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Abstract A new two-eigenfunctions theory, using the
amplitude deflection and the generalized curvature as two
fundamental eigenfunctions, is proposed for the free
vibration solutions of a rectangular Mindlin plate. The three
classical eigenvalue differential equations of a Mindlin plate
are reformulated to arrive at two new eigenvalue differential
equations for the proposed theory. The closed form eigen-
solutions, which are solved from the two differential equa-
tions by means of the method of separation of variables are
identical with those via Kirchhoff plate theory for thin plate,
and can be employed to predict frequencies for any combi-
nations of simply supported and clamped edge conditions.
The free edges can also be dealt with if the other pair of
opposite edges are simply supported. Some of the solutions
were not available before. The frequency parameters agree
closely with the available ones through pb-2 Rayleigh—Ritz
method for different aspect ratios and relative thickness of
plate.

Keywords Mindlin plate - Free vibration -
Closed form solution - Separation of variable

1 Introduction

A plate is one of the most important structural elements,
its theoretical descriptions were established by Chladni [1]
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and Kirchhoff [2]. Since then, there have been extensive
investigations on the vibrations of plates with various shapes,
supports, loading conditions, and complicating effects, as
reported in Refs. [3—-12]. However, most of them were based
on thin plate theory, in which no account is taken for the effect
of transverse shear deformation on the mechanical behav-
ior of thick plates [13,14]. To allow for this shear effect,
Mindlin [15] proposed the first order shear deformation the-
ory for the motion of moderately thick plates and incorpo-
rated the effect of rotatory inertia. A shear correction factor,
k, was introduced in this theory to compensate the errors
resulting from the assumption of uniform shear strain distri-
bution in the thickness direction.

Accurate analytical results for free vibration of thin rectan-
gular plates can be easily obtained [4], but it is more difficult
to obtain the analytical solutions for the free vibrations of
rectangular Mindlin plates due to more governing equations
and kinetic parameters involved. For this reason many efforts
were devoted to approximate solutions with a high level of
accuracy. FEM, Rayleigh—Ritz method, finite strip method
and collocation methods etc have been widely used to study
the free vibrations of Mindlin rectangular plates. Liew et al.
[13] presented a literature survey on the relevant works up to
1994. Thus only some representative works published after
1994 are reviewed below.

The methods for the free vibration analysis of rectan-
gular Mindlin plates include analytical approaches [16-23]
as well as numerical methods [24-31]. For simplifying the
mechanical behavior analysis of Mindlin plates, two
two-variable alternative formulations for Mindlin plate have
been proposed, one used the bending defection as a funda-
mental variable instead of the rotation angle by Endo and
Kimura [16], the other took the bending component and the
shearing component of lateral deflections w as fundamental
variables by Shimpi and Patel [17]. Hashemi and Arsanjani
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[18] presented the exact characteristic equations supposed
that at least one pair of opposite plate edges is simply sup-
ported, for which, in point of fact, an easier solution method
was given by Brunelle [19]. In Gorman’s [20] superposi-
tion method the solution satisfied the differential equations
exactly but approximated the boundary conditions. Wang
[21] presented an explicit formula for the natural frequen-
cies of simply supported Mindlin plates in terms of the cor-
responding thin plate frequencies. Xiang and Wei [22] and
Xiang [23] employed the Levy solution approach in conjunc-
tion with the state space technique to derive the analytical ei-
gensolutions of rectangular Mindlin plates with two opposite
edges simply supported.

Liew et al. [24] obtained accurate natural frequencies of
Mindlin plates via the pb-2 Rayleigh—Ritz method, Cheung
and Zhou [25] studied the similar problems in terms of a set
of static Timoshenko beam functions, and Shen et al. [26]
developed a new set of admissible functions satisfying natu-
ral boundary conditions for plates with four free edges. A 2D
differential quadrature element method (DQEM) [27] and
a semi-analytical DQEM [28] were developed for the free
vibrations of thick plates. Hou et al. [29] proposed a DSC-
Ritz method taking advantages of both the local bases of the
discrete singular convolution (DSC) algorithm and the pb-2
Ritz boundary functions to arrive at a new approach. Diaz-
Contreras and Nomura [30] derived numerical Green’s func-
tions constructed via the eigenfunction expansion method to
solve Mindlin plate problems. Sakiyama and Huang [31] pro-
posed a Green function method for the free vibration analysis
of thin and moderately thick rectangular plates with arbitrary
variable thickness.

