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Abstract

This study presents a rate-dependent cohesive zone model for the fracture of polymeric in-

terfaces and performs a Bayesian calibration, an uncertainty quantification, and a sensitivity

analysis for the model. The proposed cohesive zone model accounts for both reversible elastic

and irreversible rate-dependent separation sliding deformation at the interface. The viscous

dissipation due to the irreversible opening at the interface is modeled using elastic-viscoplastic

kinematics that incorporates the effects of strain rate. Inverse calibration of parameters for

such complex models through trial and error is challenging due to the large number of pa-

rameters of the model. Moreover, the calibrated parameter values are often non-unique and

uncertain when the available experimental data is limited. To tackle this challenge, we em-

ploy a Bayesian calibration approach to identify parameters from experimental data, the

resulting parameters significantly enhance the accuracy of the model. To quantify the un-

certainty associated with the inverse parameter estimation, a modular Bayesian approach

is employed to calibrate the unknown model parameters, accounting for the parameter un-

certainty of the cohesive zone model. The advantages of the Bayesian calibration over a

deterministic parameter fit are demonstrated. Further, to quantify the model uncertainties,

such as incorrect assumptions or missing physics, a discrepancy function is introduced, which

significantly improves the model’s prediction. Finally, the total uncertainty of the model is

quantified in a predictive setting. A sensitivity analysis is performed to assess how changes
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in the input variables of the model affect the peak load, facilitating the identification of a

concise set of highly influential parameters. The present approach can be used for calibration

and uncertainty quantification for other complex computational mechanics models. It should

also facilitate the designing of interface materials under uncertainty.

Keywords: Cohesive zone, rate-dependent fracture, viscoplasticity, Bayesian calibration,

Uncertainty quantification, Sensitivity analysis

Math symbols and their definitions

Symbol Definition

Ω+, Ω− Top and bottom bodies of polymeric materials

Γo−, Γo+ Lower and upper surfaces of interface

Xi Cartesian material coordinates

X,x Material point in the reference and current configuration

u Displacement field

t, T Time

χ Invertible deformation map

F Deformation gradient tensor

N, n Unit normal in reference and current configuration

δ, δe, δp Total, elastic and plastic displacement jump across the cohesive interface

ϕ Free energy per unit surface area in the reference configuration

κ Hardening variable

D Scalar damage variable

t, tN , tT Traction vector and its normal and tangential components

H Hardening modulus

K Interface elastic stiffness tensor

KN , KT Normal and tangential elastic stiffness moduli

tN Magnitude of normal stress at the interface
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τ Effective tangential traction

δN , δT Normal and tangential cohesive opening

Syp Current yield strength

µ Friction coefficient

S0 Initial yield stress

γvp Viscoplastic strain rate parameter

mflow Plastic flow direction

γ0 Reference plastic strain parameter

Q Activation energy

m Rate sensitivity parameter

k Boltzmann constant

θ Reference temperature

δ0, δf Effective displacement jump at the onset of damage and final failure of the interface

∆ Crack opening displacement

L,B, h Interface length, specimen width and height

ao Crack length

X Input to the computational model

Y Quantity of interest

Θ Calibration parameters

Y (e) Experimental response

Y (c) Computational model response

δdisc Discrepancy function

ϵ Measurement error

Σ Covariance matrix

p(Θ) Prior distribution of parameters

p(d|Θ) Likelihood of observing the data

p(d) Model evidence

d Set of experimental observations
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n Number of experimental observations

N Gaussian distribution

Nout Number of output dimensions

ye, yp Experimental response and computational model prediction

σ2 Variance of measurement error

Table 1: Nomenclature of symbols used in the manuscript. Symbols are presented in the order of their

appearance.

1. Introduction

Interfaces play a major role in dictating the overall mechanical performance of various

composite structures and bi-material joints. Typical demonstration of interface failure in-

cludes delamination in laminated composite systems [1], failure of concrete dam-foundation

joints [2], debonding of thin films from substrates [3] etc. Such failures occur due to the local

stress concentrations leading to separations and tangential sliding of the contacting surfaces

across the interface. In the case of adhesively bonded components, the fact that the viscous

or rate-dependent properties of the adhesives influence the global fracture response has been

well documented in the recent literature [4, 5, 6, 7]. In such cases, the interfacial degradation

depends on the rate of applied loading and the final response turns out to be rate-dependent

as well.

In the case of polymer composite materials, crack initiation and propagation along the

interfaces have been shown to be rate dependent [8, 9, 10]. It has been suggested that the

bulk polymer viscous properties in general influence the global fracture response for the com-

posites [11]. To incorporate this rate-dependent behavior in the domain of computational

modeling, various phenomenological cohesive laws have been proposed [12, 13, 14]. Earlier

work by [15] proposed a rate-dependent crack propagation model for craze-like fracture in

polymers and failure of a joint bonded with a thin adhesive layer. In [16], rate-dependent

traction-separation relations were developed to simulate the stick-slip fracture in an ad-

hesively bonded aluminum double-cantilever beam (DCB) specimen. In another work, a
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rate-dependent interface model was formulated considering a viscoplastic framework with

hardening/softening behavior for shear and tensile traction [13]. In [17] , a new approach for

modeling cracks is proposed based on the cracking particle method. A dynamic cohesive law

is proposed that takes into account the change of fracture energy which is then combined

with a rate-dependent damage plasticity model. Multiple examples of dynamic fractures

are demonstrated. Motivated by the experimentally observed differences in the nature of

the propagating crack surfaces depending on the test speed, a nonlinear viscoelastic Kelvin

model was introduced to simulate the rate-dependent cohesive response between rubber and

steel at different rates under mixed mode loading condition [12]. The rate dependence in

both the bulk material and the interface was also considered in a similar model proposed by

[18]. In [14] a bilinear traction-separation relation was used with rate-dependent parameters

to model the failure of structural adhesive joints under mode I loading. In that study, the

parameters for the cohesive law were directly determined from experiments. As reported

in [19], experiments on pressure-sensitive adhesives were dominated by the rate-dependent

interfacial properties, rather than the bulk viscoelasticity. Hence, the general agreement in

the literature asserts the existence of rate-dependent fracture response in polymer-based in-

terfaces. It can also be concluded that the overall rate dependence can arise as a consequence

of the bulk material’s behavior, of the interface response itself, or due to both.

The commonly utilized mathematical approach to study the interface fracture considers

cohesive zone modeling [20]. To account for the complex microscopic processes that give

rise to the new traction-free surfaces, cohesive zone models practically rely on the descrip-

tion of the traction-separation relationships. Such descriptions are phenomenological- but

could be related to atomistic or molecular mechanisms [21, 22, 23]. Incorporating cohesive

zones to model the interfaces of different materials, several research groups have demon-

strated the capability of cohesive zone model (CZM) to track the complex crack propagation

path [24, 25, 26, 27, 28, 29, 30, 31, 32, 33], which otherwise could only be seen via tedious

experiments. In particular, as reported in [32] an elastic-plastic kinematic description was

introduced to describe the irreversible separation-sliding behavior at the interface. Assum-
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ing the two contacting bodies as rigid, a yield function-based approach was proposed to

describe the traction-separation behavior for both normal and tangential directions. Many

of the rate-dependent cohesive zone models were developed under the assumption that the

rate dependence arises only due to dissipation at the interfaces [34, 5, 35]. One of the

approaches focused on developing phenomenological constitutive laws that represent the co-

hesive strength and fracture energy as a function of opening/sliding rate at the interface

[36, 37, 38]. These cohesive zone models are computationally less expensive than the models

that assume a viscoelastic material ahead of the crack tip. However, most of these models

were developed for a particular material system and loading conditions [39, 36, 40], limiting

their applications. Another group of the study had considered viscoelastic material models

to characterize the rate-dependent bond breakage at the interface [34, 41, 42, 43]. The third

group adopted viscoplasticity to capture the inelastic sliding separation at the interface prior

to failure [44, 35]. The present work introduces a rate-dependent cohesive zone model de-

signed for the fracture of polymeric interfaces. The presented cohesive zone model takes into

consideration both reversible elastic and irreversible rate-dependent separation sliding defor-

mation at the interface. The viscous dissipation resulting from irreversible opening at the

interface is depicted through elastic-viscoplastic kinematics, incorporating the influence of

strain rate. In the present work, we focus on the uncertainty associated with the estimation

of a large number of parameters of the cohesive interface model. The present viscoplastic

cohesive zone model has a greater number of parameters compared to the standard linear

elastic case. Further, the parameters of the present cohesive zone model cannot be obtained

through macroscopic fracture experiments.

The commonly used approach of inversely identifying the cohesive zone parameters through

least square fitting is often inaccurate in the case of limited experimental data due to the

complexity of the model. Another common approach to identifying the parameters, espe-

cially when the number of parameters is large, is the trial and error approach. However,

a trial and error approach to inversely identify a large number of parameters of a complex

model is not systematic and may require a large number of evaluations of the model since the
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number of all possible combinations of parameters is huge. Therefore, a systematic approach

to calibrating the parameters of the cohesive zone model is necessary. A Bayesian calibration

approach would alleviate the aforementioned limitations, in addition to being systematic and

mathematically well-founded. Further, the existing literature is rudimentary in quantifying

the uncertainty in the CZM parameter estimations and how this parameter uncertainty would

propagate in the final response.

