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FIGURE 6.23
Numerical solutions for the shear stress at the section x = L/2 of the sandwich composite beam.

6.2.5 Remarks

In this section, the penalty method is used to impose the essential boundary and continuity
conditions in the EFG method that uses MLS shape functions. It overcomes the drawbacks
induced by the use of the method of Lagrange multipliers. The main advantage of the use
of the penalty method is that it leads to a positive definite and banded stiffness matrix.
The stiffness matrix also has a smaller dimension than those using Lagrangian multipliers,
which improves computational efficiency. Numerical examples have demonstrated the
performance of the penalty method.

The penalty method was also applied for the treatment of problems with material
discontinuity. System equations for multibody problems are derived, and implemented
in stress analysis in a composite beam. The numerical results agree well with the analytical
and FEM solutions. This demonstrates the potential for application of the penalty method
in MFree methods for analyzing structures of composite materials.

The methods for determining the penalty factor were given in Section 4.3.3. More dis-
cussion on this is provided in Example 6.12 in Section 6.4.5, when we deal with nonlinear
problems.

6.3 Constrained Moving Least Square Method for EFG

As discussed, the root of the difficulty in imposing essential boundary conditions is the
use of MLS approximation, which produces shape functions that do not satisfy the Kronecker
delta function property. In areas that are far from the essential boundaries, the MLS shape
function works just fine. The problems arise only for the nodes on the essential boundaries.
If a procedure could be developed that produces MLS shape functions that possess the
Kronecker delta function property only for the nodes on the essential boundaries, the

© 2003 by CRC Press LL.C



problems would be overcome. The following presents an approach that uses constraints
in the process of MLS approximation. The approach was originally proposed by G. R. Liu
and Yang in 1999 and is termed the constrained moving least squares (CMLS) method.
CMLS was first detailed in Yang’s master’s.

The basic idea of the CMLS is to impose the constraints of essential boundary conditions
in the stage of shape function construction, so that the unconstrained Galerkin weak form
can be used to produce a well-behaved equation system. The CMLS enforces the MLS
approximation to pass through some desired values of the field variables at nodes at which
the essential boundary condition is given. Thus, the approximation functions so obtained
have the property of the delta function at the nodes only on the essential boundaries, and
the treatment of the boundary conditions at the nodes can be as simple as in FEM. As
shown later in this section, the system matrix established is banded, positive definite, and
is of the same dimension as the equations produced by FEM.

6.3.1 Formulation

Let u(x) be a function defined in the domain € and its approximation be " (x). We are to
approximate the function at a point of interest x using # nodes in the support domain of
x. The coordinates of the # nodes are defined by x,...,x,, where x; = (x5, ;) in two
dimensions. The nodal values of the function are denoted as

U, = {1ty ... U} (6.77)

The function at point x is approximated using m terms of monomials, i.e.,

W'(x) = ¥ pi00a;() =p’ ()a(x) (6.78)
]

where p(x) is a vector of monomial basis and a(x) is a vector of coefficients, which are the
same as those in Equation 5.41.

Assume the approximation function u"(x) is required to be equal to the nodal values at
k(k £ n, k < m) constrained nodes, which is written as a vector:

[ — .7
w, = {1 Uz ... Uk} (6.79)
The nodal values of u; at the remaining unconstrained nodes are written as
W, = {Uper Yo oo Un} (6.80)

Write Equation 6.78 in the form of subvectors as follows:

w'(x) = p'(0a = {p;(x) pi(x)}{::} (6.81)

where
pr(0) = {p100) pa(x) .. pi(0)} (6.82)
Pr(X) = {Pea () Pra(®) .. pu()} (6.83)
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and
a, ={a a, ... ak}T (6.84)

a, = ey G oo An} (6.85)