It is noteworthy that hitherto the exact solutions are avail-
able only for the free vibrations of rectangular Mindlin plates
with four simply supported edges [32,33] and with at least
two simply supported opposite edges [18,22]. It was believed
that difficulties would encounter in solving the exact solu-
tions for the free vibrations of rectangular Mindlin plates
without two simply supported opposite edges. In this con-
text, this paper introduces a few new closed form solutions for
free vibrations of rectangular Mindlin plates on the basis of
the proposed theory and the authors’ previous work [34,35]
pertaining to thin plates.

The outline of this paper is as follows. The amplitude
deflection and the generalized curvature relevant to the spa-
tial rotational angle are regarded as the two independent
eigenfunctions to arrive at a new two-eigenfunction theory
in Sect. 2. The general closed form eigenfunctions are solved
from the two governing equations by means of the method
of separation of variables in Sect. 3. In Sect. 4 the eigenvalue
equations and eigenfunctions coefficients are determined for
different boundary conditions. The extensive numerical
experiments are conducted in Sect. 5. Finally, conclusions
are outlined in Sect. 6.
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Fig. 1 Mindlin plate and coordinates

2 A new two-eigenfunction theory

In Mindlin plate theory (MPT), the normal straight line is
extensible and not compressible. The shortest or original
length of the normal line is the thickness of the plate. For an
isotropic plate, the deformed (or the rotated and extended)
normal line intersects at a point on the middle surface with
the original undeformed normal line. Consider a thick rect-
angular plate of length a, width b and uniform thickness /#,
oriented so that its undeformed middle surface contains the
x and y axes of a Cartesian coordinate system (x, y, z), as
shown in Fig. 1. Three fundamental variables in classical
MPT are the displacements along x, y and z directions, as

u=—zy:(x,y,2,1),
v=—z¥y(x,y,2,1), (D
w=w(x,y,z1),

where t is the time, w the deflection, and v/ and vy are the
angles of rotations of a normal line due to plate bending with
respect to y and x coordinates, respectively, they can also be
considered as the projections of the spatial rotation angle v
of normal line on the plane xz and plane xy, respectively.
It should be emphasized that w, ¥, and v, are regarded as
fundamental variables in place of u, v, and w for classical
MPT, it is reasonable and feasible due to the assumptions of
the MPT, see also Eq. (1). The relations between the internal
forces and displacements in MPT are

M,=-D (awx + v—a%) ,
ax ay
oy oy (2a)
— Y S
My = D(By +v8x)’
__La_ W Wy
M,y = 2(1 V)D( dy + Y ), (2b)

_c qw _c Jw )
x = (a—lﬁx), 0y = (5_¢y)s (20)

where v is the Poisson’s ratio, D = Eh3/12(1 — vz) the flex-
ural rigidity, C = k Gh the shear rigidity, G = E/2(1 4+ v)
the shear modulus, and ¥ = 5/6 the shear correction factor.
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The equations of free motion in absence of the external loads
are given by

aMx aMXV 821/,)6

— -—= —pJ =0, 3
ax 8_)7 + Q)C 10 atz ( a)
IMyy, M, 3%y

——= 2 —pJ—2 =0, 3b
ox oy TPl (30)

30, 30, 92w

ox oy a0 (3¢)

where J = h3/12 is area axial moment of inertia of cross
section. For principle or harmonic vibration, it is assumed
that

Yy = Wi (x, )’)eiwt,

Uy = Uy (x, e, )
w = W(x, y)e®.