Uncertainty quantification for computational models is currently being intensely inves-

tigated since it can provide measures of confidence in the model prediction [45, 46, 47, 48,

49, 50]. Specifically, inverse calibration for parameter estimation is a key component of un-

certainty quantification. Kennedy and O’Hagan have pioneered a Bayesian approach for the

calibration of the unknown parameters in a computer model [51]. Their model has received

significant attention as an approach for inverse calibration and is commonly referred to as

the (KOH) approach. In the KOH approach, the discrepancy between the computational

model and the experimental observations is modeled explicitly by a discrepancy function.

The true physical process is represented as a sum of the computational model, the discrep-

ancy function, and the observational error. The computational model and the discrepancy

function are treated independently and their priors are assumed to be Gaussian processes.

The observational errors are assumed to be zero mean Gaussians independent of each other.

The posterior distributions of unknown model parameters and the discrepancy function pa-

rameters are estimated simultaneously using a Bayesian approach. Once these posterior

distributions are estimated, the experimental observations can be predicted along with the

uncertainties associated with the predictions.

The KOH approach has been extensively investigated and further extended by several

studies. A statistical approach (following the KOH approach) to combine scant field ob-

servations with simulation data for calibrating the unknown parameters in the simulation

model and performing uncertainty quantification was demonstrated in [52]. In another work,

Higdon et. al. [53] extended the KOH framework for computer simulations with multidimen-

sional output. To overcome the challenges of size and the multivariate nature of the data,
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dimensionality reduction was performed using basis representations. A hierarchical Gaussian

process model to combine data from multiple experiments with varying accuracies based on

the KOH framework was introduced in [54]. This model made use of the more abundant but

less accurate data along with the less abundant high-accuracy data to produce predictions

closer to the high-accuracy experiments. Arend et. al. [55, 56] illustrated the problem of

identifiability, i.e. whether the effects of calibration parameters and discrepancy function are

distinguishable from one other in the model updating formulation and proposed a method

to improve identifiability. An approach to calibrate the discrepancy function across differ-

ent experimental settings based on the KOH framework was proposed in [57]. A decoupled

approach was introduced in which the unknown parameters of the computer model are esti-

mated independently and prior to the estimation of the discrepancy function. This modular

approach was computationally more feasible and it improved identifiability. Several other

noteworthy works based on the KOH framework are reported in [58, 59, 60, 61].

The aforementioned Bayesian frameworks were employed for uncertainty quantification of

diverse physics-based models such as plasticity models [46, 62, 47], viscoelastic models [48],

turbulence models [63], and thermal models [49, 50]. For example, Asaadi et al [62] introduced

a Bayesian framework for material characterization, involving both model class selection and

parameter inference, in plasticity models. The framework integrated the Bayes’ rule, surro-

gate modeling, principal component analysis, and nested sampling techniques. These works

in the literature clearly demonstrate the potential of the Bayesian approach in quantifying

uncertainties and calibrating parameters to improve the physics-based computational model.

Based on the current state-of-the-art, the objective of the present work is to perform

uncertainty quantification for a phenomenological rate-dependent cohesive zone model. The

proposed CZM is specifically designed to model the fracture response of the polymeric in-

terfaces, based on an elastic-viscoplastic kinematical description. To enhance the robustness

and accuracy of the proposed CZM prediction, uncertainty quantification of the model is fur-

ther performed. To facilitate the inverse identification of the model parameters from limited

experimental data the present study considers a Bayesian calibration approach. A sensitivity
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analysis is also performed to better understand the effects of inputs on the outputs of the

CZM.

To summarize, calibration and uncertainty quantification of a complex model is challeng-

ing and largely unexplored for the present rate-dependent cohesive zone fracture model. The

key challenges are:

1. High complexity of the model and the associated high computational cost.

2. Effects of uncertainty in the parameters and in the model are not distinguishable from

one other in general.

3. Experimental data to calibrate such complex cohesive zone models is often limited or

unavailable.

In this work, we tackle these challenges by the following approaches:

1. By learning surrogate/simplified models we significantly reduce the computational cost

of the forward model, enabling us to perform Bayesian calibration and uncertainty

quantification efficiently.

2. We adopt a modular Bayesian approach that calibrates the parameters prior to learning

the discrepancy function which improves identifiability.

3. We employ a Bayesian approach to overcome the challenge of limited experimental data.

By incorporating the prior knowledge about these parameters, a posterior distribution

of parameters is learned through the Bayesian calibration approach that alleviates the

bias due to insufficient data.

The rest of this paper is organized as follows: In Sec. 2 the rate-dependent cohesive zone

model for the polymeric interfaces is described, followed by an analytical implementation of

the model in Sec. 3. Bayesian calibration, Uncertainty quantification, and Sensitivity analysis

of the CZM are presented in Sec. 4 and Sec. 5 followed by concluding remarks in Sec. 6
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2. A Rate-dependent Phenomenological Cohesive Zone Model for Polymer In-

terfaces

2.1. Kinematics

In the present work, a rate-dependent traction-separation law has been proposed assuming

a finite elastic-viscoplastic deformation of the polymer interfaces. In addition to that, a post-

peak damage model has also been incorporated to model the degradation along the interfaces

beyond post-yielding. The model has been proposed for a coupled normal and tangential

(mixed mode) interfacial behavior along the interfaces. The phenomenological model stems

from the work by Su et al. [32], as mentioned in the introduction. The present work extends

the model to incorporate a viscoplastic component to capture the rate-dependent behavior

of the interfaces. Figure 1 represents the schematic of an interface undergoing finite opening

and sliding.

(X,t)

F

X1, x1

X2, x2
X3, x3

X

x
-

x
+

x

- -

+

+

N

n

Figure 1: Schematic of an interface between two bodies Ω+ and Ω−.

Let us assume two bodies of polymeric materials Ω+ and Ω− separated by an interface

Γo in the reference configuration as shown in Figure 1. The lower and upper surfaces are

denoted as Γo− and Γo+, respectively. In the reference configuration, the surfaces Γo− and Γo+

are assumed to be identical to the reference interface Γo where Xi represents the Cartesian

material coordinates.
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Γo = Γo− = Γo+, Γo = Γo(Xi) (1)

In the current configuration, Γo+ and Γo− become Γ+ and Γ−, respectively. A material

point X initially on the interface Γo in the reference configuration, is located on Γ± by the

motion characterized by the displacement field u at time t ∈ T , where T represents the

time at which the deformation is applied.

x± = X+ u±, Γo → Γ±, ∀t ∈ T (2)

where x± denotes the material points on the upper and lower surfaces in the current con-

figuration. Following the approach considered in [64] and [65], an interface Γ is introduced in

the current configuration to connect the strong discontinuities across the contacting surfaces

consistently. The location of a material point x on the interface Γ, is defined by the uniquely

invertible deformation map χ, as,

x = χ(X, t), Γo → Γ, ∀t ∈ T

x =
1

2
(x+ + x−), ∀x± ∈ Γ±

(3)

Following which, the deformation gradient tensor F is defined as:

F =
∂χ(X, t)

∂X
, ∀X ∈ Γo, ∀t ∈ T (4)

Hence, one can write that the interface Γo with unit normal N is rotated and deformed to

the interface Γ having unit normal n in the current configuration by the following mapping:

n = (dΓo/dΓ)F.N (5)

In a 3D representation, the cohesive zone is assumed to be a surface where displacement

discontinuities occur as displacement jumps. Let us assume, δ as the total displacement

jumps across the cohesive interface. The displacement jump vector is defined by the following

expression:
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δ = x+ − x−, ∀x± ∈ Γ±, ∀t ∈ T (6)

2.2. Constitutive description for the traction-separation behavior

Again, considering the framework in Su et. al [32], an additive decomposition for the

displacement jump vector is introduced as,

δ = δe + δp (7)

where, δe stands for the elastic displacement jump and δp is the plastic, irreversible com-

ponent of the same. To account for the rate-dependent inelastic behavior of the interface,

a viscoplastic constitutive framework combined with a hardening and damage behavior is

considered in the present work. The hardening behavior of the cohesive surface partially

accounts for the defect evolution along the interfaces. To account for the post-yield damage

in the interface, a scalar damage model is also considered.

Assuming, ϕ as the free energy per unit surface area in the reference configuration, based on

a purely mechanical deformation, ϕ can be expressed as:

ϕ = ϕ̂(δe, κ,D) (8)

where κ is a hardening variable, often expressed in terms of equivalent plastic strain/displacement.

κ describes the evolution of the interface yield surface and D is the scalar damage variable.

