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CHAPTER 4 

MULTISCALE MODELLING AND SIMULATION OF 3D BRAIDED 

COMPOSITES WITHOUT USING CNTs 

4.1. Unit-Cell Model (Without CNTs) 

A unit-cell is defined as a cell or a building block of a composite. It is also called a 

representative volume element (RVE). A unit-cell as the name suggests describes a unit 

portion of a composite material which when stacked together in rows and columns will form 

the actual composite structure. For example, a unit cell of a simple particulate composite is a 

cube with a spherical particle at the centre. A unit-cell model is defined in terms of the micro 

structural parameters including volume fractions, connectivity, and anisotropic spatial 

distribution of phases. One of the key issues in estimation of the effective constitutive 

relation of a composite is the appropriate modelling of the stress transfer relation of the 

constituent phases with specific microstructures.  

In this paper, a unit cell model having the structure of 3D full-five directions is shown in 

Figure 4.1, where ɑ, b and c are width, thickness and height of the unit-cell respectively. An 

interior angle is the angle between central axis of the braiding yarn and 0Z axis. For the 

geometrical modelling of the unit-cell, two assumptions have been made; braiding and axial 

yarns are assumed to be straight with circular cross-sections of same diameters. Under these 

assumptions, the final position of each carrier in the unit-cell can be selected as shown in 

Figure 4.2. To prepare finite element model of the unit-cell for further analysis, the size of 

the unit-cell (Figure 4.1) in the composite is taken as follows (Table 4.1). 

 

 

Table 4.1: Dimension of unit-cell 

Parameters Value 

Width (ɑ) 20 mm 

Thickness (b) 20 mm 

Height (c) 20 mm 

Interior angle  35.6° 
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Figure 4.1: Schematic illustration of the fiber structure of 3D full five-directional braided composites 

 

 

 

 

 

 

 

 

 

Figure 4.2: Selection of the unit-cell of 3D full five-directional braided composites 
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Figure 4.3: 3D Unit-cell model for 3D full five directional braided composite 

In the present work, the 3D full five-directional braided composite has been modelled as 

shown in Figure 4.3. An algorithm is developed to simulate the different dynamics of 3D full 

five-directional braided composites so that one can understand, and design new composites 

with an ease. The fibers in the microstructure are assumed as 3D solid cylindrical inclusions. 

The matrix and the reinforcement both are in connection with the homogenous medium 

which approximates the intertwining structure of the 3D braided composite. The radius of 

each fiber is determined using fiber volume fraction. Following relation is used to calculate 

the radius of the fiber: 

y

f

V
V

V
                      (4.1) 

where, fV  is the fiber volume fraction, yV  is the total volume of the yarns (axial and 

braiding) = 2( )n r h , V  is the volume of the unit-cell, r  is radius of the fiber, h  is the 

height of the fiber, n  is number of fibers in the unit-cell. The fibers are used to form nine 

level set values for each node in the domain. These values are the normal distances from the 

boundary (Chessa et al., 2002), and are given by 
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where, , ,x y z are  co-ordinates of centre of the cylindrical inclusion (fiber), cr  is the radius of 

the solid cylinder (fiber),   is level set function. 

4.2. Effective Medium Approximation 

It has been noticed that the different 3D braided composites show different mechanical 

properties depending on the volume fraction, ratios of elastic modulus, interior angle, 

geometry, etc. Thus, homogenization of these composite is very important to analyse and 

characterise their mechanical behaviour. The effective medium approximation (EMA) 

suggests that an equivalent homogenous medium can be found out, which will have 

properties similar to that of composite i.e. by replacing the actual heterogeneous composite 

by an equivalent homogeneous material. This homogenous material is an idealization but is 

an essential approximation for the further analysis of the composite, which otherwise is very 

difficult to analyse. In past, many researchers have used EMA approach to evaluate the 

effective properties of the composites. In fact, the study of composite materials involves the 

finding of the effective properties such as Young's modulus, shear modulus, Poisson's ratio, 

etc. Thus, EMA is very relevant and useful technique to find out the effective properties of a 

composite. There are various methods through which we can find out a homogenous material, 

which would mimic the properties of the composite material. To approximate a medium we 

have to first find that property which influences the overall property. For example, volume 

fraction is the most important factor, which influences a composite material. Other factors 

like geometry, interior angle, and temperature also affects the overall effective properties of 

the composite. 

