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1 Introduction

Plasticity of crystalline solids is a dynamic phenomenon resulting from the
motion under stress of linear crystal defects known as dislocations. Such a
statement is grounded on numerous convincing observations, and it is widely
accepted by the scientific community. Nevertheless, the conventional plastic-
ity theories use macroscopic variables whose definition does not involve the
notion of dislocation. This paradoxical situation arises from the enormous
range covered by the length scales involved in the description of plastic-
ity, from materials science to engineering. It may have seemed impossible
to account for the astounding complexity of the (microscopic) dynamics of
dislocation ensembles at the (macroscopic) scale of the mechanical proper-
ties of materials. Justifications offered for such a simplification usually reside
in perfect disorder assumptions. Namely, plastic strain is regarded as result-
ing from a large number of randomly distributed elementary dislocation glide
events, showing no order whatsoever at any intermediate length scale. Hence,
deriving the mechanical properties from the interactions of dislocations with
defects simply requires averaging on any space and time domain. The exis-
tence of grain boundaries in polycrystals is of course affecting this averaging
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procedure, but it does not change it fundamentally.

This straightforward jump from microscopic to macroscopic scale has long
been the prevailing point of view in the mechanical science as well as in the
materials science community. It may be justified for example in bcc materials
at low temperature, where the motion of dislocations is subject to large lattice
friction. However it reaches its limits when elastic interactions between dislo-
cations become of the order of the interactions with other obstacles to their
motion (lattice friction, solute atoms, precipitates....). Since dislocation densi-
ties commonly increase during material loading, such a situation is met sooner
or later when strain increases. The field of elastic interactions between dislo-
cations then becomes able to generate collective behavior and self-organized
phenomena at some intermediate length scale. Collective phenomena include
dislocation patterning and the emergence of complex dynamic regimes [1].
Numerous examples of dislocation patterns, involving dislocation - rich and
dislocation - poor areas, are observed in optical or electronic microscopy. Such
is the case of the dislocation walls formed in cyclic loading (see Figure 1),
of dislocation cells (Figure 2) and localized slip bands on the surface of sin-
gle crystals (Figure 3). Similar spatial structures can also be inferred from

Fig. 1 Dislocation walls in Si single crystal cyclically loaded in tension - compression at

high temperature; after [2].

the complex temporal behavior inherent to deformation curves in certain
metallic alloys (Portevin - Le Chatelier effect, Lüders bands...) [1]. In such
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Fig. 2 Optical micrography of giant dislocation cells after GaAs crystal growth. Note
that the average cell size varies in inverse proportion to stress. Inset : dislocation cells

through X-ray imaging : dark areas are images of lattice distortion around dislocations;

after [3].

Fig. 3 Slip lines on the surface of Cu30at%Zn single crystal strained in tension at 19.4%

and 77K ; after [4].
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conditions, the simple averaging procedures alluded to above are no longer
justified. Thus, the conventional theories of plasticity are no longer valid and
they are unable to account for the emerging patterns, because they lack the
relevant internal length scales.

In attempting to account for self-organization phenomena, a first approach
consisted in using strain gradients and rotation gradients in the description
of the kinematics of the transformation and introducing the necessary length
scales in a phenomenological way into the constitutive equations of plasticity
[5, 6, 7, 8]. Such approaches can be referred to as ”nonlocal” theories, as
opposed to the ”local” conventional plasticity theories and they are known
as ”strain gradient” plasticity theories. They may be useful in the character-
ization of the emerging patterns, but the identification of the involved length
scales, as well as their physical justification may raise difficulties. Further,
additional boundary conditions of higher order may be required. The notion
that necessary ingredients for the dynamic description of the emerging pat-
terns are the areal dislocation densities defined in a continuous manner over
surfaces of appropriate dimensions is recent [9], although these dislocation
densities were known for a much longer time [10, 11, 12, 13, 14]. In a way
to be documented hereafter, a change of scale must be performed to proceed
from individual dislocations to dislocation densities [15]. Clearly, the scale of
resolution must be smaller than the characteristic length scale of the dislo-
cation patterns to be described. However, there is no mandatory rule, and
the choice of the resolution length scale depends on the accuracy demanded
on the description. Hence, a phenomenon deemed ”non - local” in a fine
scale resolution scheme may well be classified as ”local” when the scale of
resolution is sufficiently enlarged. Further, when envisioned on such interme-
diate resolution length scales, dislocation motion is amenable to transport of
the areal dislocation densities, which confers propagative character to these
variables, in connection with the equation for dislocation transport [11, 12].
Fundamental changes in the mathematical nature of the governing equations
derive from this property and impact on the algorithms devoted to the solu-
tion of boundary value problems [16, 17, 18].

The stress field responsible for the nucleation and motion of dislocations de-
rives in the first place from the tractions and displacements imposed on the
sample boundaries. When the distribution of dislocations becomes inhomo-
geneous at some chosen scale, their long - range internal stress field brings
about a redistribution of stresses and dislocations, in a manner accounting
for the elastic properties of the material, stress equilibrium and boundary
conditions. Along this process, the evolution of the dislocation density and
internal stress fields depends on the strain path and anisotropy is induced.
The objective assigned to field dislocation dynamics theories is to account
for the emergence of inhomogeneous dislocation distributions at some meso-
scopic (intermediate) length scale, as well as their consequences on mechan-
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ical behavior. Three such problems will be reviewed in the present Chapter.
First, field dislocation dynamics theories are obviously well suited for small
size systems: nano-structures, micro-systems... Here, the overall dimensions
of the sample are not much larger than the characteristic length scale of the
dislocation patterns and, consequently, effects of sample size on mechanical
response are to be observed. Interpretation of these size effects through field
dislocation dynamics [19] will be discussed in the following. Secondly, since
dislocations are often conveniently viewed as distinct objects, dislocation ac-
tivity appears to be inhomogeneous at a finer scale of resolution. Because
dislocation glide is controlled by local obstacles in a large class of materials,
it is also intermittent in time. In these materials, dislocation motion consists
in successive fast runs of dislocation segments from one obstacle to the next
one, with the flight time of dislocations being much smaller than their ar-
rest time on obstacles. Although intermittency of plasticity was described as
early as 1932 in Zn single crystals [20], the prevailing interpretation has been
perfect disorder. In average over sufficiently large length and time scales, in-
termittent fluctuations have been regarded as adding at random to a smooth
in time and homogeneous in space net response. A fundamentally different
understanding emerged during the last few years when statistical analysis
of these fluctuations became available, that of a scale-invariant phenomenon
characterized by power law distributions of fluctuation size, and correlations
in space and time [21, 22, 23, 24, 25]. Because they feature correlations in
space due to both the long-range internal stresses and the short-range inter-
actions involved in dislocation transport, field dislocation dynamics theories
are candidates for the interpretation of scale-invariant intermittency [26], and
the results will be reported herein. Finally, the anisotropy of strain hardening
induced by the emergence of internal stress fields will be reviewed. The direc-
tionality of the sharp yield point in strain-aged steels and the occurrence of
a Baushinger effect after a sequence of forward-reverse straining will receive
interpretation within the framework of a field dislocation theory coupling the
evolution of statistical and polar dislocation densities with that of point de-
fects due to strain-aging [27].