The time derivative of the free energy function is then given by,

ϕ̇(δe, κ,D) =
∂ϕ

∂δe
.δ̇e +

∂ϕ

∂κ
κ̇+

∂ϕ

∂D
Ḋ (9)

Further, following the thermodynamic consistency, the dissipation inequality can be written

as,

t.δ̇ − ϕ̇ ⩾ 0 (10)

where t is the traction vector. Using equation (7) and (9) in the dissipation inequality we

get, (
t− ∂ϕ

∂δe

)
.δ̇ +

∂ϕ

∂δe
δ̇p − ∂ϕ

∂κ
κ̇− ∂ϕ

∂D
Ḋ ⩾ 0 (11)
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In order to satisfy the inequality for any arbitrary displacement jump, we pose,(
t− ∂ϕ

∂δe

)
.δ̇ = 0 (12)

Hence, the elastic traction-separation law for the cohesive interface can be obtained as,

t =
∂ϕ

∂δe
(13)

and the dissipation becomes,

∂ϕ

∂δe
δ̇p − ∂ϕ

∂κ
κ̇− ∂ϕ

∂D
Ḋ ⩾ 0 (14)

Following equation (14), a quadratic form of the free energy function is chosen as,

ϕ =
1

2
(1−D)δe.K.δe +Hκ2 (15)

where the coefficient H > 0 represents the hardening modulus and the matrix K denotes

the interface elastic stiffness tensor as given by,

K = KNn⊗ n+KT (1− n⊗ n) (16)

with KN > 0 and KT > 0 are the normal and tangential elastic stiffness moduli respectively.

Following equation (13) the local traction vector is given by,

t = (1−D)Kδe = (1−D)K(δ − δp) (17)

The interface traction t can be decomposed into normal component tN and tangential com-

ponent tT as,

t = tN + tT

tN ≡ (n⊗ n)t = (t.n)n ≡ tNn

tT ≡ (1− n⊗ n)t = t− tNn

(18)

where tN stands for the magnitude of normal stress at the interface. The magnitude of the

equivalent tangential stress can be further written as:

τ ≡
√
tT .tT (19)
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Here, τ is denoted as effective tangential traction. It is important to note that the displace-

ment jump vector δ has two components δN and δT corresponding to normal and tangential

cohesive opening respectively.

In the 2D stress plane, the elastic domain of the cohesive constitutive law is defined as the

interior of the convex yield surfaces. Once the applied interfacial displacements exceed the

yield criteria, the response is governed by the choice of the yield function and the plastic flow

rule. For a coupled normal and tangential cohesive behavior, the yield function is chosen as,

ϕY = τ + µ⟨tN⟩ − Syp (20)

where, ⟨tN⟩ = 0.5 ∗ (tN + |tN |) and Syp is the current yield strength, and µ is the friction

coefficient. The yield strength evolution is given by the hardening law as,

Syp = S0 +H.κ (21)

where S0 is the initial yield stress and κ is the hardening variable.

2.3. Viscoplastic interface behavior, hardening law, and the post-yield damage

In order to define the evolution laws for the internal variables associated with the dis-

sipative phenomena, we need to define the flow rules for the plastic displacement jump δp,

hardening variable κ and damage variable D. As mentioned earlier, to model the rate-

dependent interface behavior, a visco-plastic flow rule is adopted to describe the inelastic

displacement jump as,

δ̇p = γ̇vpmflow (22)

with the plastic flow direction given by,

mflow =
1√

1 + µ2

(
tT
τ

+ µn

)
(23)

For a pure mode-I case, the 1st term in the bracket is led to zero and the flow direction is

governed by the normal of the deformed interface. Similarly, the second term vanishes for

pure shear loading, and the plastic flow direction is governed by tangential separation.
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For the viscoplastic strain rate parameter γvp, a viscoplastic flow rule is considered as,

γ̇vp = γo exp

(
−Q

kθ

[
1− τ + µ⟨tN⟩

Syp

]1/m)
(24)

where γ0 is the reference plastic strain parameter, Q is the activation energy, m is the rate

sensitivity parameter, k is the Boltzmann constant and θ is the reference temperature. As ex-

plained earlier, the rate-dependent behavior of the cohesive interfaces is critical to predicting

the bi-material interface failure subjected to high rate loading. In polymeric materials, inelas-

tic deformations are governed by thermally activated motions of macromolecules. Therefore,

following the approach taken by Richeton et al. [66, 67] and Ames et al. [68, 69], a thermally

activated relation is chosen to calculate the inelastic deformation rate as given by equation

(24). It is to note that a considerably large number of visco-plastic models are found in the

literature that account for plastic flow as a thermally activated process incorporating the

temperature, strain, and the strain rate effects [70, 71, 72]. Most of these models predict

reasonably well the variation of the plastic strength as a function of temperature and strain

rate within a limited range. However, it is seen that these models do not account for the

sudden increase in yield stress at extremely high strain rates [66]. The flow rule in equation

(24) is motivated by the approach taken by Richeton et al. [67, 66]. Their model is developed

based on the “co-operative” model of Fotheringham and Cherry [73, 74] which assumes that

the flow in the polymer is allowed when several polymer chain segments are moving in a

‘co-operative’ manner. A similar flow rule has also been adopted by Ames et al. [69]. They

have demonstrated that such a viscoplastic model can predict the yield strength variation

over a wide range of temperature and strain rates for amorphous polymers. In the present

study, the assumption is that such a flow rule is adequate to predict the rate-dependent yield

behavior of a thin layer of polymer adhesives as well.

An evolution equation is further defined to describe the hardening variable κ, as

κ̇ = γ̇vp
∂ϕY

∂Syp

(25)

In order to model the damage initiation and progression along the interface in the post-yield

regime, the damage is assumed to be uncoupled from the plastic deformation. A simple
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Figure 2: Geometry of the experimental DCB specimen as per [5];

damage rule, based on the total effective displacement is used as,

D =
δf (|δ| − δ0)

|δ|(δf − δ0)
for δ0 < |δ| ⩽ δf (26)

where δ0 and δf are the effective displacement jump at the onset of damage and at the final

failure of the interface, respectively; |δ| represents the effective displacement jump defined as

|δ| =
√

δ2
N + δ2

T .

3. Numerical implementation of the CZM

To predict the interfacial failure of structural components, the proposed CZM is evaluated

analytically to predict the mode-I interface failure. This analytical implementation considers

a mode-I fracture geometry consisting of a 2-D double cantilever beam (DCB) specimen with

an initial notch as shown in Figure 2. We assume that the beams in the DCB geometry are

almost rigid (≈ 1000 times stiffer) compared to the interface and the entire deformation only

happens across the interface. This assumption helps to implement the CZM analytically.

However, it is to be noted that the response of the beams may play a role and must be

considered for practical purposes. Nevertheless, the results of the present method will remain

unchanged as long as the interface is much weaker than the bulk and failure happens at the

cohesive interfaces. Model predictions are performed for three different displacement rates

5.08, 50.8, and 508.0 mm/min, respectively.

For the analytical implementation, the tangential sliding of the interface is ignored and

the friction coefficient is assumed as (µ = 1) to ensure the no-slip condition. Assuming the
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cantilevers as perfectly rigid, the (normal) opening along the interface line at any point x

from the pivot point can be estimated as, δN(x) = x
L
∆, where L is the interface length,

and ∆ is the crack opening displacement along the applied load line as shown in Figure 3.

Balancing the moment exerted by the cohesive force generated due to the interface traction

F

rigid

rigid

O

L

X

(x)

Figure 3: Schematic of the rigid double cantilever beam under mode-I opening;

with the external moment due to the applied force F about the pivot point “O” we get,

B

∫ L

0

xtN(x)dx = LF (27)

where B is the specimen width and tN(x) denotes the (normal) traction at point “x”. The

traction tN(x) is also a function of the interface opening at a distance x, as tN(δN(x)).

It is also to be noted that the traction-separation law as described earlier is nonlinear in

nature. Hence the closed-form integration for the moment balance equation is not trivial.

Therefore, we numerically discretize the interface into a finite number of surface elements (in

this case 1000) and calculate the traction distribution (tN1, tN2 . . . tN1000) for those elements

in a discrete manner for a given displacement ∆. These values are then used in the moment

balance equation to calculate the applied external force F .

The assumption of the “rigid”ness of the bulk material in our analytical calculation consid-

ers the deformation only to happen across the interface. To incorporate the bulk deformation
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of the cantilever beams in the experiments, one needs to implement the CZM in a finite ele-

ment framework which has not been considered in the present work. The focus of the present

work is to consider the uncertainty associated with the model calibration in a rate-dependent

phenomenological cohesive interface model in order to improve the accuracy and robustness

of the model. Hence, we have only considered an analytical implementation of the proposed

traction-separation law in a pure mode I condition and ignored the bulk material deforma-

tion. In our analytical calculation, the thickness of the adhesive layer is considered zero. In

principle, it is possible to extend the present model by considering a finite-thickness cohesive

layer and use finite element analysis to solve for the failure behavior.

To inversely determine the cohesive interface parameters a Bayesian calibration is per-

formed. The inverse calibration of parameters, from limited experiments always poses a

non-uniqueness in the parameter estimation. The uncertainty associated with the model pa-

rameter estimation affects the accuracy of the model predictions for which experimental data

is not available to verify. In addition, determining the model parameters through the inverse

trial-error process is computationally tedious, even for simple mode-I analytical calculation

and the simulation time is a major bottleneck in the implementation of the model. Hence,

a Bayesian estimation approach is proposed to calibrate the CZM parameters using limited

experimental data.