Substitutions of expressions (4) into Eq. (2) and then Eq. (2)

into Eq. (3) lead to the eigenvalue partial differential equa-
tions in terms of displacements, as

92w, N 1 —v 32y, N 1+v a2y,
dx2 2 9y? 2 9xdy
C (oW w*plJ
+5 (W - xpx) + I’)O W, =0, (5a)
3w, Ll Wy 1+v v,
dy? 2 9x? 2 9xdy
C (oW w?pl
+5 E - ‘ij + D \l”y = O’ (Sb)

w?ph
C

I, U
V2W—( T 4 y)+ W =0, (5¢)

dx dy

where V? is the Laplace operator. The sum of the differenti-
ation of Eq. (5a) with respect to x and Eq. (5b) with respect
to y results in

C pJw? —C
Vo —Vw+ B —w =0, 6
+5 + D (©)
where
ow, 0w,
v = + —, 7
ax dy @

where W is called the generalized curvature in this paper.
Inserting Eq. (7) into Eq. (5¢) yields

2
h
V2w w4 2P

W =0. ®)

In Egs. (6) and (8) there are two independent unknown func-
tions, namely, the generalized curvature W and the ampli-
tude deflection W, therefore these two equations can be con-
sidered as the eigenvalue differential equations of Mindlin
plate. Here, the theory based on Egs. (6) and (8) involving
two fundamental eigenfunctions W and W is called the new

two-eigenfunction theory for the free vibrations of Mindlin
plate, for which we have following comments.

(1) It follows from Eq. (2a) that
My + My, =—D(l + )V, )

which is the relation between the “generalized curva-
ture” W and the “generalized internal moment ” M, +
M,.

(2) To replace V2 by d?/dx?, D by EI, C by kGA, ph by
pA,then Egs. (6) and (8) will reduce to be the governing
equations for the free vibrations of Timoshenko beam,
wherein ¥ = dW, /dx. But Eq. (6) is one order higher
than the corresponding equation in Timoshenko beam.

(3) It can been seen from following solution procedure that
only two of the three classic boundary conditions in
MPT are necessary for each edge, which is consistent
with two fundamental variables and greatly simplifies
the solution procedure of free vibration problem. More-
over, the closed form eigensolutions of Mindlin plate can
be obtained for any combinations of simply supported
and clamped edges, the free edges can also be dealt with
when the other pair of opposite edges is simply sup-
ported. And some of closed form eigensolutions were
not available before.

3 Closed form eigensolutions
One can obtain the closed form solutions of Egs. (6) and (8)

by using the separation of variables. Eliminating & or W
from Egs. (6) and (8) gives the same differential equation as

2 2 2 2
h J J h
V4x+(%+%)vzx—(1—pcf’) )‘”p X

D
=0, (10)

where X = W or W. It should be pointed out that different
equations would be obtained if W and Wy, or W and ¥, are
eliminated from Eqgs. (5) [36], which is the reason of regard-
ing Egs. (6) and (8) as the eigenvalue differential equations
of Mindlin plate in this paper. For brevity, define following
parameters

’ oh D J DJ 4,
RFr=w,/—, ¢c=—+—, s=1——R", (11
D C h Ch
then Eq. (10) can be rewritten as
VAX + cR*V2X — sR*X = 0. (12)

It is apparent that if c = O and s = 1 or C — o0 and
pJ — 0, Eq. (12) reduces to be the eigenvalue differential
equation of Kirchhoff plate. To solve Eq. (12) by means of
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the separation of variables method [34—36], assume that
Wi(x,y) = et¥eh. (13)
Substituting expression (13) into Eq. (12), one has

W2+ A2+ cR* (W + 2% —sR* =0, (14)

which is the characteristic equation of Egs. (6) and (8), and
can be rewritten as

p?4+22=—R} and u®+2%=R3 (15)

where

, R ,  4s
Rl:? c+ C+F R

(16)
R2 R* 4 et 4s
=—\ —-c c — 1.
) V R
The roots of characteristic equation (15) are
w12 = +iy/ R 4+ 42 = iy,
(17a)
134 =+ R3 =22 = £ps,
or
Ao = +i/ R} + p? = tiay,
(17b)

A3 4 = £/ R% —u? =aw.