We can then express k coefficients of a, say, a, = [4, 4, ... ak]T, in terms of the rest of the
coefficients of a, that is, a,, = [@,; ... am]T, from the constraint equations at k constrained
nodes at the essential boundary. These constraint equations can be expressed as

u, = {u"0q) W'o)W} (6.86)

Substitute Equation 6.78 into Equation 6.86, and form subvectors as follows:

u"(x) = p'(x)a(x) = {p; pi}{ } (6.87)

ay
a,
we obtain

ub = Pbab + Pmam (688)

where the moment matrix P, is given by

pi(x1) pa(X1) o px)| | ps(X0)
p, = |P1x2) p(x2) o pCe)| - Py (X2) (6.89)

pi(X) P  px| Py (X6

Pen(X) 0 pu(x)|  |pm(X0)
p = [Pra) o pa(R)| = |[Pn(R2) (6.90)
Pea(X0) o pu(x)| | Pm(Xe)

We can then express k coefficients of a, in terms of the rest of the coefficients of a,, using
Equation 6.88, i.e.,

a,=C;u,—-C,a, (6.91)

where
C, =P, (6.92)
C,=P,'P, (6.93)

The vector of coefficients, a,,, is determined by the conventional MLS method over the
“free” (unconstrained) nodes. At each free point x corresponding to u,, a,, are chosen to
minimize the weighted residual (note that a, is determined by Equation 6.91 and should
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be considered a constant in the weighted residual):

J=Y Wx-x)lp (xpa(x)-u]’ (6.94)

I=k+1

where n — k is the number of free nodes, w(x — x;) is a weight function, and u; is the nodal
value atnode I (I=k+1, k+2,...,n). The minimization of | with respect to coefficients a,,
results in the following linear system:

A (x)-a, + Ay,(x)-a,, = B(x)u,, (6.95)
where
Ax) = Y Wi0p.(xDPp; (x1) (6.96)
I=k+1
Ay(x) = Y Wi0P(x)Pm(X) (6.97)
I=k+1
B(X) = [Wi(X)Pn(X1), Wa(X)Pm(X2), e, Wa(X) P (X, )] (6.98)
and
Wz(x) = W(x -x;) (6.99)

From Equations 6.91 and 6.95, we can obtain a, and a,,

a, = E;u, + E,u,, (6.100)
and
a,, = Dju, + D,u,, (6.101)
where
D =(AC-A) A C (6.102)
D,=—(A;-C,— A)"B (6.103)
E,=C, - C,D, (6.104)
E,=-C,-D, (6.105)

The coefficient vector a can be expressed as

a-= {a”} - [El} u, + [EZ} U, = {El EZHH}’} (6.106)
] | " |p, D, D,||u,

Hence, we have
a u
u"(x) = pT(x)a(x) = [pr pi]{ b} = [ps pi][E1 EZH ”} (6.107)
a, D, D,||u,
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or

u'(x) = [0, ¢m]{:”} = QU, (6.108)
where
¢, = pyE; +p,D; (6.109)
and
0, = p;E;+p,D; (6.110)

To determine the derivatives from the displacement Equation 6.108, it is necessary to
obtain the shape function derivatives. The spatial derivatives of the shape functions are
obtained by

¢,x = [¢b,x ¢m,x] (6111)
where
O = PiiEr+ Py Ery+PrxDi+prDis (6.112)
and
Ox = PoEat+PiEo+ Pr Do+ PrDs (6.113)

6.3.2 Constrained Surfaces Generated by CMLS

To verify CMLS, two examples are presented, the first to show how the CMLS works in
surface fitting with or without constraints on the boundary using the formulation devel-
oped in the previous subsection.

Example 6.7 Linear Constraint

The first example examines a flat surface fitted before and after a linear constraint is
imposed, and the results are shown in Figures 6.24 and 6.25. The surface is parallel to the
x-y plane before the application of a linear constraint to the nodes on the boundary (see
Figure 6.24). After the imposition of the constraint, the flat surface follows these values
at the boundary, as shown in Figure 6.25. This demonstrates that CMLS works well in
imposing linear constraints on nodes.