4. Bayesian calibration and uncertainty quantification

4.1. Details of the experiment

In the original experiments [5], rate-dependent debonding of a polyethylene-based adhe-

sive was studied using a double cantilever beam (DCB) set-up, similar to the geometry as

shown in Figure 2. The test specimen consists of Al601-T6 adherends bonded with a ther-

moplastic high-density polyethylene-based adhesive. Each adherend was 216 mm long, 4.70

mm thick, and 25 mm wide. The specimen contains an initial crack length of 101.6 mm,

as shown in Figure 2. During the experiments, displacement had been applied at the load-

ing points along the direction indicated by arrows. The fracture behavior of the specimens
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was investigated and load-crack opening displacements were recorded at different cross-head

displacement rates as 5.08, 50.8, and 508.0 mm/min, respectively. Further details on the

experiments can be found in [5].

4.2. Calibration of model parameters using a Bayesian approach

In general, computational models like the CZM take inputs X (strain rate and displace-

ment in the CZM) to predict the quantities of interest Y (load at the specified displacement

in the CZM). Where the inputs X to the model can be random or deterministic. Most compu-

tational models have unknown parameters Θ (parameters provided in Table. 2 for the CZM)

that need to be calibrated. Bayesian calibration is a powerful, mathematically well-founded,

and widely used method for identifying these unknown parameters of the computational

model. Bayesian calibration systematically incorporates the prior knowledge about the pa-

rameters and it overcomes the ad-hoc nature of the trial-and-error approach. In this work, the

unknown parameters of the cohesive zone model are obtained through Bayesian calibration

as explained in the following section.

4.2.1. The Bayesian Calibration method

For the purpose of Bayesian calibration and uncertainty quantification, the experimental

response (Y (e)) can be modeled following the Kennedy and O’Hagan approach [51] as:

Y (e) = Y (c)(X,Θ) + δdisc(X) + ϵ (28)

where,

Y (c)(X,Θ) is the response from the computational model,

δdisc(X) is the discrepancy between the model and the experimental response,

ϵ is the uncertainty in the measurements of experimental response.

Owing to their computational efficiency, we use a modular approach [57] to calibrate the un-

known parameters, Θ, of the CZM in this work. In this approach, the Bayesian calibration is

performed separately and prior to the estimation of the discrepancy function. Thus, param-

eter uncertainty and measurement errors are quantified during calibration, while uncertainty
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due to modeling error is incorporated through the discrepancy function after the calibration.

Thus, the experimental response is written as,

Y (e) = Y (c)(X,Θ) + ϵ (29)

Where, the measurement error (ϵ) is modeled as a zero mean Gaussian, ϵ ∼ N(0,Σ), with

covariance Σ.

Therefore, the experimental response Y (e) is Gaussian with mean Y (c)(X,Θ) and covari-

ance Σ.

Y (e) ∼ N(Y (c)(X,Θ),Σ) (30)

The unknown parametersΘ in equation (30) can be estimated using a Bayesian approach.

Given a prior distribution of the unknown model parameters p(Θ) and a set of experimental

observations d, the posterior distribution of Θ can be estimated from Bayes theorem as

follows:

p(Θ|d) = p(d|Θ)p(Θ)

p(d)
(31)

The posterior distribution of the parameters provides the uncertainty due to the model’s

parameter. Here, p(d|Θ) is the likelihood of observing the data d given the parameters Θ.

Given a set of n independent experimental observations d = {(x1,y
(e)
1 ), (x2,y

(e)
2 ), ...(xn,y

(e)
n )},

the likelihood function p(d|Θ) considering equation (30) can be written as,

p(d|Θ) =
n∏

i=1

N(Y (c)(xi,Θ),Σ) (32)

=
n∏

i=1

1√
(2π)Noutdet(Σ)

exp

(
−1

2
(y

(e)
i − y

(c)
i )TΣ−1(y

(e)
i − y

(c)
i )

)
(33)

With this likelihood function and a prior distribution of calibration parameters, Θ, the

posterior distributions can be estimated from equation (31). In cases where the measurement

error (ϵ) is unknown apriori, as in this work, the covariance matrix Σ can be jointly estimated

along with the unknown parameters θ. In this work, a diagonal covariance is assumed

Σ = σ2INout . Thus, the likelihood function can be written as,

p(d|Θ, σ2) =
n∏

i=1

1√
(2πσ2)Nout

exp

(
− 1

2σ2
(y

(e)
i − y

(c)
i )T (y

(e)
i − y

(c)
i )

)
(34)
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and the joint posterior distribution is

p(Θ, σ2|d) = p(d|Θ, σ2)p(Θ)p(σ2)

p(d)
(35)

This joint distribution can be marginalized to obtain the posterior distribution of unknown

parameters and the measurement error. However, the term p(d) is a normalizing constant

that involves a high dimensional integral and thus is intractable which in turn makes the

posterior distribution in equation (31) and (35) intractable. Therefore, the posterior distri-

bution is approximated via a Markov Chain Monte Carlo (MCMC) method as described in

Sec. 4.2.3. In the following, we describe at first the prior distributions of the parameters

considered here.

Parameter Prior

Distribution Parameters

Normal stiffness, KN (MPa/mm) Gaussian [240, 40]

Displacement at the onset of damage, δ0 (mm) Uniform [0, 10]

Displacement at final failure, δf (mm) Uniform [10, 20]

Hardening modulus, H (MPa/mm) Gaussian [58, 9.67]

Normal yield strength, So (MPa) Gaussian [60.7, 10.12]

Reference plastic strain, γo (mm/s) Gaussian [1e-6,0.33e-6]

Activation energy, Q (N-mm) Gaussian [1.5e-19,0.5e-19]

Rate sensitivity parameter, m Gaussian [25, 4.17]

Table 2: Prior distribution of parameters used for Bayesian calibration

4.2.2. Prior distribution of parameters

The prior distribution of parameters represents our prior knowledge or assumptions about

the parameter and they play a key role in Bayesian inference problems. The prior distribution

has minor effects on the posterior when the experimental data is sufficiently large in number.

Whereas, when the data is limited, as in the case of this work, the prior distribution of
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parameters plays a significant role in determining the posterior of parameters. Therefore it

becomes crucial to make reasonable choices for the prior distribution.

The most common choices for the prior distribution are the non-informative uniform dis-

tribution and the informative Gaussian distribution. Uniform distribution for the parameters

is assumed when no information about the parameter is available. Since the support of the

uniform distribution is bounded, one has to be careful in choosing the bounds of the uniform

distribution. On the other hand, if a value of the parameter is approximately known a Gaus-

sian distribution can be assumed with the mean at that value. In this work, when the bounds

of the parameters are known a priori and when no information about these parameters is

available in the literature we use a uniform prior. For all other parameters, a Gaussian prior

is chosen. For example, in case of displacement at damage onset and final failure, we know

a priori that the value of this parameter cannot be lower than zero and it cannot exceed the

maximum strain applied in the experiments. Therefore, a uniform prior is chosen for these

parameters. Detailed information on the selection of priors is as follows:

Normal stiffness, KN : A Gaussian distribution is assumed for the parameter KN . The

parameters of the Gaussian distribution are evaluated from the experimental response of

tough polyethylene in [75]. The slope of the traction separation curves for the polyethylene

(PE2) is taken as the mean of the Gaussian and the standard deviation is assumed one-sixth

of the mean 1.

Dispalcement at the onset of damage and final failure, δo, δf : From the experimental

response of the DCB experiments, the peak load occurs at 10 mm COD. Therefore, the onset

of damage is assumed to occur anywhere from 0 to 10 mm and the final failure is assumed

to occur anywhere from 10 to 20 mm. Due to these assumptions, uniform prior distributions

are assumed for these parameters with the corresponding range of values.

Hardening modulus, H and Activation energy, Q: A Gaussian distribution is assumed

for the hardening modulus and the activation energy. The parameters of the Gaussian distri-

1σ = µ/6 is assumed so that 99.7% (or 3σ) of the samples are within [0.5µ 1.5µ].
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butions are taken from a similar constitutive model used for the polycarbonate materials in

[76]. The value of the hardening modulus and activation energy in [76] is used as the mean of

the Gaussian with a standard deviation of one-sixth and one-third of the mean respectively.

Normal yield strength, So: The normal yield strength of polyethylene is taken from

an online materials database for high-density polyethylene [77]. The prior distribution is

assumed Gaussian with value from the database as the mean and one-sixth of this value as

the standard deviation.

Reference plastic strain γo and Rate sensitivity parameter m: Since γo and m are

parameters of the phenomenological model introduced in this work for characterizing the

viscoplastic interface behavior, no knowledge about these parameters exists. Therefore, a

minimum number of trial and error is performed to get an approximate value (or order of

magnitude) for these parameters. Using these values as the mean a Gaussian distribution

is assumed for these parameters and a standard deviation of one-third and one-sixth of the

mean is assumed for γo and m respectively.

Measurement errors: Since the measurement errors are parametrized by the variance σ2,

a uniform prior for the parameter σ2 is assumed with the range [0,1].

With these assumptions and prior knowledge, the prior distribution of the eight unknown

parameters of the cohesive zone model can be summarised as given in Table. 2. It is to be

noted that the support of all the parameters is constrained to be non-negative.

