are considered, and
the shear correction factor κ = 0.86667.

It is shown from these comparisons that the present method is accurate enough for practical appli-
cation in which the relative error for natural frequencies is usually assumed to be less than 5%. But the
relative differences of some frequencies seem to be larger for the clamped thick plates with h/a = 0.5 or
1/3 (see Table 3). If the free edge is involved, the relative differences also seem to be larger (see Table
9), that is because the different free boundary conditions are used in two methods.
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Table 1. The eigenfunctions and eigenvalue equations

Eigenvalue equations
q2Λ tan(Ωa) = q1Ω tanh(Λa), q2Z tan(Tb) = q1T tanh(Zb)

SSCC Normal eigenfunctions
φ(x) = sin(Ωx)− [sin(Ωa)/ sinh(Λa)] sinh(Λx)
ψ(y) = sin(Ty)− [sin(Tb)/ sinh(Zb)] sinh(Zy)

Eigenvalue equations
q2Λ tan(Ωa) = q1Ω tanh(Λa)

2(q2Z)(q1T )[sinh−1(Zb)− cos(Tb) coth(Zb)] + [(q2Z)2 − (q1T )2] sin(Tb) = 0
SCCC Normal eigenfunctions

φ(x) = sin(Ωx)− [sin(Ωa)/sinh(Λa)] sinh(Λx)
ψ(y) = − cos(Ty) + θ1Π sin(Ty) + cosh(Zy)−Π sinh(Zy)

Π = [cos(Ta)− cosh(Za)]/[θ1 sin(Ta)− sinh(Za)], θ1 = q2Z/(q1T )

Eigenvalue equations
2(q2Λ)(q1Ω)[sinh−1(Λa)− cos(Ωa) coth(Λa)] + [(q2Λ)2 − (q1Ω)2] sin(Ωa) = 0
2(q2Z)(q1T )[sinh−1(Zb)− cos(Tb) coth(Zb)] + [(q2Z)2 − (q1T )2] sin(Tb) = 0

CCCC Normal eigenfunctions
φ(x) = − cos(Ωx) + θ2Ξ sin(Ωx) + cosh(Λx)− Ξ sinh(Λx)

Ξ = [cos(Ωa)− cosh(Λa)]/[θ2 sin(Ωa)− sinh(Λa)], θ2 = q2Λ/(q1Ω)
ψ(y) = − cos(Ty) + θ1Π sin(Ty) + cosh(Zy)−Π sinh(Zy)

Eigenvalue equations
(β2/α2) tan(Tb) = (β1/α1) tanh(Zb)

α1 = q1T
2 + νq1Ω

2, α2 = q2Z
2 − νq1Ω

2

SSSF β1 = q1T [T 2 + (1− ν)Ω2 − γ4/D] + q1TΩ
2

β2 = q2Z[Z2 − (1− ν)Ω2 + γ4/D]− q1ZΩ
2

Normal eigenfunctions
ψ(y) = sin(Ty) + {q2α1 sin(Tb)/[q1α2 sinh(Zb)]} sinh(Zy)

Eigenvalue equations
(α2β2 + θ1α1β1) sinh−1(Zb) + (θ1α2β1 + α1β2) cos(Tb) coth(Zb) = (θ1α1β2 − α2β1) sin(Tb)

SCSF Normal eigenfunctions
ψ(y) = χ1 cos(Ty)− θ1 sin(Ty)− θ1 cosh(Zy) + sinh(Zy)

χ1 = [α2 sinh(Zb) + θ1α1 sin(Tb)]/[α2 cosh(Zb) + α1 cos(Tb)]

Eigenvalue equations
2α1β1α2β2[sinh−1(Zb)− coth(Zb) cos(Tb)] = (α2

2β
2

1 − α
2

1β
2

2) sin(Tb)
SFSF Normal eigenfunctions

ψ(y) = −k1γ1 cos(Ty) + k2 sin(Ty)− γ1 cosh(Zy) + sinh(Zy), k1 = α2/α1

γ1 = [−α1k2 sin(Tb) + α2 sinh(Zb)]/[−α2 cos(Tb) + α2 cosh(Zb)], k2 = β2/β1

VIII. CONCLUSIONS
The characteristic equations for the free vibrations of rectangular Mindlin plate were investigated

extensively. Simple but useful closed-form solutions were obtained and can be used to predict the
frequencies for the rectangular plates with any combinations of simply supported and clamped edges.
The free edge can also be dealt with by means of present approach when the other two opposite edges
are simply supported.

The present results agree well with available exact results and the approximate results by Rayliegh-
Ritz method for different aspect ratios and relative thickness, which validates the correctness and the
practicableness of the present method and solutions.
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Table 2. The first eight frequencies λ = (ω2b2/π2)
�
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Table 5. The first eight frequencies λ = (ω2b2/π2)
�

ρh/D for case CCSS

a/b h/b 1 2 3 4 5 6 7 8
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�

ρh/D for case SCSS

b/a h/a 1 2 3 4 5 6 7 8
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Table 8. The first eight frequencies λ = (ω2a2/π2)
�

ρh/D for case SSSF

b/a h/a 1 2 3 4 5 6 7 8

0.4
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