Example 6.8 Parabolic Constraint
The second example examines the same situation, but a parabolic constraint is considered.
The results are shown in Figures 6.26 and 6.27. These two examples demonstrate that the
surfaces are enforced to pass through the constraint points, while the remaining part of
the surface in the position far from the constraint points still possesses the property of a
conventional MLS surface. This further confirms that the use of the CMLS algorithm works
well in the imposition of constraints on boundary nodes.

It should be noted that the requirement for the order of the monomials in the basis used
in CMLS is higher than that of MLS because some of the coefficients are determined by

© 2003 by CRC Press LL.C



W05

FIGURE 6.24
2D CMLS approximation function before the linear constraint is imposed.

W05

FIGURE 6.25
2D CMLS approximation function after the linear constraint is imposed.
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FIGURE 6.26
2D CMLS approximation function before the parabolic constraint is applied.

FIGURE 6.27
2D CMLS approximation function after the parabolic constraint is applied.
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nodal constraints. In general, the greater the number of constrained points included in
the support domain, the greater the number of terms of basis monomials of higher orders
that should be used. The number of the polynomial coefficients determined by the nodal
enforcement and the number by MLS should be balanced. For example, for a polynomial
with six coefficients, it is best that three of the coefficients be determined by nodal enforce-
ment and the rest by MLS. From our experience with 2D problems, the appropriate basis
function should be polynomials of order 2 or 3. Including more free nodes can help to
reduce the chance of producing singular moment matrices in the process of computing
CMLS shape functions.

6.3.3 Weak Form and Discrete Equations

Consider again the mechanics problem stated in Equations 6.1 and 6.2, which was also
dealt with in Section 6.2.1. Instead of using the penalty method, we now use CMLS to generate
the shape functions that possess the Kronecker delta function property at the nodes on
the essential boundaries. The prescribed displacement on the essential boundary can then
be imposed directly, as in conventional FEM.

Using CMLS, the Galerkin weak form is as simple as in FEM, because the shape function
created by CMLS has the same property as the shape functions of FEM at the essential
boundary points. Based on Equation 6.67, we write

j S(Lu)” (cLu)dQ - j Su'bdQ - j Su'tdr = 0 (6.114)
Q Q T,

Note that the integration on the essential boundary has been removed, because the dis-
placement function u is to be approximated using the CMLS approximation shown in
Equation 6.108. Substituting the approximation of u into the weak form Equation 6.114
yields the discrete system equations:

KU=F (6.115)

where U is a vector of nodal parameters of displacements for all the nodes in the problem
domain, and K is the stiffness matrix assembled using the following nodal matrix:

T
K, = jQB,. ¢B,dQ (6.116)

where B; and ¢ have the same form as those in Equation 6.38, except that the shape
functions used are different. The force vector F is assembled using the nodal force vector
defined in Equation 6.31 but computed using the shape functions defined in this section.

The handling of essential boundary conditions at the boundary nodes is the same as in
FEM. All one need do is impose the boundary condition directly to the nodal displacement
in the final system equation. Using CMLS is very computationally efficient, especially for
large systems, as the banded feature as well as the symmetry of the stiffness matrix is
preserved. The drawback of this method is that the possibility of having a singular moment
matrix is increased because fewer free nodes are used. Another drawback is that it is
difficult to ensure the compatibility in the field function approximation, which leads to
difficulty in passing the patch tests as discussed in the next section. Note that CMLS is
used only for support domains that have at least one essential boundary point.