4.2.3. Markov Chain Monte Carlo method

We resort to an extensive and robust framework known as the Markov chain Monte

Carlo (MCMC) method to evaluate the posterior distribution given in equation (35). This

framework enables sampling from a broad range of distributions and demonstrates excellent

scalability with the dimensionality of the sample space. A Markov chain is a random process

that transitions from one state to the other such that the probability of a future state depends

only on the current state [78]. In MCMC methods a Markov Chain is constructed over the

support of the prior distribution such that the equilibrium distribution of the Markov Chain

is equal to the posterior distribution [78, 79, 80]. In doing so, we obtain samples from the
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posterior distribution by recording the states of the Markov chain. The Markov Chains can

be constructed even when the normalizing constant p(d) is unknown thereby making the

MCMC methods suitable to approximate equation (35).

The UQLab [81] framework is used to perform the Bayesian Calibration. The CZM is

integrated with the Bayesian inference module of UQLab in MATLAB for this purpose.

The CZM is evaluated analytically as described in Sec. 3. The CZM acts as the forward

computational model, Y (c)(X,Θ), in equation (29), whose input, X ∈ Rn, is the displacement

and the output, Y (c) ∈ Rn, is the load. Here, n denotes the number of discretization points

of the load-displacement curve. The value of n is chosen such that the load-displacement

curve is refined enough 2. There are eight unknown model parameters, Θ ∈ R8, that are

calibrated.

In order to calibrate the unknown parameters, the results of the DCB experiments are

used for three different strain rates, and their corresponding CZM predictions are calculated.

The posterior distributions of the model parameters are computed from equation (35) by

using the experimental data, the model prediction, and the prior distributions of parameters.

The posterior distribution in equation (35) is intractable and thus it is approximated via an

MCMC sampling method. An Affine Invariant Ensemble Algorithm (AIES) is used to obtain

the posterior distribution of the unknown parameters. The posterior distribution is obtained

after burning out 50% of the initial samples. Further details on the AIES algorithm are given

in Appendix A.

4.2.4. Results of the Bayesian calibration

The estimates for the posterior distribution of parameters obtained through Bayesian

calibration are presented in Table 3. In addition to these parameters the posterior distribution

of variance in the measurement errors (σ2) have mean = 1 and standard deviation = 17e −

4, 5e−4 and 2.6e−4 for the 5, 50 and 500 mm/min strain rates respectively. It is to be noted

that, there is a significant difference between the prior and posterior means of the hardening

2In this work n = 20 is chosen, which we found to provide sufficient refinement.

24



modulus (H) learned through the Bayesian calibration approach. The observed difference

stems from the fact that the prior distributions are derived from existing literature, which

pertains to the original hardening law. In contrast, our work introduces modifications to the

hardening law. Consequently, it is expected that the corresponding parameters will undergo

changes. Further, the large difference between the prior and the posterior demonstrates

that the parameters obtained through the Bayesian calibration are not biased towards the

prior. We utilize the mean of the posterior distributions of the parameters to perform the

Parameter Posterior

Mean Std

Normal stiffness, KN (MPa/mm) 326.81 0.1815

Displacement at the onset of damage, δ0 (mm) 5.83 1.72e-3

Displacement at final failure, δf (mm) 17.91 0.0594

Hardening modulus, H (MPa/mm) 0.3376 0.0805

Normal yield strength, So (MPa) 78.87 11.87

Reference plastic strain, γo (mm/s) 3.7e-7 5.75e-8

Activation energy, Q (N-mm) 1.58e-19 3.02e-20

Rate sensitivity parameter, m 47.06 6.01

Table 3: Mean and standard deviations of the Gaussian posteriors of Bayesian calibration

forward evaluation of the CZM. The load-displacement curves obtained through the CZM for

the calibrated parameters are compared against the experiments in Figure 4, which shows a

good match. Note that the load-displacement curves are truncated at 20mm COD since the

experimental data showed unstable crack propagation beyond that point. The CZM could

capture the linear part, the onset of failure, the peak, and the post-peak response for all the

strain rates. The parameters obtained from Bayesian calibration predict the experimental

response with an average error of 3.76% between the model evaluation and the experimental

response. The percentage error is evaluated as err =

√∫
(ye−yp)2dx√∫
(ye)2dx

× 100.
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Figure 4: Comparison of the load-displacement curves predicted by the CZM with the mean of the posterior

distribution of parameters against experiments. Markers (*) indicate the experimental data points used for

calibration.
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Figure 5: Validation of the parameters obtained from Bayesian calibration. Load displacement predictions

for 203 mm/min strain rate. The data for this strain rate is not used during calibration.

Validation of the calibrated parameters for a test data: In order to validate the

results of the Bayesian calibration approach, we have used the calibrated parameters to pre-

dict the response of an experiment performed at 203 mm/min strain rate. The experimental

response at this strain rate is not used during calibration. The results of the calibration are

presented in Figure. 5. There is an excellent qualitative match between the experiment and

the prediction. The error in the prediction is 10.3%, which is quite good considering that

the strain rates used in the calibration are far from this test data. Most of the errors are in

the post-peak response prediction. It is to be noted that, although the presented approach

should work in principle for any strain rate, one should use caution while extrapolating to

strain rates far away from the ones present in the experiments and used in validation since

the results might be erroneous.

Trace and density plots for the 100 randomly initialized MCMC chains for the normal

stiffness parameter, KN , are shown in Figure 6. These plots are necessary tools to assess

the convergence of the MCMC chains. Trace plots depict the evolution of the MCMC chains

over the steps and the density plot shows the probability densities of the MCMC chains.

The trace plot shows that the randomly initialized chains have all converged to the same

distribution after 5000 steps. The small standard deviation of the density plot depicts a low
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level of uncertainty in the parameter KN after the calibration. The details for the rest of the

parameters and further analysis on the posterior distributions of the parameters are given in

Appendix B.

Figure 6: Trace and density plots for the KN parameter at 5 mm/min strain rate.

Although the Bayesian calibration improves the CZM predictions, discrepancies between

the experimental responses and the predictions still exist as seen in Figure 4. To further

improve the model’s prediction we learn a discrepancy function of equation (28), in the

following section.

4.2.5. Comparison with deterministic calibration approaches

In this section, we compare the results of the Bayesian calibration approach with two

deterministic calibration approaches.

In the first approach, we predict the output of the CZM with the parameters obtained

from the literature (mean of the prior parameters in Table 2) as shown in Figure 7. Since the

contribution of the experimental data shown in the figure is not considered to this approach,

the predictions of the CZM are highly erroneous as expected. This shows the chosen prior
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Figure 7: Evaluation of CZM for parameter values are chosen as the mean of their prior distribution.

distributions are not informed by the experiments at hand. It also demonstrates the need

for Bayesian calibration.

In the second approach, we perform a non-linear minimization of the error between the

CZM predictions and the experimental data to find the best set of parameters. The simplex

search method [82] is used to minimize the following error function:

f =
3∑

r=1

√∫
(yer − ypr )2dx (36)

where r = 1, 2, 3 denotes the three strain rates. The results of the CZM with the parameters

obtained using the optimization method are shown in Figure 8. The nonlinear optimization

approach yields better parameters than the mean of their priors. It can capture the experi-

ments for 500 mm/min strain rate quite well. However, the error is still significantly higher

for the nonlinear optimization approach as compared to the Bayesian calibration approach

considering all strain rates. Further, the Bayesian calibration approach provides the uncer-

tainty estimates naturally through the stochastic parameters which cannot be obtained by

a deterministic calibration procedure such as the nonlinear optimization. This underscores

the necessity for Bayesian calibration.

4.3. Discrepancy between the calibrated model and the experiment

The difference between the prediction of the computational model with the calibrated pa-

rameter and the experimental response is an important source of uncertainty. This difference
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Figure 8: Evaluation of CZM for parameter values obtained through a simplex search-based optimization.

can arise due to missing physics, incorrect assumptions, numerical approximations, and/or

other inaccuracies of the computational model or due to experimental variations. For exam-

ple, the rate-dependent response of the interface may be coupled with the response of the bulk,

which is not taken into account in this work. To account for these differences, which are a

source of uncertainty, a discrepancy function is introduced. The discrepancy function together

with the computational model provides better predictions of the experimental response. The

functional form of the discrepancy function varies with varying applications. In this work,

we learn the discrepancy function using a Gaussian process model Yδ(x) ∼ GP (µδ,Σδ). A

brief overview of Gaussian process models is presented in the following.

4.3.1. Gaussian Process models

A Gaussian Process (GP) is a collection of random variables where each random variable

and any finite linear combination of these random variables follow normal distribution. A

GP model is a stochastic model for the prediction of the distribution of the output variables.