By considering internal stresses due to dislocation - dislocation interactions,
alternative modeling approaches such as statistical mechanics [4], phase field
[28] and discrete dislocation dynamics methods [22, 29, 30] reproduce the
scale-invariance of plastic activity. They have a potential for retrieving length-
scale dependence of material properties, but usually consider periodic bound-
ary conditions over small domains. Further, both phase field and statistical
mechanics methods have not been shown to retrieve the propagative features
related with dislocation transport. In discrete dislocation dynamics simula-
tions, transport of dislocation densities is present, but fully resolved into
the motion of individual dislocations. As a rule of thumb, using present day
computing facilities, dislocation dynamics codes are able to handle a tenfold
increase of the initial number of dislocations [31]. Hence, dislocations dy-
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namics simulations are still limited to small size / small strain systems, with
a simulation box size of the order of 10µm3 and a plastic strain achieved
amounting to about 10−2. Thus, if not for the treatment of boundary con-
ditions, geometric and elastic nonlinearity, and inertia, the chances to tackle
large-scale engineering problems in the future with discrete dislocation dy-
namics simulations are slim, and field dislocation theories seem to be more
fitted for real scale boundary value problems.

The Chapter is organized as follows. In Section 2, we provide an overview of
the current field dislocation dynamics theories, augmented with recent devel-
opments in macroscopic polycrystal response. Section 3 deals with the effects
of sample size on mechanical response, and is illustrated with the example
of ice single crystals submitted to torsion creep where robust size effects are
observed. Section 4 is devoted to scale-invariance and transport effects in the
intermittency of crystal plasticity. Examples include the behavior of copper
single crystals in tension. Section 5 deals with the anisotropy in mechanical
properties induced by complex strain paths, with the exemple of the direc-
tionality of the sharp yield point and the occurrence of a Baushinger effect
in strain-aged polycrystalline steels. The concluding section provides insights
into the flexibility of the theory regarding the scale of resolution and its
ability to deal with fine - scale vs. engineering - scale simulations.

2 Field dislocation dynamics theory

The theory uses the continuum description of dislocations based upon Nye’s
dislocation density tensor α [10]. Operating on the normal n to a unit sur-
face S, α provides the net Burgers vector b = α.n of all dislocations lines
threading S, i .e., the incompatibility in plastic displacement found along
the Burgers circuit C surrounding S. When surface S is so small that it is
threaded by a single dislocation with Burgers vector b and line vector t,
α = b ⊗ t and the involved dislocation is labelled as a ”polar dislocation”.
When the size of S, i.e., the resolution length scale, is increased to the point
where S is threaded by a large number of dislocations, b may be zero if all
individual Burgers vectors statistically offset. Then α is zero, the dislocations
are unresolved and they are deemed ”statistical”. In intermediate cases, the
net Burgers vector b is non-zero, but part of the dislocations threading S
may remain unresolved. The subscripts in the density components αij then
indicate respectively the net Burgers vector and line vector directions of polar
dislocations, whereas the remaining statistical dislocations are not accounted
for in tensor α. Due to lattice incompatibility, the plastic distortion tensor
Up is not a gradient; it is written as a sum of a gradient and an incompatible
part that cannot be expressed as a gradient
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Up = grad z− χ (1)

The incompatible part results from the distribution α through the funda-
mental geometrical equation of incompatibility

curl Up = −curl χ = −α (2)

augmented with the side conditions

div χ = 0 (3)

and χ.n = 0 on the boundary with unit normal n, to ensure that when α = 0
the incompatible part χ vanishes identically on the body. The compatible
part depends upon the history of plastic straining and records the compatible
increments of the plastic strain rate produced by the motion of dislocations
through the equation

div grad ż = div (α×V) (4)

where the field V represents the velocity of an infinitesimal dislocation seg-
ment at any spatio-temporal location. In this model of dislocation mechanics,
the total displacement field, u, does not represent the actual physical motion
of atoms involving topological changes but only a consistent shape change
and hence is not required to be discontinuous. However, the stress produced
by these topological changes in the lattice is adequately reflected in the theory
through the utilization of incompatible elastic/plastic distortions. As usual
in continuum plasticity, the elastic distortion (nonsymmetric) is assumed to
be the difference of the total displacement gradient and the plastic distortion

Ue := grad u−Up (5)

and the stress is a function of the elastic distortion (in the linear elastic case
given by T = C : Ue ) satisfying the equation of equilibrium

div T = 0 (6)

Finally, α evolves according to the fundamental transport law, which derives
from the conservation of Burgers vector content

α̇ = −curl (α×V) (7)

Gathering all equations, the complete theory reads as

curl χ = α (8)
div χ = 0 (9)

div grad ż = div (α×V) (10)
div [C : {grad (u− z) + χ}] = 0 (11)
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α̇ = −curl (α×V) (12)

To derive the structure of an averaged mesoscopic theory, we adapt an aver-
aging procedure commonly used in the study of multiphase flows (see, e.g.,
[32]). For a microscopic field f given as a function of space and time, we
define the mesoscopic space-time averaged field f̄ as

f̄ (x, t) =
1∫

I(t)

∫
Ω(x)

w(x− x′, t− t′)dx′dt′

∫
=

∫
B

w(x−x′, t−t′)f (x′, t ′)dx′dt ′

(13)
where B is the body and = a sufficiently large interval of time. In the above,
Ω(x) is a bounded region within the body around point x with linear di-
mension of the order of the spatial resolution of the macroscopic model we
seek, and I(t) is a bounded interval in = containing t. The weighting func-
tion w is non-dimensional, assumed to be smooth in the variables (x,x′, t, t′)
and, for fixed x and t, has support (i.e. is non-zero) only in the domain
< = Ω(x)× I(t) when viewed as a function of (x′, t′). The averaged field f̄ is
simply a weighted, space-time running average of the microscopic field f over
<, whose scale is determined by the scale of spatial and temporal resolution
of the averaged model one seeks. Applying this operator to Eqs. (8-12), we
obtain [15] an exact set of equations for the averages given as

curl χ̄ = ᾱ (14)
div χ̄ = 0 (15)

div grad ˙̄z = div (ᾱ× V̄ + Lp) (16)
div [C : {grad (ū− z̄) + χ̄}] = 0 (17)

˙̄α = −curl (ᾱ× V̄ + Lp) (18)

where Lp, defined as

Lp := (α− ᾱ)×V(x, t) = α×V(x, t)− ᾱ× V̄(x, t), (19)

and V̄ are the terms that require closure. Physically, Lp is representative of
a portion of the average slip strain rate produced by the ”microscopic” dislo-
cation density; in particular, it can be non-vanishing even when ᾱ = 0 and,
as such, it is to be physically interpreted as the strain-rate produced by the
so-called ”statistical dislocations”, as is also indicated by the extreme right-
hand side of (19). The variable V̄ has the obvious physical meaning of being a
space-time average of the point-wise, microscopic dislocation velocity. Initial
and boundary conditions for (8-12) are important from the physical model-
ing point of view [15], particularly in the context of triggering inhomogeneity
under boundary conditions corresponding to homogeneous deformation in
conventional plasticity theory [17].

It is possible to eliminate the fields (χ, z) (dropping overhead bars for
convenience) in the set of equations (14-18), provided that the continuity
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conditions implied by the set of equations at surfaces of discontinuity are
retained. Considering for simplicity discontinuity surfaces that do not move
with respect to the material, a reduced set of equations can be written as

div T = 0 (20)
T = C : Ue (21)

Ue = grad u−Up (22)

U̇p = α×V + Lp (23)

α̇ = −curl U̇p (24)[
U̇p

]
× n = 0 (25)

where
[
A

]
represents a jump of A at the surface of discontinuity and n is

the unit normal to the surface, with arbitrarily chosen orientation. The equa-
tion (25) has the practical implication (say for finite element calculations)
that, unlike conventional plasticity, the plastic distortion field has to satisfy
a ”hard” partial continuity constraint, i.e., the tangential action of the plas-
tic distortion rate has to be continuous at a material surface of discontinuity.
The equation (24) provides for the evolution and transport of polar disloca-
tion densities. Through the curl of the total plastic distortion rate tensor U̇p,
it couples the polar and statistical dislocation densities for the nucleation of
polar dislocations. Complementing the above equations with a constitutive
relation for the average dislocation velocity V as a function of stress and dis-
location orientation, and with phenomenological evolution equations for the
statistical densities involved in the conventional velocity gradient Lp, one
obtains a closed theory in the sense that it contains enough statements to
derive uniquely the dynamics of stress and dislocation densities in a bounded
domain from boundary and initial conditions. In particular, the direction d
of velocity V is prescribed as [15]