The Gauss quadrature scheme is still required to perform the integrations in computing
system matrices. Ensuring accurate numerical integration when using CMLS is also more
difficult compared with the use of MLS because the order of the CMLS shape functions
created is usually higher.
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6.3.4 Examples for Mechanics Problems

Example 6.9 Patch Test

The first numerical example of solid mechanics problem is the standard patch test. As
square patch of L, = 2 and L, = 2 shown in Figure 6.28 is considered. The displacements
are prescribed on all outside boundaries of the patch by a linear function defined by
Equation 6.25. The nodal arrangement in this patch is also shown in Figure 6.28. A discrete
system equation in the form of Equation 6.115 is established using the CMLS shape
functions. Gauss quadrature is used to perform the integration. Table 6.7 shows the numer-
ical results obtained using a background mesh of 40 x 40 quadrature cells with a 6 x 6
Gauss point each. The maximum errors of u#, and u, are of order 107 and 107, respectively.

2@ T & T g
1.8} 1
1.6} o o 1
1.4} 1
1.2} 1

Y 16 0 o @
0.8} 1
0.6} |
0.4 o o 1
0.2F 1

%0 05 3 15 2
X

FIGURE 6.28

The nodal arrangement for the patch test.

TABLE 6.7

Numerical Results of the Displacements at Interior
Nodes for the Patch Test

Node and

Coordinates u, u,

9, (04,0.4) 0.40000024144004 0.40000024434450
10, (1,0.4) 1.00000008122310 0.39999996975363
11, (1.6,0.4) 1.59999956772840 0.39999902865713
12, (0.4,1) 0.40000058611168 1.00000023797684
13, (1,1) 1.00000009865193 0.99999996948019
14, (1.6,1) 1.59999981657464 0.99999978568420
15, (0.4,1.6) 0.39999990454283 1.60000015089939
16, (1,1.6) 0.99999979845197 1.59999992408260
17, (1.6,1.6) 1.59999922275895 1.59999878285197
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TABLE 6.8

Maximum Error of the Displacements for a Patch Test for

EFG-CMLS
Integration Cells Maximum Error Maximum Error
(quadrature points) of u, of u,
10 x 10 (4 x 4) 2.6 %107 1.8x107°
20 x 20 (4 x 4) 1.4 % 10™ 52x 107
40 x 40 (4 x 4) 1.5 x107° 21x107
40 x 40 (6 x 6) 8x 107 1.6 x 107
8 x 8 (16 x 16) 52 x 107 4x107

Hence, the patch test is passed to the machine accuracy in this case. Selection of nodes
often affects the results of the patch test. We tested a number of other patches of irregular
internal nodes, and found that some cases had difficulty passing the patch test. We believe
that the reason lies mainly in the compatibility of the field function approximation using
CMLS. The nature of this problem is somewhat similar to that using PIM shape functions,
which are discussed in detail in Chapter 8.

We found that the accuracy of the numerical results depends heavily on the accuracy
of the numerical integration, as shown in Table 6.8. This is because the order of the shape
functions created by CMLS is usually higher than those of MLS. Note that the Gauss
quadrature is designed for integrating polynomial functions. The quadrature error may
increase when itis applied to complex integrands like that given in Equation 6.116 because
integrands are fractional functions, which in general cannot be represented exactly by
polynomial functions. The Gauss quadrature, therefore, will not be able to produce exact
results for the integration. An efficient and accurate numerical integration scheme should
be used in EFG-CMLS to pass the patch test.

Example 6.10 Cantilever Beam

For benchmarking purposes, we consider again a beam of characteristic length L and
height D subjected to a parabolic traction at the free end, as shown in Figure 6.4. The
beam is considered to be of unit thickness, and the plane stress problem is considered.
The exact solution is given by Equations 6.51 to 6.56 for displacements and stresses. The
parameters used in this section are the same as in Example 6.4.

The arrangement of nodes and quadrature cells is shown in Figure 6.29. In each quadra-
ture cell, 4 x 4 Gauss points are used. The solutions are obtained using a quadratic basis
function with cubic spline weight function, and support domains of ¢, = 2.5 are used.

Figure 6.30 plots the analytical solution and the numerical solution using the present
method for the beam deflection along the x axis. The plot shows excellent agreement
between the analytical and present numerical results using CMLS.