So the eigenfunction W in separation of variable form can
be expressed in terms of the eigenvalues as

Wx,y) =) (y), (18)

where

¢(x) = Ajcos B1x + Bysin fix

+ Cy cosh Brx + Dy sinh frx, (19a)
Y(y) = Ejcosayy + Frsinagy
+ Gicoshary + Hysinhapy. (19b)

Similarly, one can obtain the closed-form eigenfunction W
by using the eigenvalues in Eq. (17). Since it is more conve-
nient to deal with boundary conditions by ¥, and W, than
by W, here W, and W, are solved instead of W. Based on
the form of Eq. (8), the eigenfunctions ¥, and W, can be
assumed as

Wy (x, y) = gV (y),

where

Wy (x,y) = ¢ (x)h(y), (20)

g(x) = g1B1(—Ay sin B1x + By cos B1x)

+ g2B2(Cy sinh Box + D cosh frx), (21a)
h(y) = hia1(—E;sinayy + Fycosary)
4+ hoar (G sinhapy + Hj coshaay). (21b)
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Substitution of expressions (18) and (20) into Eq. (8) leads
to
2187 + hief = Bi +of — DRY/C,

(22a)
g1Bi —haas = B —a; — DRY/C,

B3 — hal = B3 —aif + DRY/C,
(22b)
8283 + haa; = B3 + a3 + DR*/C.

The coefficient matrix of Eqgs. (22) is singular, thus the
solution can be determined, when g = A1, as

gi=h1=1-y,
B1

2
=1 — ., 23
g2 +V(’32) (23)

2
o
/’l2=1+)/(—1) )
(2%}

where the dimensionless parameter y is given by

DR*

=, (24)
CR}

14
The closed form solutions given by expressions (18) and
(20) satisfy the governing equation (8) or (5c), and Eq. (10)
exactly, is accurate enough for the plate with moderate thick-
ness, and are exact for the plate with four simply supported
edges.

4 Eigenvalue equations and eigenfunctions

In amplitude eigenfunctions in expressions (18) and (20),
there are eight unknown integral constants altogether, which
can be determined by using eight boundary conditions. But
all twelve classical boundary conditions for a rectangular
Mindlin plate can be satisfied simultaneously by present eig-
ensolutions, the reasons for different boundary conditions are
as follows.

(1) Simply supported edge (S)

Three simple support boundary conditions are W = 0,
W, = 0 (subscript s denotes the tangent of the edge) and
M,, = 0 (subscript n denotes the normal of the plate edge).
Since W = 0, we have ¥ = 0 from expressions (18) and
(20), namely, W = 0 is satisfied naturally. Thus the remain-
ing two independent boundary conditions are

W =0,
ow, oW, o, (25)
M, =0= +v—=0= —=0.
on as on
(2) Clamped edge (C)

Three clamp boundary conditions are W =0, W, =0 and
W, =0. Similarly, W, =0 is satisfied naturally as aforemen-
tioned. Thus, the two independent boundary conditions for
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clamped edge are

W=0 W,=0. (26)

(3) Free edge (F)

Three free boundary conditions are Q, =0, M, =0 and
M,,s = 0. Since none of them is satisfied naturally, thus the
normal bending moment and total shear force are assumed
to be zeros

OM,s
as

This approach is the same as that in thin plate, and is more
reasonable and more accurate than the original three condi-
tions for practical problems. Equation (27) can be rewritten in
terms of displacements by substituting Eq. (2) into Eq. (27),
as

M, =0, Qn+ =0. 27)

v BN
n +v K _ 0’
on as (28)
92w, +a )32\11,, N ERAVA N a)z,quJ 0
— VDV = .
an2 9s2  9nds D

It should be pointed out again that the closed form solu-
tions can be obtained for any combinations of simply sup-
ported and clamped edges, which is done below. The free
edges can also be dealt with if another two opposite edges
are simply supported. Regardless of the two opposite edges
being S-C or others, the eigenfunctions and eigenvalue equa-
tions can be derived in the same way, so only the case S-C is
solved. Assume the edge x = 0 is simply supported and the
edge x = a is clamped (S-C), the boundary conditions are

WQ©,y) =¢O0)¥(y) =0= ¢(0) =0,

tx =0,
IV (0,y) _ 8g(0)w(y) —0= 380 _ 0. atx
0x 0x 0x
(29a)
Wia,y)=¢(@)¥(y)=0= ¢(a)=0,
at x=a. (29b)

Vy(a, y)=g@)y¥(y)=0= g(a)=0,

Substitution of expressions (18) and (20) into Eq. (29) yields
A =C; =0,

sin B1a sinh Bra |:B1 i| |:0i|

giBicos fra gapacosh pra | L D1 05
The condition of nontrivial solutions of Egs. (30b) results in
the eigenvalue equation as