V = v
d
|d|

d : = b− (b.
a
|a|

)
a
|a|

(26)

b : = X(T′α) ; bi = eijkT ′
jrαrk ; a = X(tr(T)α) ; ai = (

1
3
Tmn)eijkαjk

The definition of d can be approached from two points of view. In the sit-
uation when the dislocation density may not be expressed as an elementary
dyad formed from a Burgers vector direction and a line direction, the defi-
nition (26) arises as a sufficient condition for pressure independence of the
polar dislocation plastic strain rate and ensuring positive dissipation. The
dissipation in the model can be written as
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D =
∫

B

(X(Tα).V + T : Lp)dv (27)

Focusing on the dissipation due to polar dislocation motion, X(Tα).V, and
writing

X(Tα) = b + a (28)

where b is a pressure-independent term, it makes physical sense to require
V to be in the direction of b. However, this does not guarantee that the
dissipation due to polar dislocation motion is independent of pressure and
neither that X(Tα).b ≥ 0; however subtracting the component of b in the
direction of a ensures the latter fact:

(b+a).(b−(b.
a
|a|

)
a
|a|

) = b.b− (b.a)2

|a|2
+a.b−b.a = b.b−(b.

a
|a|

)2 ≥ 0 (29)

by the Cauchy-Schwarz inequality (Pythagoras’ theorem). Alternatively, a
compelling mechanistic interpretation arises when α may be interpreted as
an elementary dyad formed from a Burgers vector direction and a line di-
rection. Then the direction of a represents the direction of climb whenever
α represents a dislocation segment of pure edge or mixed character, and it
is degenerate when α is of pure screw character. Thus d represents the fact
that mixed or edge dislocations cannot climb or cross-slip whereas screw dis-
locations are unrestricted in their motion.

It is perhaps insightful to evoke analogies between dislocation dynam-
ics and eddy dynamics in turbulent flow [34]. This analogy extends to
transport of polar / statistical dislocation densities, as expressed through
Eqs.(18,23,24), and Large Eddy Simulations (LES) in the analysis of turbu-
lence [18]. Turbulent flow is characterized by eddies at all scales. Averaging
in space and time the Navier-Stokes equations provides equations for large
resolved eddies, while unresolved ones are dealt with using additional sub-
grid-scale variables. Closure of the theory is obtained through sub-grid phe-
nomenological models featuring scaling character [35]. In dislocation dynam-
ics, averaging in space secures equations for polar dislocations while providing
the link with conventional plasticity: closure for the unresolved variables Lp

derives from well-established models for the viscoplasticity of crystalline ma-
terials, i.e., relations for forest hardening and lattice rotation having received
decades of attention and experimental validation (see below Eqs.(30,31,40)).
Also in contrast to turbulence, scaling behavior is associated with grid scale
level, not sub-grid scale, as we show in Section 4.

Two types of solutions are offered in what follows, in order to provide
various insights. First we conduct full 3-D numerical solutions of Eqs. (14-
18) in single crystals, by using a Galerkin - Least Squares finite element
method appropriate for transport problems (see [15, 18] for details). In these
simulations, the plastic velocity gradient Lp follows from the activity of the
statistical mobile dislocations on all slip systems
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Lp =
∑

s

ρmbVsbs ⊗ ns, (30)

where ρm is the mobile statistical dislocation density, bs and ns are the slip
system Burgers vector and glide plane normal respectively. Vs is the ensemble
dislocation velocity, which follows the power law relationship

Vs = V0sgn(σs)(
|σs|

σ0 + σh
)n, σs = bs ⊗ ns : T (31)

Here σs is the resolved shear stress on a glide plane, with reference velocity V0,
athermal stress σ0 and stress exponent as material parameters. The threshold
stress σh reflects short range obstacle overcoming. It relates to the statistical
forest density ρf through the usual Taylor relation τh = αµb

√
ρf , where α is

a non dimensional parameter. Large n values reflect abruptness of dislocation
unpinning from obstacles. The velocity V of polar dislocations is taken as the
average of the statistical slip velocity absolute values |Vs| over all slip systems.
Hence, the same physics applies to both dislocation species. We shall also
consider simplified situations with dislocations pertaining to, and gliding in
a single slip plane with no out-of-plane motion. The latter simulations provide
for representative behavior of some portion of a slip plane in a single crystal
experiment.

3 Effects of sample size on mechanical response

In a torsion test, the shear stress increases from the axis to the exterior of the
sample. When investigating the plastic response of materials, this gradient
is commonly viewed as a drawback of torsion testing. It becomes beneficial
when the material behavior involves internal length scales associated with
emerging dislocation microstructures. The inhomogeneity of the boundary
conditions then generates polar dislocations, which give rise to long-range
elastic stress fields. Hence torsion is a challenging case for theories of plastic-
ity with internal length scales. Thin copper wires with diameters in the range
12− 170µm were twisted in order to probe into such theories [6]. Size effects
were reported, and the trend is that the greater is the imposed gradient, the
greater is the degree of hardening. However, the large strains achieved, the
polycrystalline character of the material, the texture evolution and varying
grain size of the samples may have complicated the interpretation. In the
present Chapter, the creep response of ice single crystals in torsion, a much
simpler material and experimental configuration, is described with focus on
the effects of the sample dimensions on this response. As an hcp material
with a strong anisotropy of plasticity, ice is a choice material in this respect.
It deforms plastically by the activity of basal slip systems almost exclusively
[36] and it is characterized by a low Peierls stress [37]. Plastic anisotropy
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and a low lattice friction favor long-range elastic interactions and dislocation
transport, as well as their interactions and, indeed, the creep response of ice
single crystals oriented for basal slip in torsion exhibits spectacular size ef-
fects in the cm range [19].

In [19], the torsion creep tests were carried out on cylindrical samples ma-
chined from laboratory grown single crystals. The applied torque M was such
that the average shear stress across a sample cross section τ̄ = 3M/2πR3 (R
is the sample radius) remained constant throughout the experiments. Fig.

Fig. 4 Creep strain on outer surface vs. time, for various diameter values. The average

shear stress is τ̄ = 0.12MPa. In each sample, height and diameter are equal, in order to

avoid any bias due to end effects. Courtesy of Juliette Chevy [38].

4 shows the forward creep curves, i.e., the evolution in time of γ = κR, the
strain on the outer surface (κ = θ/h is the constant twist per unit length of the
sample). A forward and reverse creep curve, with the torque sign changed at
reversal, is also shown below in Fig. 7. Dimensional analysis shows that, for a
material devoid of internal length scales, creep curves gathered from samples
with varying radius superpose if the average shear stress τ̄ and height/radius
ratio are kept constant. Conversely, distinct curves in this plot are evidence
for an effect of size on the plastic response. Fig. 4 suggests that the time
needed to achieve a given strain decreases with the diameter, which indicates
a softening effect of diameter reduction on the sample response, a trend op-
posite to that reported in [6] for polycrystalline Cu samples. Dispersion in
the curves is existing, but limited. It results mainly from uncontrollable fluc-
tuations in the initial dislocation microstructure, which lead to uneven initial
creep strain rates.