It assumes that the output of the model Y(x) is a realization of a GP

Y(x) ∼ GP (βTf(x), σ2R(x,x′; θ̂)) (37)

where, βTf(x) is the mean of the GP, f(x) = {fi; i = 1, ..., P} is a array of P arbitrary

functions and β is the array of their coefficients. R(x,x′; θ̂) is the correlation function with

hyperparameters θ̂ and σ2 is a constant representing the variance. With this assumption,
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the prediction Ŷ (x) at a new input point x, given a set of known model responses Y =

{y(1), ...,y(N)} at input points X = {x(1), ...,x(N)}, has a joint Gaussian distribution defined

by [83, 84] Ŷ (x)

Y

 ∼ NN+1

fT (x)β

Fβ

+ σ2

 1 rT (x)

r(x) R


 (38)

where

F = Fij = fj(x
(i)); i = 1, ..., N ; j = 1, ..., P

r = ri = R(x,x(i), θ̂); i = 1, ..., N

R = Rij = R(x(i),x(j); θ̂); i, j = 1, ..., N

The mean and the variance of the prediction Ŷ (x) can be estimated as,

µŶ (x) = fT (x)β̂ + rT (x)R−1
(
Y − F β̂

)
(39)

σ2
Ŷ
(x) = σ2

(
1− rT (x)R−1r(x) + uT (x)(F TR−1F )−1u(x)

)
(40)

where,

β̂ = (F TR−1F )−1F TR−1Y ; u(x) = F TR−1r(x)− f(x)

In this work, we use this Gaussian process regression model to learn the discrepancy function.

4.3.2. Results of the discrepancy function

The mean of the posterior distributions is used to evaluate the computational model for

the three strain rates. The discrepancy (δ) is calculated as the difference between the exper-

imental response and the output of the computational model at a given input (X). Three

Gaussian processes, one for each strain rate, are learned for the input and the discrepancy.

A zeroth-order polynomial is taken as the mean of the Gaussian process and an ellipsoidal

correlation function is used. The hyperparameters of the Gaussian process are obtained by

minimizing the cross-validation error. A hybrid Genetic algorithm method is used as the

optimization method to obtain the hyperparameters. In making any new predictions, the

output of the computational model is corrected using this discrepancy function. The number
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of points on the load-displacement curve used to learn the discrepancy function is selected

based on the analysis of error convergence as given in Appendix C.

The Gaussian process learned for the discrepancy between the experimental response and

the model prediction is shown in Figure 9. The GP captures the discrepancy quite accurately

and with minimum uncertainty at the training data points.

Figure 9: The discrepancy function modeled as a Gaussian process for the 5 mm/min strain rate case.

The results of the computational model augmented with the discrepancy function are

presented in Figure 10. The results show that after the introduction of a discrepancy function,

the model’s prediction of the experimental response has improved significantly for all three

strain rates. In cases where multiple experimental results are available for a given input

setting, the significance of the discrepancy function is further enhanced as it captures the

systematic errors in the predictions due to the assumptions in the model. To quantify the

improvement in the CZM’s predictions with the addition of the discrepancy function, the

percentage error is evaluated and provided in table 4 below 3.

3 yp is the predictions of the CZM with or without the discrepancy function. These errors are calculated

for data points that are not used to train the GP for discrepancy function.
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Figure 10: Load-displacement curves obtained by the model with and without the discrepancy function. The

experimental data used here are test points that were not used in training the GP for the discrepancy.

Strain rate % Error CZM % Error CZM with δ

5 mm/min 5.10 0.38

50 mm/min 2.98 0.25

500 mm/min 3.20 0.45

Table 4: Percentage error in the CZM predictions with and without the discrepancy function
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Figure 11: Comparison of errors between the experiment and the CZM model evaluated with (a) mean of

the priors (b) parameters obtained by nonlinear optimization (c) mean of the posterior parameters (d) mean

of the posterior with discrepancy

Comparison of the error between the CZM predictions and the experiments with param-

eters obtained from various calibration approaches used in this work are shown in Figure 11.

This demonstrates that the calibration using standard nonlinear optimization techniques may

not provide the necessary accuracy while dealing with a large number of parameters. The

CZM evaluated with the mean of prior parameters performs the worst and the Bayesian

calibration with the discrepancy function performs the best amongst all the compared ap-

proaches. In addition to these results, we have computed the energy release rates for the

predicted load-displacement curves and presented them in Appendix E.

4.4. Uncertainty Quantification

A computational model is a mathematical representation of a physical phenomenon. Phys-

ical phenomenons have natural variability associated with them such as inherent variability

in the material properties, which are referred to as aleatoric uncertainties. Further, model-
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ing of these physical phenomena introduces additional uncertainties, which may be a result

of limited measurement data, imprecise measurement, solution approximations, unknown

model parameters, and model assumptions. These uncertainties are referred to as epistemic

uncertainties. The aleatoric and epistemic uncertainties need to be modeled and quantified

to better understand the reliability of the predictions of the computational models. The steps

involved in quantifying uncertainties in the predictions of the CZM are summarised as a flow

chart in Figure. 12.
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Figure 12: Uncertainty quantification framework

Bayesian calibration quantifies the parameter uncertainty and measurement errors, rep-

resented via the posterior distribution of the calibrated parameters. These uncertainties can

be propagated through the computational model. The discrepancy function quantifies the

uncertainties due to the modeling assumptions and/or missing physics. Hence, the total

uncertainty in the prediction, Σpred(X), is the sum of the uncertainty in the computational
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model, Σc(X,θ), and the uncertainty in the discrepancy function, Σδ(X), and can be written

as

Σpred(X) = Σc(X,θ) +Σδ(X) (41)

The uncertainty in the discrepancy function, Σδ(X), is obtained from the GP model

for the discrepancy. To quantify the modeling uncertainty, the uncertainties in the model’s

parameters are propagated through the CZM model by sampling the posterior distribution

of parameters and evaluating the model at each of these samples 4. The variance in the

prediction of these samples, Σc(X,θ), is an estimate of the modeling uncertainty.

In a predictive setting, any new prediction Ypred for the CZM can be evaluated as,

Ypred = Yc(X,θ∗) + µδ (42)

Where Yc(X,θ∗) is the model’s prediction at the calibrated parameters and µδ is the mean

of the GP for discrepancy function. The diagonal values of Σpred, denoted as σ2
pred are used

in determining the following confidence interval of predictions

Ypred ∈
[
µpred − Φ−1

(
1− α

2
σ2

pred

)
, µpred + Φ−1

(
1− α

2
σ2

pred

)]
(43)

with probability 1 − α. Where Φ(.) is the cumulative distribution function of the Gaussian

distribution.

4.4.1. Results of uncertainty quantification

Uncertainties are presented as 99.7% (±3σ) confidence intervals in figure 13. These

confidence intervals improve the reliability of the model’s prediction. With the inclusion of

the discrepancy function, all the experimental data lies well within the 99.7% confidence

interval. The uncertainties are lower at the training points, i.e. points from the experiments

used for calibration and for learning the discrepancy function, than at other points in the

load-displacement curve.

4In this work, 1e5 samples from the posterior distribution of parameters are used to evaluate the uncer-

tainty in the computational model.
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(a) 5 mm/min strain rate (b) 50 mm/min strain rate

(c) 500 mm/min strain rate

Figure 13: Load–displacement curves predicted by the model along with the ±3σ confidence intervals.

We observe that the contribution of the parameter uncertainty to the total uncertainty is

less as compared to the contribution of the discrepancy function in Figure D.22, which is due

to the following two reasons. First, the posterior distributions of the unknown parameters

obtained through Bayesian calibration have small variance in most cases as seen from the

density plots of the parameters in Figures 6, B.16 and B.16. Second, the GP model learned

for the discrepancy function is purely data-driven and hence has high uncertainties where

training data is unavailable, as seen in Figure 9. We also note that the uncertainty for the 5
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mm/min strain rate (see the inset of Figure 13 (a)) is higher than the other two strain rates

(see the inset of Figure 13 (b, c)). This could be attributed to the higher variation in the

experimental data before the peak for the 5mm/min strain rate. For example in the small

strain regime, the load-displacement curves of the 50 mm/min and the 500 mm/min strain

rates are almost linear whereas the 5mm/min shows significant non-linearity.

5. Sensitivity Analysis

A sensitivity analysis provides a better understanding of the input-output relationship in

the computational model. The contribution of individual input parameters to the output of

the computational model can be studied from a sensitivity analysis. This also helps in the

simplification of a model by treating the less sensitive random parameters as deterministic

parameters.

A number of methods have been developed to perform sensitivity analysis in the literature

[85]. These methods can be broadly classified as 1) local methods: which involve the study

of small input perturbations around nominal values on the model output 2) global methods:

which consider the range of the whole input domain. One such global method for sensitivity

analysis is the Sobol’ indices or the analysis of variance [86].

In this method, the total variance of a model is decomposed into the variance of the

summands as,

Var(Y ) =
d∑

i=1

Vi +
d∑

i<j

Vij + ...+ V12...d

where,

Vi = VarXi
[EX∼i

(Y |Xi)]; Vij = VarXij
[EX∼ij

(Y |Xij)]− Vi − Vj

and so on. The notation X∼i indicates the set of all variables except Xi and E is the

expectation.

The first-order indices are given by,

Si =
Vi

Var(Y )
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and the total-order indices are given by,

ST i =
EX∼i

[VarXi
(Y |Xi)]

Var(Y )

5.1. Results of the sensitivity analysis

A sensitivity analysis is performed to assess the contribution of the parameters to the

variance of the peak load predicted by the CZM. The parameters are sampled from the

prior distributions to perform the sensitivity analysis. The Sobol’ indices obtained by the

sensitivity analysis are shown in Figure. 14. The displacement value at damage onset (δo) is

the most sensitive parameter in determining the peak load. In classical damage mechanics

analysis, the peak load/strength is governed by the damage initiation criterion. Likewise, in

this work, we have the displacement at which the interface starts separating which is most

sensitive to the peak load. The least sensitive parameters such as the reference plastic strain

γo, Normal yield strength So, and the Hardening modulus H can be considered deterministic

parameters thereby reducing the dimension of unknown parameters significantly.