(30a)

(30b)

g2P2tan fra = g1 B tanh foa. €1y
The corresponding normal eigenfunction is
sin
() = sin frx — 2P G g, (32)
sinh Bra

The closed form eigenfunctions and eigenvalue equations for
six cases SSCC, SCCC, CCCC, SSSF, SCSF, and SFSF are
presented in Table 1, other available eigensolutions can be
readily derived similarly. In any two eigenvalue equations in
Table 1, there are five unknowns w, B1, B2, @1 and oy, so
three additional relations are needed. From Eq. (17a), one
can obtain

B+ B2 = R? + R3. (33)

Substituting i = ip into Eq. (17b), one can have another
two relations as

011=,/R%—,312, azz,/R%—i—ﬂ%.

Solving Egs. (33) and (34) together with the two eigenvalue
equations in Table 1, one can obtain the natural frequen-
cies and the eigenvalues, then the normal eigenfunctions
are determined accordingly. The solutions for cases SSCC,
SCCC and CCCC were not available before.

(34)

5 Numerical comparisons

Numerical calculations have been performed for 9 differ-
ent combinations of clamped, simply supported and free
edge conditions. Poisson’s ratio v = 0.3, shear correction
factor k = 5/6. All numerical results are compared with
Liew’s [24] results obtained by using the pb-2 Rayleigh—Ritz
method. The non-dimensional frequencies & = (w?b*/7?)
/ph/D are shown in Tables 2, 3,4, 5, 6, 7, 8, 9 and 10 for
relative thickness 4/b = 0.001, 0.1 and 0.2, aspect ratios
a/b = 0.4 and 0.6. MP denotes the present closed form
results.

Itis apparent from Table 2 that present results are exact for
simply supported plates. For all other cases, the results agree
closely with those by Liew. For the cases CCCS, CCCC and
SESF, the relative differences denoted by percentage between
the results of two methods seem to be larger for a/b = 0.4
and /b = 0.2 (a thick plate due to 4 /a = 0.5), and are pre-
sented in Tables 6, 7 and 10, from which it follows that the
largest relative difference is less than 3% for the first 8§ fre-
quencies, such accuracy is adequate for practical predictions
of frequencies of moderately thick plate.

6 Conclusions

In present study a new two-eigenfunction theory was devel-
oped, in which the amplitude deflection and the generalized
curvature are the independent generalized displacements, two
new eigenvalue differential equations were derived from
three classical eigenvalue differential equations of Mindlin
plate. The closed form eigensolutions were obtained from
two eigenvalue differential equations by using separation
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Table 1 Eigensolutions for
cases SSCC, SCCC, CCCC, SSCC
SSSF, SCSF, and SFSF Eigenvalue equations

g2B> tan Bra coth Bra = g1B1, hoastanayb cothanh = hjoy

Normal eigenfunctions

¢ (x) = sin fx —
Sccc
Eigenvalue equations

g2/32 tan ﬂla coth ﬂza = gl,Bl

sin B1a
sinh Bra

sinh Box, ¥ (y) = sinayy —

sinab
sinh ap b

sinhapy

2(haan) (hiap)(cos arb coth arb — sinh™ axb) = [(haan)? — (hio)?]sinarb

Normal eigenfunctions

¢(x) = sin B1x — (sin B1a/sinh Bra) sinh Brx
Y(y) = —cosayy + kIlsino;y + coshayy — [Tsinhayy

IT = (cosaja — coshapa)/(ksinaja — sinhwpa), k = (hpan)/(hioy)

CCccC

Eigenvalue equations

2(g282)(g1B1)(cos Bra coth fra — sinh™! pra) = [(g282)% — (g151)*1sin Bra
2(haan) (hiap)(cosayb cothanb — sinh ™! aab) = [(hoaz)? — (hiep)?]sinab

Normal eigenfunctions

¢(x) = —cos B1x + x E sin B1x + cosh Box — Esinh Box
E = (cos Bra — cosh Bra)/(x sin fra — sinh Bra), x = (g282)/(8181)
Y(y) = —cosayy + kIlsina;y + coshazy — [Tsinhayy

IT = (cosaja — coshapa)/(k sinawja — sinh apa)

SSSF

Eigenvalue equations

(ba/ax) tanayb = (by/ay) tanh azb, a1 = giod +vg1 B2, ar = hoa? — vh B?
by = gragfaf + (1 —v)B7 —JR*/h] + g1o1 B}
by = hyanla3 — (1 — )BT + JR*/h] — hyon p?