Hard X-ray diffraction analyzes performed on slices extracted from the
strained samples show that plasticity is almost exclusively due to polar dislo-
cations of screw character gliding in basal planes, with very few mobile statis-
tical dislocations [39]. The initial density of dislocations present in the sam-
ples, mostly sessile dislocations, was shown to be small (less than 108m−2).
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In addition, the analyses reveal a scale invariant arrangement of polar dislo-
cations along the torsion axis suggesting propagation of slip in this direction.
The latter can be explained by the occurrence of double cross-slip of screw
dislocations through prismatic planes [40].

Interpretation in terms of dislocation dynamics of these observations is
now provided on the basis of the model described in Section 2. We begin
with a simplified 1-D model designed for twofold purpose: to illustrate the
critical aspects of the theory; to allow for effective parametric study of size ef-
fects. In this idealization for deformation under a gradient of simple shear, we
consider screw dislocation density of infinite extent in the (x1, x3) tangential
and axial directions, line and Burgers vector along the tangential direction
x1 and transport in the radial direction x2. The distributions of shear stress
σ13, polar screw density α11 and mobile statistical density ρm along a sample
radius are the unknowns. The resulting equations, derived from the complete
set (14-18) in creep reduce to

σ13,1 = σ13,3 = 0 (32)
α̇11 + (α11v2),2 = −(ρmbv),2 (33)

Here b is the length of the Burgers vector, and a comma indicates a partial
derivative. The shear stress σ13 cannot be obtained from these simplified
equations, and recourse is made to approximations. Since the concern is on
transient primary creep and the sample remains mostly elastic in its central
part, as will be discussed below, an elastic approximation is used: σ13 =
(x2/R)τ . It was checked that the latter differs from the stress distribution
expected for a fully viscoplastic response by less than 15%. Eq. (33) is a
transport equation. It represents the transport of screw dislocations along the
radius with a source term due to gradients in statistical dislocation mobility.
Account of the physics of dislocation velocity and of the history of straining is
now made through phenomenological statements. Following [36], we assume
a power law relationship for the average polar and statistical dislocation
velocities (v2, v) in the form

v2 = v = v0sgn(σ13 − σµ)(
|σ13 − σµ|
σ0 + σh

)n (34)

with n = 2. Parameters (v0, σ0) are reference velocity and stress values,
respectively. They are identified from the experimental data [36, 37]. An
isotropic statistical hardening is derived from the sessile density ρs in the
Taylor form: σh = ᾱµb

√
ρs, where µ denotes the elastic shear modulus and

ᾱ is a constant. Only a fraction (1− β) of the nucleated screws glides in the
basal planes. They induce a back-stress, with rate of formation

σ̇µ = α̃µα11v2 −
|v2|
α̂b

σµ (35)
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where (α̃, α̂) are constants. Relation (35) is similar to the Armstrong-
Frederick law for kinematic hardening [41], but here the back-stress builds
up from polar dislocation mobility only. Note that the involved relaxation
time τr = α̂b/|v2| is inversely proportional to the polar dislocation velocity.
It is such that, at equilibrium (σ̇µ = 0), the back-stress value does not de-
pend on the dislocation velocity, but only on the polar dislocation density.
The complementary fraction β of nucleated screws experiences out-of-plane
motion induced by the internal stress field. Therefore the statistical sessile
density increases - due to the formation of edge segments in prismatic planes,
assumed to be proportional to the rate of screw nucleation

ρ̇s = β|(α11v2),2| (36)

In our calculations, σh remains smaller than the reference stress σ0, implying
that statistical hardening is relatively insignificant, whereas the back-stress
σµ can be of the order of the applied stress τ . The statistical mobile dislo-
cation density ρm has a very low initial value. It increases due to dislocation
sources associated with edge jogs in prismatic planes [42]. Its nucleation rate
is supposed to be proportional to the shear strain rate, with coefficient C1.
Saturation of mobile dislocations results from their mutual annihilation, with
coefficient C2.

ρ̇m = (
C1

b2
− C2ρm)Γ̇ , Γ̇ = |α11v2 + ρmbv| (37)

Note that the evolution law (37) is also used in the upcoming 3-D com-

Fig. 5 Polar screws α11 piercing the plane with normal in the x1 direction and α22

piercing the plane with x2 normal: A) just before reversal in Fig. 7; B) the structure
developed after reversing the direction of creep, at the end of the curve.

putations, with Γ̇ = |U̇p|, but that the latter automatically include out-
of-plane dislocation motion and back-stress build-up. Their presence in the
phenomenology of the 1-D formulation through Eqs. (35, 36) is an offset for
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Fig. 6 Shear stress component σ13 shown at the beginning (A) and end (B) of the blue
dashed curve in Fig. 7. The figure highlights the development of stress due to the multipli-

cation of polar dislocations, from the (effectively) elastic solution with low mobile density.
Plot A also shows end effects in the distribution of stress.

the assumed invariance in the c-axis direction. Model parameters and initial
conditions are given in Table I.

Fig. 7 Creep curves in forward / reverse torsion from experiments, 1-D and 3-D models.

The blue dashed line shows the forward creep curve for a sample with halved radius and
height. It is seen that the acceleration of creep increases when the sample size is reduced.

The green continuous line, obtained for conventional elasto-viscoplastic (EVP) treatment,

shows that the latter is unable to retrieve the acceleration of creep.

Fig. 5 shows the (locally-resolved) polar screw density and Fig. 6 the shear
component of the stress obtained from the 3-D model. Note that the 3-D
stress distribution supports the assumption made in the 1-D idealization.
Under a positive torque, an outstanding feature of both models is the nu-
cleation of positive screw dislocations close to the edge of the sample, their
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Table 1 Numerical constants and initial conditions used in the model

b v0 σ0 n µ β C1 C2

4.5× 10−10m 3.6× 10−7m/s 0.1MPa 2 3GPa 0.1 10−8 17

ᾱ α̃ α̂ ρm ρs α11(R)

0.133 0.666× 10−2 105 106m−2 108m−2 0.32m−1

Fig. 8 Experimental data from the creep tests shown in Fig.4 and simulated creep curves

from the 1-D model. In the model, initial conditions on screw dislocation density are
consistent with the observed initial strain rate γ̇. Courtesy Juliette Chevy [38].

transport towards its axis and, as stress and velocity decrease in this area, the
formation of pile-ups. As seen in Fig. 7, the continuous increase in the forward
creep rate is retrieved from both models. The reverse torsion behavior is also
shown in the figure. At torque reversal, an increase in the creep rate absolute
value is observed in the experiments. It is fully retrieved by both the 1-D and
3-D models. This asymmetry of slopes at the reversal point can be attributed
to the positive screw dislocation pile-ups built in forward torsion. Whereas
they were opposing dislocation motion in forward loading, the resulting inter-
nal stresses are helping reverse dislocation motion after torque reversal, hence
the ”instantaneous” creep acceleration at reversal. Screw dislocations of neg-
ative sign are nucleated in reverse loading, which progressively annihilate
with the positive screw pile-ups created in forward loading. Hence, the total
polar screw density decreases, with the consequence that the positive screw
pile-ups are dismantled and that the creep rate absolute value decreases. The
minimum creep rate value is reached at the inflexion of the creep curve. At
this point, creep is mostly accommodated by statistical dislocations. In the
rest of the reverse creep curve, creep keeps accelerating while negative screw
pile-ups are created, in a fashion similar to forward loading, though obviously
with reversed sign. Hence, the anisotropy of creep behavior derives from the
nucleation, transport and annihilation of inhomogeneous polar screw density
distributions. The excellent agreement between experimental and simulated
creep curves suggests that these ingredients are indeed key aspects of the
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physical response.

Fig. 9 Sample diameter effects on acceleration of creep rate at torsion reversal and on
creep rate deceleration during reverse torsion, from reversal to inflexion of the creep curve

(experimental data from creep tests in blue, data from 1-D simulations in red; experimental

and simulation data coincide for the smallest diameter).