(a) First order Sobol’ indices (b) Total Sobol’ indices

Figure 14: Sobol indices for the calibration parameters

5.2. Calibration for a subset of most sensitive parameters

In this subsection, the four least sensitive parameters, namely reference plastic strain γo,

Normal yield strength So, Hardening modulus H, and Rate sensitivity parameter m, are con-
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sidered deterministic thereby reducing the number of parameters that need to be calibrated

by half. A Bayesian calibration is performed considering deterministic values of the above-

mentioned parameters as the mean of their prior distributions. The mean and standard

deviation of the posterior distributions of the four calibrated parameters obtained through

this method are shown in the table. 5. The load-displacement curves obtained for the cali-

Parameter Posterior

Mean Std

Normal stiffness, KN (MPa/mm) 570.6 1.4816

Displacement at the onset of damage, δ0 (mm) 4.75 4.8e-3

Displacement at final failure, δf (mm) 13.21 3.8e-3

Activation energy, Q (N-mm) 2.24e-19 5.4e-22

Table 5: Mean and standard deviations of the Gaussian posteriors of Bayesian calibration

brated parameters are shown in Figure 15 . This figure demonstrates that the top 50% most

sensitive parameters can capture the overall trend of the experimental load-displacement

curves. However, the top 50% most sensitive parameters are not accurate enough to capture

the experimental response compared to using all parameters. The reduction in performance

is apparent in the post-peak response. Table 6 compares the errors between the CZM pre-

dictions and the experimental results when calibrating all parameters versus calibrating only

the four most sensitive parameters. The higher errors might be attributed to the following

factors: 1) The sensitivity analysis is performed using the prior of the parameters. The sen-

sitivity of these parameters to the outputs may change significantly as we go farther away

from the priors. Further, it is often challenging to obtain good prior distributions for the pa-

rameters, as in the case of this work, which might affect the results of sensitivity analysis. 2)

The sensitivity analysis is performed on the peak load and not the entire load-displacement

curve. Therefore, parameters that are insensitive to the peak load might still affect the

model’s performance in other regions of the load-displacement curve, such as the post-peak
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response, resulting in an overall less accurate prediction. Nevertheless, in cases where the

parameter space is too large to calibrate the entire set due to computational constraints, a

sensitivity analysis can help perform a Bayesian calibration on a subset of the most sensitive

parameters, significantly reducing the computational cost.
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Figure 15: Comparison of the load-displacement curves predicted by the CZM with the reduced parameter

space obtained from sensitivity analysis.
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Strain rate % Error CZM (All parameters) % Error CZM (4 parameters)

5 mm/min 5.10 8.13

50 mm/min 2.98 7.28

500 mm/min 3.20 8.66

Table 6: Percentage error in the CZM predictions with and without the discrepancy function

6. Conclusions

In the present work, a rate-dependent cohesive zone model (CZM) for the fracture of poly-

meric interfaces is presented. Calibrating numerous parameters for computational models,

like the rate-dependent CZM, poses a challenge. Trial-and-error or nonlinear optimization

methods frequently encounter issues of non-unique and inaccurate calibration. To overcome

these challenges, we have implemented a Bayesian calibration approach, resulting in signifi-

cantly improved accuracy of the CZM model. The Bayesian framework results in probability

distributions for unknown parameters rather than a deterministic value. The variance of the

probability distributions provides confidence intervals in the calibrated values and it serves

as a tool to determine if additional experimental data is needed to enhance the accuracy

of the calibration. In addition, these variances which are a measure of uncertainties in the

parameter estimation have been propagated through the computational models to obtain

uncertainties in the model prediction. A discrepancy function is learned to account for the

average deviation between the model’s predictions and experimental observations, effectively

capturing modeling deficiencies. The model’s predictive capability significantly improved

through the utilization of the discrepancy function. Total uncertainties are quantified, and

predictions are accompanied by confidence intervals. A sensitivity analysis is performed to

generate insight into the input-output relationship for the model, identifying a small subset of

parameters with the greatest influence. The techniques and the framework presented in this

work are general and can be applied to any complex computational to perform calibration

and uncertainty quantification.

42



Acknowledgments

SG and PT acknowledge financial support from the NSF (CMMI MoMS) grant number

1937983 and the U.S. Department of Energy, Office of Science, grant DE-SC0023432. PT

acknowledges the Finishing Fellowship from the Michigan Tech graduate school. This research

used resources of the National Energy Research Scientific Computing Center, a DOE Office

of Science User Facility supported by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231, using NERSC awards BES-ERCAP0025205 and

BES-ERCAP0025168 and the SUPERIOR computing facility at MTU. TS acknowledges

Mohammed R. Imam and Rishab Awasthi for their initial numerical work on the fracture

model.

References

[1] P. P. Camanho, C. G. Davila, M. F. de Moura, Numerical simulation of mixed-mode

progressive delamination in composite materials, Journal of Composite Materials 37 (16)

(2003) 1415–1438.

[2] F. Barpi, S. Valente, The cohesive frictional crack model applied to the analysis of the

dam-foundation joint, Engineering Fracture Mechanics 77 (11) (2010) 2182–2191.

[3] N. Lu, Z. Suo, J. J. Vlassak, The effect of film thickness on the failure strain of polymer-

supported metal films, Acta Materialia 58 (5) (2010) 1679 – 1687.

[4] C. Popelar, M. Kanninen, A dynamic viscoelastic analysis of crack propagation and

crack arrest in a double cantilever beam test specimen, in: Crack Arrest Methodology

and Applications, ASTM International, 1980.

[5] C. Xu, T. Siegmund, K. Ramani, Rate-dependent crack growth in adhesives II. experi-

ments and analysis, International Journal of Adhesion and Adhesives 23 (1) (2003) 15

– 22.

43



[6] J. Du, M. Thouless, A. Yee, Effects of rate on crack growth in a rubber-modified epoxy,

Acta materialia 48 (13) (2000) 3581–3592.

[7] C. Sun, M. Thouless, A. Waas, J. Schroeder, P. Zavattieri, Rate effects for mixed-mode

fracture of plastically-deforming, adhesively-bonded structures, International Journal of

Adhesion and Adhesives 29 (4) (2009) 434 – 443.

[8] A. Smiley, R. Pipes, Rate effects on mode I interlaminar fracture toughness in composite

materials, Journal of composite materials 21 (7) (1987) 670–687.

[9] A. Smiley, R. Pipes, Rate sensitivity of mode II interlaminar fracture toughness in

graphiteepoxy and graphite/peek composite materials, Composites science and technol-

ogy 29 (1) (1987) 1–15.

[10] T. Kusaka, M. Hojo, Y.-W. Mai, T. Kurokawa, T. Nojima, S. Ochiai, Rate dependence

of mode I fracture behaviour in carbon-fibreepoxy composite laminates, Composites

Science and Technology 58 (3-4) (1998) 591–602.

[11] C.-Y. Hui, D.-B. Xu, E. J. Kramer, A fracture model for a weak interface in a viscoelastic

material (small scale yielding analysis), Journal of applied physics 72 (8) (1992) 3294–

3304.

[12] K. M. Liechti, J.-D. Wu, Mixed-mode, time-dependent rubber/metal debonding, Journal

of the Mechanics and Physics of Solids 49 (5) (2001) 1039–1072.

[13] G. Giambanco, G. Fileccia Scimemi, Mixed mode failure analysis of bonded joints with

rate-dependent interface models, International journal for numerical methods in engi-

neering 67 (8) (2006) 1160–1192.

[14] S. Marzi, O. Hesebeck, M. Brede, F. Kleiner, A rate-dependent cohesive zone model for

adhesively bonded joints loaded in mode i, Journal of adhesion science and technology

23 (6) (2009) 881–898.

44



[15] W. Knauss, G. Losi, Crack propagation in a nonlinearly viscoelastic solid with relevance

to adhesive bond failure (1993).

[16] D. P. Makhecha, R. K. Kapania, E. R. Johnson, D. A. Dillard, G. C. Jacob, J. M.

Starbuck, Rate-dependent cohesive zone modeling of unstable crack growth in an epoxy

adhesive, Mechanics of Advanced Materials and Structures 16 (1) (2009) 12–19.

[17] T. Rabczuk, G. Zi, S. Bordas, H. Nguyen-Xuan, A simple and robust three-dimensional

cracking-particle method without enrichment, Computer Methods in Applied Mechanics

and Engineering 199 (37-40) (2010) 2437–2455.

[18] C. M. Landis, T. Pardoen, J. W. Hutchinson, Crack velocity dependent toughness in

rate dependent materials, Mechanics of materials 32 (11) (2000) 663–678.

[19] I. Mohammed, M. Charalambides, A. Kinloch, Modeling the effect of rate and geometry

on peeling and tack of pressure-sensitive adhesives, Journal of Non-Newtonian Fluid

Mechanics 233 (2016) 85–94.