Normal eigenfunctions

Y (y) =sinayy + [(haa) sina1b)/(hay sinhapb)] sinhany

SCSF

Eigenvalue equations

(arby + kaiby) sinh~! b + (kaxby + ayby) cosab cotharb = (kajby — arby) sinab

Normal eigenfunctions

Y(y) =0cosayy —ksinayy — 6O coshapy + sinhapy

6 = (ap sinh b + kaj sina1b)/(as cosh ayb + aj cosab)

SESF

Eigenvalue equations

2ayb(sinh ™! axb — cothanb cosarb) = (a3bi/ar — b3ar/by) sinaib

Normal eigenfunctions

Y(y) = —kjycosayy + kysinayy — y coshapy + sinhapy

y = (—arky sinab + ap sinhaab) /(—az cos a1 b + ap cosh oz b)

ki =ax/ay, ky = by /b

of variables, the eigenvalues and the eigenfunction coeffi-
cients were determined through the two necessary boundary
conditions of each edge.

It deserves to be emphasized that the closed form eigen-
solutions satisfy one of the newly derived two governing
equations and all boundary conditions, and are accurate for a
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moderately thick plate. These solutions can be employed to
predict the natural frequencies of a rectangular Mindlin plate
with any combinations of simply supported and clamped
edge conditions, the free edges can also be taken into account
when the other pair of opposite edges is simply supported.
And some of eigensolutions were not available before.
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Table 2 The dimensionless frequencies @ for case SSSS
a/b h/b 1 2 3 4 5 6 7 8
0.4 0.001 Liew 7.2500 10.250 15.250 22.249 25.999 26.999 31.248 33.998
MP 7.2500 10.250 15.250 22.249 25.999 28.998 31.248 33.998
0.100 Liew 6.4733 8.8043 12.370 16.845 19.050 20.732 21.952 23.399
MP 6.4733 8.8043 12.370 16.845 19.050 20.732 21.952 23.399
0.200 Liew 5.1831 6.7212 8.9137 11.487 12.703 13.614 14.267 15.034
MP 5.1831 6.7212 8.9137 11.487 12.703 13.614 14.267 15.033
0.6 0.001 Liew 3.7771 6.7777 11.778 12.111 16.111 18.777 20.110 25.598
MP 3.7778 6.7777 11.778 12.111 15.111 18.777 20.110 25.999
0.100 Liew 3.5465 6.0909 9.9324 10.174 12.275 14.690 15.532 19.050
MP 3.5465 6.0909 9.9324 10.174 12.275 14.690 15.532 19.050
0.200 Liew 3.0688 4.9262 7.4327 7.5825 8.8576 10.268 10.748 12.703
MP 3.0688 4.9202 7.4327 7.5825 8.8576 10.268 10.748 12.703
Table 3 The dimensionless frequencies @ for case SCSS
a/b h/b 1 2 3 4 5 6 7 8
0.4 0.001 Liew 7.4408 10.884 16.412 23.956 26.093 29.358 33.498 34.746
MP 7.4408 10.884 16.412 23.956 26.093 29.358 33.498 34.746
0.100 Liew 6.5903 9.1430 12.876 17.424 19.077 20.827 22.525 23.571
MP 6.6061 9.1887 12.945 17.504 19.087 20.862 22.607 23.634
0.200 Liew 5.2319 6.8380 9.0478 11.598 12.709 13.634 14.340 15.064
MP 5.2500 6.8835 9.1056 11.655 12.714 13.651 14.393 15.095
0.6 0.001 Liew 4.0543 7.5748 12.254 13.120 15.622 20.657 21.107 26.093