Sample size effects on the creep response are obtained. By reducing the
sample diameter, screw nucleation is promoted and acceleration of the creep
rate increases, in close agreement with experimental data (see Figs. 7,8).
Thus, the greater is the imposed gradient, the greater is the degree of soft-
ening, not hardening as would have been expected if polar screw dislocations
had been contributing to isotropic statistical hardening in a way similar to
statistical dislocations. Rather, the polar screw dislocations induce softening
due to larger rates of plastic distortion. Several other effects of sample size on
mechanical response were predicted by the model and observed in the exper-
iments. We report here on two such effects, observed in reverse torsion and
shown in Fig. 9. Firstly, the larger is the imposed gradient (the smaller is the
sample diameter), the larger is the increase in the creep rate absolute value
at torque reversal. Secondly, the larger is the imposed gradient, the larger is
the decrease in the creep rate, from torque reversal to inflexion of the creep
curve. Note that the latter is a hardening effect on the creep response. As
mentioned above, the asymmetry of the creep curve at torsion reversal re-
flects screw dislocation pile-ups and internal stresses built up during forward
torsion. Hence, the larger is the imposed gradient, the larger are the internal
stress level and creep rate acceleration at reversal. The interpretation sug-
gested by the model for the second effect is as follows. Since the inflexion
point corresponds to the instant when the polar screw density is the closer to
zero, a larger deceleration in the creep rate is representative of a larger nucle-
ation of polar screw density, which in turn is due to a larger imposed gradient.
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In pure Cu, experimental evidence of sample size effects on mechanical
response is still controversial. The work by Fleck et al. [6] on polycrystalline
Cu seems to be pointing at response hardening when the sample diameter is
reduced. However, data on Cu single crystals loaded in tension rather indicate
strong decrease of hardening in the easy glide region when crystal radius is
decreased [43]. We note that observations similar in spirit to ours [44] were
made in order to explain the ”anomalous hardening effect” observed in [6]. In
this reference, the reduction in the density of polar screw dislocations in the
center region of the sample is seen as the origin of hardening. As its plastic
distortion is reduced near the axis, the metal behaves more like an elastic solid
and, as such, it becomes harder. The difference in behavior with ice single
crystals might then be attributed to the difference in the elastic constants
values (the elastic shear modulus in ice is of the order of 3GPa, much smaller
than the 40GPa Cu value). On the basis of the above simulations, dislocation
transport and long-range internal stress build-up appear as the controlling
mechanisms for the rarefaction of polar screw dislocations in the center of
the sample, through polar screw pile-up formation.

4 Intermittency of crystal plasticity: scale invariance
and transport effects

Transport is a convective process, pervasive in many branches of physics,
by which certain species, or variations in certain quantities, propagate in a
medium. For example, it serves as a cornerstone in the theory of fluid dynam-
ics. When envisioned on length scales over which areal densities of dislocations
may be envisaged, dislocation motion is amenable to the transport of these
densities. The fundamental equation for dislocation transport (7) has been
known for half a century [12, 13], mostly as a curiosity, and only recently has
it been effectively used for dislocation dynamics predictions [9]. Similarly,
the relevant length scale for the observation in dislocation dynamics of the
propagative features associated with transport has remained elusive, and only
recently has experimental evidence been provided [26], although observation
of strain waves [45] could perhaps have given a clue earlier.
An inherent connection between dislocation transport and the intermittency
of plastic activity is revealed in [26] by applying high resolution extensometry
to Cu single crystals in tension. When oriented for multislip, Cu single crys-
tals represent the truly emblematic situation where material instability can
be ruled out and homogeneous straining in a traditional (mechanical) sense
expected at small strains (see loading curve in Fig.10). Yet, the inhomo-
geneous dislocation microstructure and the intermittent dislocation activity
at a microscopic scale may well induce intermittency and inhomogeneity in
dislocation transport at some intermediate scale. Hence Cu crystals repre-
sent the perfect case for evidencing intermittency and dislocation transport
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Fig. 10 Cu single crystal oriented for multislip under uniaxial tension (Gauge length:

30mm, width: 5.5mm, thickness: 5.5mm, Schmid’s factor: 0.3, temperature: 20C, driving
strain rate: ε̇a = 5× 10−4s−1), macroscopic force vs. time (main graph) and displacement

vs. time in six locations distant by 1mm (inset).

Fig. 11 Variations of axial strain rate about the driving strain rate ε̇a == 5× 10−4s−1,

as obtained from the lowest displacement curves in the stack in Fig. 10. Note that the

maximum size of the fluctuations 2.5× 10−3s−1 is much larger than ε̇a.

properties. The extensometry method is based on a digital image correlation
technique in one-dimensional setting. The sample surface is painted with al-
ternated black and white strips, which perfectly reflect the material displace-
ment underneath. A high resolution CCD camera with recording frequency
103Hz and pixel size 1.3µm captures the longitudinal displacements of the
black - white switches, from which the axial strain rate field is rendered.
Subtracting the constant driving strain rate ε̇a from the local strain rate at
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a material point leaves the variations shown in Fig.11. Despite smoothness
of the loading curve in Fig.10, Fig.11 displays jerks well above experimental
noise level. The figure suggests that the intermittency of dislocation motion
at the microscopic scale shows up at a somewhat larger scale. The prob-
ability density for the size of jerks in Fig.11 shows power law scaling (see
Fig.12), with scaling exponent τ ≈ 2. This exponent is consistent with the

Fig. 12 Probability density (normalized to bin size) for event size in the time series shown
in Fig.11. The dashed line indicates the power-law trend with slope τ = 2.

scaling law reported for the associated acoustic emission [25]. Such scaling
is evidence for self-organization of the observed fluctuations, which is also
demonstrated by Fig.13. The figure features a space-time diagram for local
fluctuations about the driving strain-rate during the elasto-plastic transition
in the test shown in Fig.10. It displays spots of intense activity dotted along
straight lines, suggesting wave propagation at constant average speed. The
average wave velocity measured from the slope of the characteristic lines
(about 10−2m.s−1) is five orders of magnitude smaller than the velocity of
elastic waves, but much larger than the material particles velocity. It is of the
order of the average velocity of dislocation ensembles, which suggests that
the observed waves reflect the underlying collective motion of dislocations.
In this interpretation, the dotted pattern of spots along the characteristic
lines is manifestation of the intermittency of collective dislocation motion. It
is also proof to the wavy structure of plastic activity, when envisioned at ap-
propriate length scale. At larger strains, this wavy pattern is seen on shorter
time and length scales, because the dislocation mean free path decreases in
relation with the multiplication of forest obstacles.

A 3-D generic simulation of the above experiments using field dislocation
dynamics is now briefly outlined. The reader is referred to [26] and [46] for
further details. A flat Cu whisker is clamped to the left end, while the right
end has constant velocity. The applied strain rate is ε̇a = 10−3s−1. The elas-
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Fig. 13 Longitudinal fluctuations about the imposed strain rate in a space - time diagram

during the elasto-plastic transition. Dotted characteristic lines run from the left and right
of the gauge length, reflecting intermittency and transport. The imposed strain rate is

ε̇a = 5× 10−4s−1. Fluctuations can be as high as 2.5× 10−3s−1.

tic response is taken to be anisotropic with constants C11, C12 and C44, and
the evolution equations for ρm and ρf are

ρ̇m = (C1/b2 − C2ρm)Γ̇ (38)
ρ̇f = (C0b|α|+ C2ρm)Γ̇ (39)

as outlined in [47], with simplifications deemed appropriate for the low strain
level achieved in the experiments. C0, C1 and C2 are material parameters ac-
counting for the interaction between polar and forest dislocations, the mobile
dislocation generation and loss, respectively. The material parameters are
listed in Table 2. Note that there is no inhomogeneity introduced in either
the material parameters or the initial conditions.