Figure 6.31 illustrates the distribution of the normal stresses ¢, on the cross section at x =
L/2 of the beam. Both the analytical solution and the present EFG-CMLS solution are plotted
together for comparison. Very good agreement is observed between the stresses calculated
by the analytical formulation and the present EFG-CMLS method. Figures 6.32 and 6.33
show the same comparison for, respectively, the normal stress ¢, and the shear stress 7,, at
the section of x = L/2 of the beam. Again, very good agreement is observed between the
results calculated by the analytical formulation and the present EFG-CMLS method.

Table 6.9 compares the numerical and analytical results for the vertical displacement at
point A on the beam (see Figure 6.4). The calculation was performed for models discretized
with 18, 24, 55, and 189 nodes. This table shows that the numerical result converges as
the number of nodes increases.
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FIGURE 6.29
(a) Nodal arrangement; (b) mesh used for integration.
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FIGURE 6.30
Analytical and EFG-CMLS numerical solutions for the deflection of the cantilever beam.

Example 6.11 Hole in an Infinite Plate

A plate with a circular hole subjected to a unidirectional tensile load in the x direction is
considered, as shown in Figure 6.34. The plane stress condition is assumed. Due to
symmetry, only the upper right quarter of the plate is modeled, as shown in Figure 6.35.
Corresponding symmetric boundary conditions are applied on x =0 and y =0, i.e.,

u,=0, o0,=0 when x=0 (6.117)
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FIGURE 6.31
Analytical and the present EFG-CMLS numerical solutions for ¢, at the section of x = L/2 of the cantilever beam.
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FIGURE 6.32
Analytical and the present EFG-CMLS numerical solutions for o,at the section of x = L/2 of the cantilever beam.

and
u,=0, o0,=0 when y=0 (6.118)
The boundary condition at the right edge is

Cu=p, Opy=0,=0 when x=5 (6.119)
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FIGURE 6.33
Analytical and EFG-CMLS numerical solutions for 7,, at the section of x = L/2 of the cantilever beam.

TABLE 6.9
Comparison of Vertical Displacement at End of Beam
Number of u, (m) u, (m)
Nodes Exact (EFG-CMLS)  %Error
18 -0.0089 —-0.00792 11
24 —0.0089 -0.00837 6
55 —0.0089 —-0.00887 0.34
189 —0.0089 —0.00891 0.1
Y
A b
<« e
p
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<« e
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FIGURE 6.34
Plate with a hole subjected to a tensile load in the horizontal direction.
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FIGURE 6.35
Quarter model of the plate with a hole subjected to a tensile load in the horizontal direction.

and the boundary condition at the upper edge is
O =0, 6, =0,=0 when y=5 (6.120)

The parameters are listed as follows:

Loading: p =1 N/m

Young’s modulus: E = 1.0 x 10° N/m’
Poisson’s ratio: v=0.3

Height of the beam: 4 =1.0 m

Length of the beam: b =5 m

Symmetry conditions are imposed on the left and bottom edges, and the inner boundary
of the hole is traction free. The tensile load in the x direction is imposed on the right edge.
The exact solution for the stresses within the infinite plate is given by the following
equations:

The displacement in the radial direction is given by

_ © K—1 a at
u, = @{r[T + cos20] + 211+ (1+ ) cos26] - Fcos20} 6.121)

and the displacement in the tangent direction can be calculated using

2 4
o = g =05 =55 ]sin20 (6.122)

where

3-4v plane strain

K=43_y (6.123)

W= 5
2(1+v .
( ) 17, Planestress
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The normal stress in the x direction can be obtained using

2 4
o(x,y)=1- a_2 {gcos29+ cos49}+ 3—Ll4cos49 (6.124)
4 2r
The normal stress in the y direction is
a1 34"
oy(x,y) = — {Ecos29— cos49}— —, cos46 (6.125)
4 2r
and the shear stress is given by
a1 34"
Oy(X, y) = —F {isinZ@— sin40}+ 2—r451n40 (6.126)

where (7, 0) are the polar coordinates and € is measured counterclockwise from the positive
x axis. When the condition b/a > 5 is satisfied, the solution of a finite plate should be very
close to that of an infinite plate. Therefore, the analytical results given in Equations 6.124
to 6.126 are employed as the reference results for comparison.