MP 4.0544 7.5748 12.254 13.120 15.622 20.657 21.107 26.093
0.100 Liew 3.7546 6.6037 10.243 10.621 12.495 15.424 15.889 19.077
MP 3.7696 6.6396 10.257 10.669 12.540 15.475 15.964 19.087
0.200 Liew 3.1829 5.1382 7.6052 7.6444 8.9198 10.424 10.829 12.709
MP 3.2076 5.1858 7.6171 7.6944 8.9546 10.468 10.880 12.714
Table 4 The dimensionless frequencies @ for case SCSC
a/b h/b 1 2 3 4 5 6 7 8
04 0.001 Liew 7.6843 11.629 17.709 25.804 26.202 29.762 35.573 35.888
MP 7.6842 11.629 17.709 25.804 26.202 29.762 35.573 35.888
0.100 Liew 6.7300 9.5130 13.397 17.989 19.106 20.927 23.086 23.748
MP 6.7683 9.6133 13.539 18.159 19.127 21.000 23.246 23.880
0.200 Liew 5.2358 6.9578 9.1799 11.705 12.716 13.654 14.410 15.095
MP 5.3265 7.0520 9.2945 11.818 12.726 13.690 14514 15.156
0.6 0.001 Liew 4.4270 8.5095 12.428 14.605 16.217 22.221 22.676 26.202
MP 4.4269 8.5095 12.429 14.605 16.217 22.221 22.676 26.202
0.100 Liew 4.0188 7.1608 10.322 11.319 12.732 16.144 16.258 19.106
MP 4.0570 7.2385 10.354 11.415 12.831 16.244 16.414 19.127
0.200 Liew 3.3571 5.3571 7.6293 7.8482 8.9836 10.573 10911 12.716
MP 3.3736 5.4534 7.6553 7.9450 9.0550 10.657 11.013 12.726
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Table 5 The dimensionless frequencies o for case CCSS
a/b h/b 1 2 3 4 5 6 7 8
0.4 0.001 Liew 10.669 13.524 18.507 25.641 32.579 34.888 35.436 40.279
MP 10.651 13.484 18.462 25.603 32.573 34.858 35.416 40.248
0.100 Liew 8.5213 10.504 13.752 17.978 20.950 22.412 22.883 24.818
MP 8.5673 10.625 13.918 18.156 21.000 22.572 23.049 25.068
0.200 Liew 5.9939 7.3080 9.3061 11.736 12.973 13.846 14.414 15.222
MP 6.0574 7.4369 9.4445 11.859 13.019 13.965 14.517 15.378
0.6 0.001 Liew 5.3408 8.4789 13.779 15.049 18.061 21.167 23.164 30.324
MP 5.3187 8.4489 13.756 15.041 18.039 21.151 23.136 30.323
0.100 Liew 4.7158 7.1714 10.948 11.640 13.560 15.620 16.633 20.346
MP 4.7335 7.2260 11.026 11.679 13.673 15.701 16.798 20.385
0.200 Liew 3.7121 5.3972 7.7639 8.0252 9.2073 10.483 11.006 12.892
MP 3.7542 5.4737 7.8435 8.0673 9.3090 10.549 11.128 12.925
Table 6 The dimensionless frequencies w for case CCCS
a/b h/b 1 2 3 4 5 6 7 8
04 0.001 Liew 14.842 17.107 21.394 27.930 36.731 39.868 42.376 46.706
MP 14.817 17.035 21.298 27.840 36.652 39.860 42.345 46.649
0.100 Liew 10.608 12.048 14.763 18.612 22.596 23.278 23.962 25.998
MP 10.689 12.268 15.060 18.917 22.682 23.557 24.133 26.434
0.200 Liew 6.8374 7.8352 9.5938 11.887 13.119 13.985 14.495 15.341
MP 6.9265 8.0307 9.8097 12.077 13.201 14.202 14.649 15.626
% 1.29 243 2.20 1.57 0.62 1.53 1.05 1.82
0.6 0.001 Liew 7.0598 9.7309 14.663 18.217 20.899 21.821 25.593 31.114
MP 7.0239 9.6657 14.608 18.203 20.859 21.782 25.537 31.081
0.100 Liew 5.8624 7.8731 11.342 12.982 14.629 15.845 17.400 21.001