Table 2 Material parameters used in the 3D Cu whisker simulation.

α b n V0 σ0

0.35 2.5× 10−10m 20 3.5× 10−8m/s 3.7MPa

C0 C1 C2 C11 C12 C44

25 2.43 10−5 3.03 170GPa 123GPa 75.2GPa

Elastic loading of the sample is followed by a yield drop associated with
plastic activity localized near the clamped end, then by a stress plateau shown
in Fig.14. Thus, inhomogeneity of plastic straining clearly stems from the
inhomogeneity of the boundary conditions. This prediction of a yield drop is
in full agreement with experimental data on Cu whiskers [48, 49, 50]. During



22 C. Fressengeas et al.

the plateau, the plastic activity propagates along the sample through the
motion of a plastic front, before linear homogeneous strain hardening takes
place. Propagation does not occur in this flat sample if transport is turned
off in the equations. For further details on the propagation of slip along the
plateau, the reader is referred to [46]. Here, we focus on the intermittency of
plastic activity during the eventual linear hardening period. Bursts in stress -

Fig. 14 Simulation of the tensile test of a flat Cu whisker of dimensions 200µm×30µm×
2400µm; stress vs. time response during the elasto-plastic transition and stage II linear

hardening. The highlighted portion corresponds to the strain rate plots shown in Fig.15

rate are seen all along the curve during this period. Statistical analysis of the
stress rate shows power law scaling with exponent τ = 1.9± 0.1 in the burst
size distribution, consistent with the experimental data reported in [26] and
in Fig.12. One particular sequence, highlighted in Fig.14, corresponds to the
plots of plastic strain rate shown in Fig.15. In this figure, intermittent events
and transport are clearly seen, with a general progression of plastic activity
from left to right of the sample.

In view of these results, 2D simulations (of course more tractable than 3D)
were carried out in order to check for scaling behavior at a smaller scale and
for possible variation of the scaling exponent under diverse material and ex-
perimental conditions. In these simulations, a rectangle subjected to constant
shear rate v1,3 at boundaries is considered in a glide plane of a Cu single crys-
tal. Only dislocations pertaining to, and gliding in this plane are considered.
Out of plane motion by cross-slip and climb is not considered, and single slip
activity is assumed. As all gradients normal to the slip plane are ignored,
out-of-plane features of lattice incompatibility and internal stresses are lost
in this simplified description. Elasticity is taken to be isotropic with shear
modulus µ. The average velocity V of dislocations in the plane is described
with the thermally activated constitutive law
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Fig. 15 Successive frames of the strain-rate spatiotemporal field along the sample showing

intermittent plasticity through dislocation transport, and general progression of plastic slip

from left to right. The sequence highlights a single plastic burst shown in Fig14.

V = V0exp
−∆G0

kT
exp(

V ∗σs

kT (1 + σh/σ0)
) (40)

where V0 is a reference velocity, (∆G0, V
∗, k, T ) a reference enthalpy, the

activation volume, the Boltzmann constant and the temperature. σs is again
the resolved shear stress and σh the threshold stress for obstacle overcoming.
Eq.(40) is an alternative to Eq.(31), used to describe weak rate-sensitivity of
the shear stress.

Table 3 Initial and boundary conditions, complementary material parameters in 2D sim-

ulations

αij(0) ρm(0) µ σh v1,3 kT/V ∗

0 108m−2 40GPa 50MPa 5× 10−4s−1 2.27MPa

The imposed strain rate is ε̇a = 5×10−4s−1. In the initial configuration, polar
dislocations are absent and the statistical mobile density is chosen at random
about an average value. Since the boundary conditions are homogeneous (in
contrast to the above 3D simulation), the incompatibility arising from the
distribution of statistical dislocations is initially the only source for polar
dislocations. The information on material parameters, initial and boundary
conditions is summed up in Table 3.
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Fig.16 shows a space-time diagram for the strain-rate fluctuations. In qual-

Fig. 16 Model predictions for axial (x1) strain-rate fluctuations in a space - time diagram.
The sample is a 13mm × 13mm square in a glide plane subjected to equal shear rates

5×10−4s−1 on both sides. The figure shows the evolution in time of the strain rate profile

seen along the x2 direction.

itative agreement with Figs.13 spots of intense plastic activity dotted along
straight lines are seen. This pattern follows naturally from the development
of polar dislocation density, by virtue of dislocation transport and internal
stress. The velocity obtained from the slopes in Fig.16 has the order of magni-
tude observed in experiments. Fig.17 shows the probability density for event
size computed from the time series obtained for the net shear strain rate at
several material points in the plane. A scaling distribution is seen, with ex-
ponent τ ≈ 2 in agreement with both the exponent found from the stress vs.
time response and the experimental value. This result confirms that the fluc-
tuations in Fig.16 are not numerical noise, but reflect instead correlations due
to polar dislocation development, long-range stress and dislocation transport.

As reported in [26], the statistics of intermittency, and in particular the
exponent value τ ≈ 2, seem to be insensitive to sample size and shape, or
to the driving strain rate, to the extent that velocity gradients remain large
enough to induce polar dislocation development, however. With unchanged
geometry and loading conditions, possible influence of material behavior was
also investigated by switching from a thermally activated law in Cu (Eq.(40)
with material parameters in Table 3) to viscous drag in ice (Eq. (31) with ma-
terial parameters from Table 4) in the simulations. Despite these differences,
a scaling regime with exponent τ ≈ 2 in the event size distribution is still
found. Thus, the scaling behavior of intermittency obtained from the model
features a rather universal scaling exponent. In the interpretation suggested
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Fig. 17 Probability density of event size in a 2-D simulation. The event size is defined

as the maximum strain rate value during the event. The dotted line shows a τ = 2 slope.

by the present model, intermittency of plastic activity requires abruptness
of the unpinning transition on short range obstacles as described through
the weakly rate-sensitive stress-velocity relationships (31, 40) at the present
scale of resolution. The model implies that both dislocation transport and
long-range interactions play a role in the emergence of the scale-invariant be-
havior of intermittency. As dislocation transport involves such mechanisms
as double cross-slip of screw dislocations by-passing short-range obstacles, it
follows from this remark that short-range interactions play a significant role
in the intermittency of plastic activity. Such a conclusion is fully consistent
with the observations of dislocation avalanches arrested on obstacles made in
dislocation dynamics simulations [30].

5 Internal stresses and anisotropy of mechanical
behavior

The sharp yield point phenomenon [51, 52] primarily occurs in b.c.c. poly-
crystals at room temperature. In a tensile sample loaded at constant cross-
head velocity, it is associated with a band of localized dislocation activity,
the so-called Lüders band, travelling along the sample. The band nucleation,
usually at one grip, corresponds to a drop in stress, from the Upper Yield
Point (UYP) to the Lower Yield Point (LYP). The plastically strained area
then spreads along the sample. A clear cut front separates this area from
the unstrained one, into which it propagates, until the sample is uniformly
stretched. From this point (referred to as the Lüders strain) onwards, the
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deformation proceeds uniformly in the sample. It is commonly accepted that
strain aging is responsible for this behavior: solute atoms tend to diffuse to
arrested dislocations, which increases the unpinning stress up to the UYP
level. Dislocations are collectively unpinned at the UYP, but since the stress
needed to accommodate the imposed strain rate is substantially lower, an
abrupt multiplication of dislocations takes place, along with elastic relaxation
of the rest of the sample. This unpinning mechanism has intricate connections
with the spatial correlations responsible for band propagation. According to
the Cottrell assumption [53], propagation occurs once stress concentration
due to dislocation pile-ups at grain boundaries is able to activate new dis-
location sources in neighboring grains. The long-range internal stresses due
to incompatibilities in plastic strain in the vicinity of the band provide the
mechanism for band propagation.
In a low-carbon steel, evidence of the role of internal stresses in the unpin-
ning mechanism is also provided by the directionality of the yield point. If
such a material is deformed beyond the Lüders strain, then aged and further
strained, a sharp yield point phenomenon reappears provided straining is
pursued in the same direction. Such a behavior can be explained within the
framework of a local model coupling aging properties with isotropic strain
hardening [54]. However, if the sample is strained in the direction opposite to
that before aging, a Baushinger effect is observed and the sharp yield point
phenomenon is usually absent [55, 56, 57]. This phenomenon is shown in the
tension - compression of a mild steel in Fig. 18. Such directionality of the yield