In the present work, 3D full five directional braided composite has been solved using 

XFEM, and analyzed by EMA. This composite shows transversely-isotropic behaviour at 

macroscopic level due to its fiber orientation in a particular direction. In this composite, both 

the matrix and the fibers are assumed to be isotropic in nature. A homogenization approach is 

used to obtain the effective elastic properties of 3D full five-directional braided composites 

by considering the heterogeneous behavior at micro-scale and homogeneous behavior at 

macro-scale (Xu and Xu, 2008).  

In general, the global strain–stress relation can be written as
 

i ij jS 
                               

(4.3) 

where, i jS  is the effective compliance matrix. Assuming a set of the global stress, ij  and 

applying the essential boundary conditions given in Table 4.2, one can obtain a strain 
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distribution of the RVE. Then, the global strain,
ij  corresponding to global stress can be 

obtained by 
1

ij ij

V

dV
V

  
 

where, V  is the volume of the unit-cell. 

Table 4.2: Boundary condition for calculation of effective elastic properties of the unit-cell 

Cases Properties Essential boundary condition 
Natural boundary 

condition 

1 xE  

0xu   (on left face), 

0yu   (on front & back face), 

0zu   (on bottom & top face), 

axial stress along 0X  

(on right face) 

2 yE  

0xu   (on left & right face), 

0yu   (on back face), 

0zu   (on bottom & top face), 

axial stress along 0Y  

(on front face) 

3 zE  

0xu   (on left & right face), 

0yu   (on front & back face), 

0zu   (on bottom face), 

axial stress along 0Z  

(on top face) 

4 xzG  

0x yu u   (on bottom & top face), 

0x zu u   (on back face), 

0xu   (on front face), 

0y zu u   (on left & right face), 

shear stress along 0Z  

(on front face) 

5 yzG  

0x yu u   (on bottom & top face), 

0x zu u   (on front & back face), 

0y zu u   (on left face), 

0zu   (on right face), 

shear stress along 0Y  

(on right face) 

6 xyG  

0x yu u   (on bottom face), 

0yu   (on top face), 

0x zu u   (on front & back face), 

0y zu u   (on left & right face), 

shear stress along 0X  

(on top face) 
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Table 4.3: Loading case of natural boundary condition 

K ( )x N
 

( )y N
 

( )z N
 

( )xz N
 

( )yz N
 

( )xy N
 

1 100 0 0 0 0 0 

2 0 100 0 0 0 0 

3 0 0 100 0 0 0 

4 0 0 0 100 0 0 

5 0 0 0 0 100 0 

6 0 0 0 0 0 100 

 

In above boundary conditions, 
x

u , y
u  and 

z
u  denote the displacements in 0X , 0Y direction and 

0Z directions respectively. Thus, by applying six components of
ij  as presented in Table 4.3, 

six equations can be obtained. By assigning the six sets of the global stress, 
k

ij  (k=1, 2 . . . 

6), the corresponding global strain 
k

ij  can be calculated and the following equations can be 

obtained     

   1 2 5 6 1 2 5 6, ,....., , , ,....., ,i i i i ij j j j jS       
               

(4.4)
 

Hence by solving the above equations, we can directly obtain the effective compliance matrix 

i jS  in the following form: 
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                                                                   (4.05) 
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4.3 Results and Discussion 

The elastic properties of constituents of the composite in the unit-cell are listed in Table 4.4. 

The fiber-volume fraction of yarn is assumed to be 45% in the model. The XFEM mesh for 

the unit-cell consists of 8,000 nodes and 6,859 eight-noded brick elements.  

 

Table 4.4: Mechanical properties of component materials 

Materials Young’s modulus E , GPa Poisson’s ratio ( )  

Carbon fiber T300 221 0.3 

Epoxy resin 4.5 0.3 

 

After assigning the above mechanical properties to the component materials, the effective 

compliance matrix of the 3D full five-directional braided composite is evaluated and given as 

follows: 

1

0.0310 0.0093 0.0063 0 0 0

0.0093 0.0310 0.0063 0 0 0

0.0063 0.0063 0.0211 0 0 0

0 0 0 0.0685 0 0

0 0 0 0 0.0685 0

0 0 0 0 0 0.0807

ij

GPa

S



  
 
 
 
  

  
 
 
 
 

                                (4.6) 

It is noted that relatively fine mesh is required in order to obtain more accurate stress 

distribution, especially near the boundaries of the RVE. 