The CMLS method is used to perform the stress analysis. Two kinds of nodal arrange-
ment are used, as shown in Figure 6.36. The results obtained using the present CMLS
method for stress o, at x = 0 are plotted in Figure 6.37 together with the analytical results
for the infinite plate. Figure 6.37 shows that the present CMLS method gives satisfactory
results for the problem. The figure also shows that, as the number of the node increases,
the results obtained are closer to the analytical solution.

6.3.5 Computational Time

The main advantage of the CMLS method is that it does not increase the number of the
unknowns and leads to a banded stiffness matrix. Therefore, it is computationally cheaper
than EFG with Lagrange multipliers. Table 6.10 compares the CPU time used in the EFG
code, when the present EFG-CMLS method, MLS with Lagrange multipliers, and MLS
with penalty method are used for imposing the essential boundary condition in solving
the cantilever beam problem. The comparison was done on an HP UNIX workstation.
The table shows that the CMLS method saves a significant amount of CPU time compared
with MLS with Lagrange multipliers in EFG formulation. However, the CMLS method is

TABLE 6.10

CPU Time for EFG Code Using Different Method of
Imposing Essential Boundary Conditions

CPU Time (s)

EFG EFG EFG
Nodes  (MLS + Lagrange Multiplier) (Penalty) (CMLS)
55 1.1 0.6 0.7
189 354 35 9.3
561 1152 13.8 30.8
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FIGURE 6.36
Nodal arrangement for the infinite plate with a central circular hole. (a) 54 nodes; (b) 165 nodes.
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FIGURE 6.37
Comparison between the exact and present EFG-CMLS solution for stresses ¢, at x = 0.

less efficient than the penalty method. The reasons are (1) much time is used for computing
the CMLS shape function compared with the MLS shape function, and (2) the number of
integration points needs to increase because the CMLS shape functions are more complex
than those of MLS. The advantage of CMLS over the penalty method may be that there
is no need to choose the penalty factor. For large systems, the difference in CPU time
between CMLS and the penalty method is expected to decrease as the majority of the CPU
time is used for solving the system equation, which should be the same for both cases
when CMLS and the penalty method are used.

6.3.6 Remarks

In this section, a technique called the constrained moving least squares method is intro-
duced to construct the shape functions for MFree methods. CMLS enforces the approxi-
mation functions to pass through data points wherever necessary, while the usual MLS
approximation is applied in other areas. CMLS treats the essential conditions at the stage
of constructing shape functions, which simplifies the system equations. Hence, the system
equations derived using the CMLS shape functions are positive definite and banded. The
treatment of essential boundary conditions is as simple as in FEM. EFG-CMLS has prob-
lems passing the patch test, due perhaps to the incompatibility of CMLS approximation.
More detailed study may be needed to fully realize the idea of CMLS. A method for
solving the incompatibility issue for PIM shape functions is discussed in Chapter 8.

The idea of allowing certain conditions of a problem to be satisfied in the stage of
constructing approximation functions should be explored further. MFree procedures for
creating shape functions provide a lot of flexibility to meet different kinds of demands,
not only on accuracy but also on constraints.

Before moving to the next section, it may be mentioned here that the imposition of
essential boundary conditions can also be performed using finite elements attached to the
MFree mesh on the portion of the essential boundaries (Krongauz and Belytschko, 1996).
Coupling EFG with other numerical methods (see Chapter 13) is another alternative.
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