Fig. 18 Stress - strain curves during tension - aging - tension and tension - aging -
compression experiments on a 1020 mild steel. The aging period is marked with an orange
dot. For convenience the sign of the compression stress is reversed. Both tension and
compression stresses are plotted against the same cumulative strain.
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point is of considerable practical importance. It may be useful, as it curbs the
return of the sharp yield point in temper-rolled or bake-hardened steels, but
it may also limit the benefits of strain aging as a strengthening mechanism.
Further, it demonstrates that the strain aging and unpinning mechanisms
are dependent on the gradients of the distribution of dislocations, which
challenges local interpretations. In the present Chapter, an interpretation
of the yield point directionality is presented by using the framework of a field
dislocation dynamics model. We strive to understand this phenomenon by
coupling the evolution of polar and statistical dislocations with the kinetics
of strain aging [27].

The model for strain aging is developed and applied to pure torsion in
order to set up the simplest possible configuration. In parallel, the model is
also used in a three dimensional approach, with some minor variations to be
indicated below. In using the pure torsion model, the goal is to provide heuris-
tic modeling, fit for the illustration of the critical aspects of the approach,
i.e., the connections between strain aging and dislocation microstructures.
The unique active slip plane, (e1, e2), is assumed to be normal to the torsion
axis. It is also assumed that plastic strain is accommodated by ”circumfer-
ential” screw dislocations of infinite extent in the e1 direction only. For a
positive torque, positive screw dislocations move from the edge of the sample
toward its axis, with velocity v2 along the radial direction e2. A radial screw
density along the e2 direction does exist, in order to verify equilibrium [44],
but it does not contribute to torsion accommodation. Hence it is ignored all
together. The basic equations then reduce to

σ̇13 = µ(v1,3 − ρmbv − α11v2) (41)

along with Eqs.(32,33). Eq. (41) expresses the shear stress rate in the glide
plane as a function of polar screw and statistical dislocation mobility, with
µ denoting the elastic shear modulus. Account of the physics of dislocation
velocity, strain aging and straining history is now made through phenomeno-
logical statements. An Arrhenius dependence is assumed for the polar and
statistical dislocation velocities (v2, v) in the form

v2 = v = V0exp((|σ13| − σµsgn(σ13)− σh − σs)/S0) (42)

Here V0 is a reference velocity, S0 denotes the strain rate sensitivity of the flow
stress in the absence of solute effects, and the numerator in the exponential
represents an effective stress for dislocation glide. The reference velocity is
taken in the form V0 = ν0ρ

−1/2
f , where ν0 is a constant reference frequency

for dislocation unpinning. Hence, the current waiting time tw = ρ
−1/2
f /v of

dislocations on their obstacles is

tw = ν−1
0 exp(−(|σ13| − σµsgn(σ13)− σh − σs)/S0) (43)
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In this relation, ν−1
0 appears as the waiting time under zero effective stress.

Further, during elasto-plastic loading, tw evolves as a function of stress, from
its initial (large) value to its current, much smaller value. σµ is the back-stress
(or internal stress), σh represents statistical hardening and σs is the additional
stress due to solute hardening. The back-stress is induced by the polar screw
density, with rate of formation provided by Eq.(35). Although it is an offset
for the assumed invariance in the other two directions, the phenomenological
treatment of the internal stresses in the 1 − D model provides a result of
general utility, i.e., specific insight into the constitutive specification of back-
stress evolution, to be contrasted with the Armstrong - Frederick kinematic
hardening specification [41]. Isotropic statistical hardening is assumed in the
Taylor form: σh = ᾱµb

√
ρf , where ᾱ is a constant. The evolution of statistical

mobile and forest densities follows the Kubin-Estrin model [58]

ρ̇m = ((C1/b2)− (C3/b)
√

ρf )Γ̇ (44)

ρ̇f = ((C0/b) | α | +(C3/b)
√

ρf − C4ρf )Γ̇ (45)

where C1 stands for the multiplication of dislocation line, C3 represents mo-
bile dislocation immobilization and C4 dynamic recovery. The term C0 added
to the model stands for the contribution to statistical hardening of polar
dislocations, through pile-ups at grain boundaries [59]. Following [60], the
additional stress due to aging is expressed as

σs = f0(1− exp(−(ta/τ)2/3)) (46)

where ta denotes the aging time, τ is a characteristic time for solute diffusivity
and f0 represents the maximum pinning stress. The exponent 2/3 stands for
bulk diffusion, but other types of pinning kinetics could be considered as well
[54]. The evolution of the aging time follows that of the waiting time with
some delay, because solute concentration cannot change instantly. Following
[61], these circumstances are described by allowing the aging time to relax to
the current waiting time according to the first order kinetics

ṫa = 1− ta/tw (47)

Computation of the solutions to Eqs.(41-47) uses numerical constants pro-
vided in Table 4 (see justifications in [27]). The 3−D simulations also use the
statistical and solute hardening modeling shown above in Eqs.(44-47), though
written in terms of slip system strength and resolved shear stress. Slip system
geometry is taken for bcc crystal symmetry. As development of the back-stress
is inherent in the 3-D calculations, the form of the kinetic relation, Eq.(43),
is also different; a constant athermal strength replaces the signed back-stress
σµ and a constant reference velocity v0 is used. The boundary conditions
are written in terms of dislocation fluxes. Inward flux of dislocations is not
permitted, although dislocation sources on boundaries are allowed. Outgoing
of dislocations is permitted without constraint. The initial conditions are
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Table 4 Numerical constants used in the model

b ν0 S0 µ ᾱ α̃ α̂

2.7× 10−10m 8.5× 108s−1 2.27MPa 80GPa 0.3 150 103

f0 τ C0 C1 C3 C4

40MPa 106s 25 1.45× 10−4 5.4× 10−2 20

Table 5 Initial conditions

ρm ρf α11 σ13 ta
1012m−2 1011m−2 0 0 2× 106s

summed up in Table 5. Note that the initial distribution of dislocations is
chosen to be uniform, with no polar dislocations. The initial aging time re-
flects saturation of dislocations with solute atoms.

Tension - compression tests were simulated using the full 3 − D model.
A polycrystal of dimensions 2mm × 2mm × 10mm was clamped to the left
end, while the right end was submitted to constant velocity. The sample was
first deformed in tension until the strain reaches 0.04, then unloaded. Each
element was assigned a single crystallographic orientation taken from the
sampling of a uniform distribution. The results are shown in Figs.(19,20).

Fig. 19 Stress (normalized by the initial slip system strength) vs. strain curves in tension

- aging - forward tension and tension - aging - compression 3−D simulations. The applied
strain rate is 6× 10−5s−1. For convenience the stress sign is reversed in compression.