According to the relationship between the elastic constants and the compliance matrix i jS , 

nine independent elastic constants of 3D full five-directional braided composites can be 

calculated by the following relations
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Table 4.5 gives the predicted 

results for the unit-cell.

 

 

Table 4.5: Effective elastic constants predicted by XFEM 

Young’s Modulus (GPa) Shear Modulus (GPa) Poisson’s ratio 

xE  yE  
zE  xzG  yzG  xyG  

xz  yz  xy  

32.21 32.21 47.39 14.60 14.60 12.39 0.3 0.3 0.3 
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The unit cell of 3D full five-directional braided composites produced by the four-step 1×1 

rectangular braiding procedure (Figure 4.2) is shown in Figure 4.3. The effect of fiber 

volume fraction under a same interior angle on the effective elastic properties of 3D full five-

directional braided composites is studied. The upper bound and lower bound of the unit-cell 

for a particular fiber volume fraction can be calculated using rule of mixture as given below: 

( ) ( )u f f m mE V E V E                              (4.7) 

( ) ( )

f m

l

f m m f

E E
E

V E V E




  
                                                                                                    

(4.8)

 

where, uE  is the upper bound (axial modulus) of composite, lE  is the lower bound 

(transverse modulus) of composite, fE is the elastic modulus of fiber (Carbon), mE  is the 

elastic modulus of matrix (Epoxy), fV is the fiber volume fraction in the unit-cell and mV is 

the matrix volume fraction in the unit-cell. 

Figure 4.4 describes the variation of  zE  with the fiber volume fraction. This figure 

shows that the elastic modulus zE increases sharply with the increase in fiber-volume fraction 

and lies within the theoretical bounds i.e. upper and lower bounds calculated by Eq. (4.7) and 

Eq. (4.8). Figure 4.5 presents the variation of elastic modulli xE (= yE ) with the fiber-volume 

fraction. These results show that with the increase in fiber-volume fraction, the elastic 

modulus xE also increases. Figures 4.6 and 4.7 show the variation of the shear modulus, xyG  

and xzG ( xzG = yzG ) with the fiber volume fraction. From the results presented in these figures, 

it is seen that shear modulii increase monotonically with the increase in fiber-volume 

fraction. The values of Poisson’s ratio for both the matrix and fibers are taken as 0.3, 

therefore effective values of xy , 
yz  and 

xz  are found nearly same i.e. 0.3. Figure 4.8 shows 

that the elastic modulus zE decreases with the increase in the interior angle. Figure 4.9 shows 

that the elastic modulli, xE  and yE  ( xE = yE ) increase with the increase in the interior angle. 

Figure 4.10 shows the plots of maximum principal stress components for the unit-cell 

subjected to loading given in case-3 of Table 4.2. From these results, it is found that the 

stresses in yarns (fibers) are more than in the matrix region.  
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Figure 4.4: A plot of effective Young's modulus zE with the fiber volume fraction 
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Figure 4.5: A plot of effective Young's modulus xE and ( )y x yE E E with the fiber volume fraction 
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Figure 4.6: A plot of effective shear modulus xyG with the fiber volume fraction 

25 30 35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

70

80

Volume Fraction (%)

E
ff

e
c
ti
v
e
 s

h
e
a
r 

m
o
d
u
lu

s
 G

 y
z
=

G
x
z
(G

P
a
)

 

 

Upper Bound (without CNTs)

Lower Bound (without CNTs)

XFEM (without CNTs)

 

Figure 4.7: A plot of effective shear modulus 
yzG  and 

xzG with the fiber volume fraction 
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Figure 4.8: A plot of effective elastic modulus zE with the interior angle  
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Figure 4.9: A plot of effective elastic modulus xE and ( )y x yE E E with interior angle  
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Figure 4.10: The plots of stress components
xx , 

yy and
zz  for the unit-cell 

 

 

 

 

 

 

 

 

 

 

 