[20] M. Elices, G. Guinea, J. Gomez, J. Planas, The cohesive zone model: advantages,

limitations and challenges, Engineering fracture mechanics 69 (2) (2002) 137–163.

[21] A. Ghatak, K. Vorvolakos, H. She, D. L. Malotky, M. K. Chaudhury, Interfacial rate

processes in adhesion and friction (2000).

[22] P. Rahul-Kumar, A. Jagota, S. Bennison, S. Saigal, S. Muralidhar, Polymer interfacial

fracture simulations using cohesive elements, Acta materialia 47 (15-16) (1999) 4161–

4169.

[23] D. E. Spearot, K. I. Jacob, D. L. McDowell, Non-local separation constitutive laws for

interfaces and their relation to nanoscale simulations, Mechanics of Materials 36 (9)

(2004) 825–847.

[24] A. Needleman, An analysis of decohesion along an imperfect interface, in: Non-Linear

Fracture, Springer, 1990, pp. 21–40.

45



[25] V. Tvergaard, J. W. Hutchinson, The relation between crack growth resistance and frac-

ture process parameters in elastic-plastic solids, Journal of the Mechanics and Physics

of Solids 40 (6) (1992) 1377–1397.

[26] X.-P. Xu, A. Needleman, Numerical simulations of fast crack growth in brittle solids,

Journal of the Mechanics and Physics of Solids 42 (9) (1994) 1397–1434.

[27] G. T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle mate-

rials, International Journal of solids and structures 33 (20-22) (1996) 2899–2938.

[28] Q. Yang, M. Thouless, S. Ward, Numerical simulations of adhesively-bonded beams

failing with extensive plastic deformation, Journal of the Mechanics and Physics of

Solids 47 (6) (1999) 1337–1353.

[29] Y. Gao, A. Bower, A simple technique for avoiding convergence problems in finite ele-

ment simulations of crack nucleation and growth on cohesive interfaces, Modelling and

Simulation in Materials Science and Engineering 12 (3) (2004) 453.

[30] Y. Wei, H. Gao, A. F. Bower, Numerical simulations of crack deflection at a twist-

misoriented grain boundary between two ideally brittle crystals, Journal of the Mechan-

ics and Physics of Solids 57 (11) (2009) 1865–1879.

[31] Y. Wei, Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled

rupture induce catch-to-slip bonds in cell-adhesion molecules, Physical Review E 77 (3)

(2008) 031910.

[32] C. Su, Y. Wei, L. Anand, An elastic–plastic interface constitutive model: application to

adhesive joints, International Journal of Plasticity 20 (12) (2004) 2063 – 2081.

[33] Y. Wei, A. F. Bower, H. Gao, Analytical model and molecular dynamics simulations of

the size dependence of flow stress in amorphous intermetallic nanowires at temperatures

near the glass transition, Physical Review B 81 (12) (2010) 125402.

46



[34] C. Xu, T. Siegmund, K. Ramani, Rate-dependent crack growth in adhesives: I. modeling

approach, International Journal of Adhesion and Adhesives 23 (1) (2003) 9 – 13.

[35] A. Corigliano, M. Ricci, Rate-dependent interface models: formulation and numerical

applications, International Journal of Solids and Structures 38 (4) (2001) 547 – 576.

[36] A. Corigliano, S. Mariani, A. Pandolfi, Numerical modeling of rate-dependent debonding

processes in composites, Composite Structures 61 (1-2) (2003) 39–50.

[37] M. Anvari, I. Scheider, C. Thaulow, Simulation of dynamic ductile crack growth using

strain-rate and triaxiality-dependent cohesive elements, Engineering fracture mechanics

73 (15) (2006) 2210–2228.

[38] A. Rosa, R. Yu, G. Ruiz, L. Saucedo, J. Sousa, A loading rate dependent cohesive model

for concrete fracture, Engineering Fracture Mechanics 82 (2012) 195–208.
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Appendix A. Affine invariant Ensemble algorithm

The affine invariant Ensemble (AIES) [87] algorithm is an MCMC method that can be

used to sample from the posterior distribution of parameters. The primary advantage of

the AIES algorithm is that it performs well when the posterior distribution shows a strong

correlation between the parameters due to its property of being invariant to affine transfor-

mations of the target distribution [80]. In contrast, other MCMC algorithms perform poorly

when the parameters are correlated and need a considerable amount of tuning to improve

performance.
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In the AIES algorithm, an ensemble of Markov chains χ1, χ2, ...χc called walkers is con-

sidered. The position of a chain θi is updated by randomly picking a conjugate chain θ
(t)
j

such that i ̸= j. As a next step, a stretch move is performed where a new position θ
(∗)
i is

proposed such that

θ
(∗)
i = θ

(t)
i + Z(θ

(t)
j − θ

(t)
i ) (A.1)

where,

Z ∼ p(z) =


1

√
z
(
2
√
a− 2√

a

) if z ∈ [1/a, a],

0 otherwise.

(A.2)

where a > 1 is a tuning parameter. θ
(∗)
i is then accepted as the new position of the i-th

walker with probability:

α(θ
(∗)
i , θ

(t)
i , z) = min

{
1, zM−1π(θ

(∗)
i |D)

π(θ
(t
i |D)

}
(A.3)

This is done for all the chains in the ensemble to obtain the samples from the posterior

distribution of parameters.

Appendix B. Analysis of the posterior of parameters

In MCMC methods, trace plots serve as an important tool to diagnose the convergence

of MCMC chains. Trace plots track the individual Markov chains during the optimization

process. Trace plots for the 100 random initialized chains are presented in Figure. B.16.

Note that the posterior distribution is obtained after burning out 50% of the initial samples,

however all the samples are shown here for completeness. The plots for the parameters

KN , δo, δf , H and γo show good convergence. Given that the calibration is performed in high

(eight) dimensions the plots for the parameters So, Q, and m are reasonable.
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(a) (b)

(c) (d)

(e) (f)

Figure B.16: Trace and density plots of the parameters
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(a) (b)

Figure B.16: Trace and density plots of the parameters

The convergence of the mean of the parameters is shown in Figure. B.17. The mean

convergence plots show the same trend as the trace plots.

(c) (d)

Figure B.17: Convergence of the means of the parameters
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(a) (b)

(c) (d)

(e) (f)

Figure B.17: Convergence of the means of the parameters
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A violin plot is a statistical graph showing the probability density of a quantity. Violin

plots depicting the posterior predictive distribution of the load-displacement curve are pre-

sented in Figure B.18. The effect of the parameter uncertainty is seen from the violin plots.

It is evident that the parameter uncertainties are not sufficient to capture the experimental

response. This emphasizes the need for a discrepancy term.
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(g) 5 mm/min

(h) 50 mm/min

Figure B.18: Posterior predictive distribution after Bayesian Calibration
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(a) 500 mm/min

Figure B.18: Posterior predictive distribution after Bayesian Calibration

The samples drawn from the prior and posterior distribution of parameters are presented

through a scatterplot in Figure B.19 and B.20 respectively. Since the material parameters

cannot be uniquely determined from limited experimental data, a stochastic approach such

as the Bayesian calibration used in this work provides us with all possible values of the

parameters, as seen in B.20, that can reproduce the experiments. The variance of these

samples is a measure of uncertainty in the parameters of the model.

Appendix C. Error convergence study of the Gaussian process model

In this work, a Gaussian process (GP) model is used to learn the discrepancy between the

computational model’s output and the experimental response. A convergence study for the

error between the GP’s prediction and the true discrepancy is performed to select the optimal

number of points needed to learn the discrepancy function. The plot of the convergence of
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the percentage error is shown in Figure. C.21. Based on this study, 20 points are taken to

learn the discrepancy function.
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Figure C.21: Convergence of error with the number of training points in discrepancy.

Appendix D. Contribution to Uncertainties

We compare the contribution of the discrepancy and the parameter uncertainty to the

overall uncertainty of the CZM in Figure D.22. A similar trend was observed for all three

strain rates.
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(a) (b)

Figure D.22: Uncertainty due to: (a) calibration (parameter uncertainty) and (b) Gaussian process of the

discrepancy function for the 5mm/min strain rate.

Appendix E. Energy release rates

In this section we compute the energy release rates based on the presented P-COD curves.

We used the “Change in compliance approach” for this purpose, where compliance (C) for a

DCB specimen is given by

C =
u

P
= 8

a3

EBh3
(E.1)

Where, u is the COD, P is the load, a is the crack length, E is Young’s modulus, B is the

specimen width and h is the cantilever height. Therefore, the crack length (a) evolution can

be evaluated using (E.1) and based on the load-displacement data. With the crack length

known, we further obtain the energy release rate as,

G =
12a2P 2

Eb2h3
(E.2)

Figure. E.23 depicts the strain energy release rate (G) normalized by its value at crack

initiation (GIC) vs change in crack length (∆a). The increasing trend of G as a function of
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crack length depicts a stable crack growth trend for the specimens. It is also to be noted

that the compliance calibration method considers the beams to be deformable rather than

rigid as assumed in the proposed rate-dependent cohesive model.
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Figure E.23: Strain energy release rate
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