An UYP associated with dislocation unpinning and multiplication is seen in
Fig.19, followed by a Lüders plateau corresponding to the propagation of a
band in equivalent plastic strain rate from the left end to the right end of
the sample. A realistic rendering of the band is achieved, as shown in Fig.20.
In this figure, the band is at angle with both the axial direction and the
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Fig. 20 Strain rate contours for the Lüders band corresponding to the stress plateau

in Fig.19 at two instants A, B. After nucleation to the left, the band propagates to the
right end of the sample. Note the inclination of the band, at angle with both the axial and

transverse directions.

transverse direction, consistent with experimental observations in CuAl and
CuMn single crystals [62]. The figure also shows a trailing amount of residual
strain rate left behind the band. When the band reaches the right end, the
sample is uniformly stretched at the Lüders strain, and deformation proceeds
uniformly. At unloading, aging of the material is carried out by augmenting
the aging time. When from this point, the sample is loaded forward in ten-
sion, restoration of an UYP is predicted, though strain localization is hardly
seen, whereas the UYP is missing if compression is applied. In the latter case,
a Baushinger effect is also predicted, as well as a transient inflexion in strain
hardening. Fig.19 shows qualitative agreement with the experimental trend
in mild steel seen in Fig.18.

We now proceed with simulations using the 1−D model to reveal the inter-
play between evolution of polar density, back-stress and aging. A thin walled
tube is first strained in forward torsion with a positive torque until the shear
strain reaches 0.04, then unloaded. An UYP is obtained, as can be seen in
Fig.21. Since axial invariance is assumed and only dislocation transport in
the plane normal to the torsion axis is considered, Fig.21 does not feature a
Lüders plateau. Indeed, the latter goes with axial band propagation. Disloca-
tion unpinning and multiplication shift from the outer edge, where the stress
is high, to the interior where it lessens, which generates gradients in plas-
tic strain rate. These gradients act as sources for polar dislocations. As the
torque is positive, positive screws are nucleated, and a back-stress associated
with these dislocations builds up. At unloading, aging of the material is per-
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formed as detailed above in 3−D computations. When, from this point, the
sample is loaded in forward torsion, restoration of an UYP is again predicted,
whereas it is absent if the sense of torsion is reversed. A strong Baushinger
effect is also seen in that case. The interpretation derives from the evolu-
tion of the polar screw density and back-stress shown in Fig.(22). Indeed,
the back-stress opposes unpinning of aged dislocations in forward torsion be-
cause it lowers the effective stress and the dislocation velocity. Thus an UYP
is needed for unpinning, but the drop in stress is reduced with respect to its
first occurrence due to the concomitant reduction in the multiplication rate.
In contrast, the back-stress favors unpinning and dislocation multiplication
in reverse torsion, because it enhances the effective stress and the dislocation
velocity. Hence, an UYP now becomes unnecessary for unpinning.
Dislocation re-arrangement and back-stress relaxation eventually play a piv-

Fig. 21 Torque evolution during forward torsion - aging - forward torsion and forward
torsion - aging - reverse torsion simulations. The aging period is marked with an orange

dot. For convenience the torque sign is reversed in reverse torsion. Both forward and reverse

torque are plotted against the same cumulative strain.

otal role. During reverse torsion, gradients in the plastic distortion gener-
ate negative polar screw dislocations, which annihilate with positive screws
formed in forward torsion. Hence the total screw density and the associated
back-stress drop down to zero. This drop in back-stress gradually hardens the
material because it limits the dislocation velocity as well as the rate of multi-
plication of mobile dislocations. The dependence of the relaxation time τr on
the dislocation velocity is such that back-stress relaxation is initially fast, and
that it slows down as it comes to an end. If reverse torsion is further pursued
to larger strains, a new structure of negative polar screw dislocations devel-
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Fig. 22 Back-stress evolution during forward torsion - aging - forward torsion and forward

torsion - aging - reverse torsion simulations. The aging period is marked with an orange
dot.

ops and an inflexion of the (now negative) back-stress is obtained (Fig.22).
This inflexion transfers to the torque history, which therefore shows transient
curbing of strain hardening after path reversal (Fig.21). As mentioned ear-
lier, this feature is also apparent in Fig.19 from tension - aging - compression
3 − D simulations. It is consistent with observations of a similar transient
behavior in polycrystalline aluminum samples at various temperatures [63]
and in IF-steels when the strain path is reversed [64]. The microstructural
analyses and qualitative arguments provided in these references, i.e., the an-
nihilation of the structure of polar dislocations formed in pre-deformation
and the development of a new structure along the eventual strain path, are
in full agreement with our own interpretations.

6 Conclusions

Conventional plasticity is rather ineffective in the understanding of the di-
rectionality of the yield point, because it does not deal with long-range in-
ternal stresses. Arguably, conventional kinematic hardening as expressed by
the Armstrong-Frederick law for back-stress evolution, has an ability to phe-
nomenologically describe anisotropic hardening. However, spatial correlations
due to the lattice distortion and internal stress fields are missed, which must
have implications on back-stress build up. In contrast to standard plasticity
treatment, the 3-D field dislocation model provides for polar dislocation mi-
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crostructure and internal stress field development, and it naturally features
induced anisotropic hardening. The formulation of the heuristic 1-D model
provides insight into a more adequate specification of back-stress evolution
in terms of polar dislocations through the constitutive equation (35). Phe-
nomena related to strain path dependence of strain hardening (such as the
inflexion in strain hardening after path reversal in strain-aged steels or the
inflexion of creep of ice single crystals in reverse torsion) can only be retrieved
from the nucleation, transport and annihilation of polarized dislocation dis-
tributions. Conventional local treatment using statistical dislocations, whose
multiplication mechanisms are unaffected by strain path orientation repro-
duce such phenomena only by having recourse to multiple dislocation species
and algorithmic rules [65]. The present model also deals separately with dis-
location density and dislocation velocity, which, in contrast, are merged into
plastic strain rate in standard plasticity treatment. This feature proves to be
useful in the understanding of the directionality of hardening, because back-
stress relaxation effects on dislocation velocity and dislocation density appear
to be very much involved. It is consistent with common material science prac-
tice, which provides material data in terms of dislocation velocity and density.

The prediction of the propagation of plastic fronts has been a long-time goal
of the theory of plasticity. However, its realization has been hampered by the
mathematical structure of the traditional approach. Within the latter, prop-
agating fronts of plastic deformation can be obtained only in the presence
of spatial inhomogeneity in material properties (see for example [66] for the
propagation of Portevin - Le Chatelier (PLC) bands in polycrystals), or when
spatial coupling due to 3-D stress field equilibrium is strong enough (see [67]
for the study of neck propagation in polymers). In contrast, in the presence of
spatially homogeneous material characteristics or when the 3-D character of
the stress field is weak (in 1-D situations or in flat samples), the capability of
the field dislocation dynamics framework in representing propagating plastic
fronts derives from the description of transport through partial differential
equations. Then, inhomogeneity in boundary conditions may or may not trig-
ger the propagation of plastic fronts depending upon material behavior, as
illustrated by a study of PLC band propagation in single crystals [68]. Be-
cause they feature correlations in space due to both the long-range internal
stresses and the short-range interactions involved in dislocation transport,
field dislocation dynamics theories also provide interpretation for the scale-
invariant intermittency of dislocation transport. Size effects derive as well
from the presence of material length scales linked with long-range stresses
and dislocation transport.

In the formulation of a mesoscopic theory, the linear dimension of the sup-
port Ω(x) for spatial averaging (see relation (13)) is arbitrarily chosen. Hence,
flexibility is left in the order of magnitude of the spatial resolution sought
for the model. Depending on the objectives of modeling, the formulation can
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span from a physical theory with a short resolution length scale, where only
a small number of dislocations is involved in the averaging procedure, to en-
gineering codes applying to large scale systems, where blurring of dislocation
ensembles needs to be more extensive due to computational costs. Hence,
as mentioned earlier, phenomena deemed ”nonlocal” in the former approach
may be labelled ”local ” in the latter. However, if the resolution length scale is
kept small enough and can be compared with the linear characteristic length
of the relevant dislocation microstructures, length-scale dependence of the
results can be retained.
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