MP 5.8963 7.9632 11.462 13.048 14.817 15.966 17.669 21.113
0.200 Liew 4.2822 5.6866 7.8996 8.3729 9.4678 10.546 11.175 13.089
MP 4.3442 5.7985 8.0097 8.4476 9.6362 10.637 11.371 13.145
Table 7 The dimensionless frequencies w for case CCCC
a/b h/b 1 2 3 4 5 6 7 8
04 0.001 Liew 14.972 17.608 22.427 29.553 38.951 39.943 42.671 47.349
MP 14.910 17.445 22.228 29.374 38.795 39.923 42.602 47.226
0.100 Liew 10.702 12.352 15.257 19.195 22.627 23.861 23.972 26.198
MP 10.748 12.494 15.478 19.457 22.710 24.130 24.230 26.615
0.200 Liew 6.9109 7.9963 9.7716 12.028 13.128 14.013 14.586 15.384
MP 6.9598 8.1342 9.9572 12.222 13.214 14.238 14.764 15.682
% 0.70 1.70 1.86 1.59 0.65 1.58 1.21 1.90
0.6 0.001 Liew 7.2864 10.488 16.018 18.340 21.362 23.751 26.541 33.606
MP 7.1955 10.352 15914 18.308 21.274 23.680 26.422 33.541
0.100 Liew 6.0364 8.3527 12.010 13.049 14.848 16.560 17.764 21.542
MP 6.0225 8.3904 12.107 13.107 15.017 16.683 18.021 21.629
0.200 Liew 4.4084 5.9199 8.1258 8.4053 9.5518 10.710 11.280 13.100
MP 4.4211 5.9969 8.2329 8.4773 9.7174 10.818 11.485 13.156
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Table 8 The dimensionless frequencies @ for case SSSF
a/b h/b 1 2 3 4 5 6 7 8
04 0.001 Liew 6.4124 8.2685 11.921 17.451 24.910 25.083 27.036 30.886
MP 6.4122 8.2683 11.930 17.451 24.910 25.083 27.036 30.885
0.100 Liew 5.7705 7.2381 9.9582 13.726 18.212 18.471 19.589 21.672
MP 5.7872 7.2771 10.037 13.835 18.433 18.501 19.622 21.738
0.200 Liew 4.6886 5.6837 7.4226 9.6690 12.211 12.382 12.991 14.110
MP 4.7028 5.7198 7.4990 9.7879 12.387 12.390 13.006 14.148
0.6 0.001 Liew 2.9585 4.7249 8.2605 11.241 13.152 13.713 16.904 21.158
MP 2.9581 4.7247 8.2604 11.250 13.152 13.713 16.904 21.158
0.100 Liew 2.8006 4.3315 7.2082 9.5156 10.870 11.241 13.390 16.122
MP 2.8113 4.3697 7.2762 9.5380 10.908 11.318 13.465 16.197
0.200 Liew 2.4760 3.6431 5.6551 7.1634 7.9991 8.2054 9.4935 11.014
MP 2.4887 3.6871 5.7298 7.1770 8.0266 8.2970 9.5572 11.131
Table 9 The dimensionless frequencies @ for case SCSF
alb h/b 1 2 3 4 5 6 7 8
0.4 0.001 Liew 6.4520 8.6144 12.726 18.757 25.100 26.749 27.228 31.391
MP 6.4520 8.6144 12.726 18.758 25.100 26.749 27.228 31.391
0.100 Liew 5.7941 7.4351 10.350 14.250 18.475 18.884 19.641 21.804
MP 5.8157 7.5063 10.488 14.432 18.507 19.085 19.694 21911
0.200 Liew 4.6987 5.7600 7.5460 9.7941 12.309 12.383 13.003 14.134
MP 4.7177 5.8283 7.6751 9.9708 12.391 12.539 13.027 14.196
0.6 0.001 Liew 3.0203 5.1663 9.1995 11.278 13.429 15.184 17.583 23.162
MP 3.0203 6.1664 9.1996 11.278 13.429 15.184 17.583 23.162
0.100 Liew 2.8474 4.6408 7.7697 9.5283 10.995 11.940 13.658 16.844
MP 2.8638 4.7080 7.8801 9.5546 11.062 12.065 13.794 16.967
0.200 Liew 2.5032 3.7976 5.8720 7.1676 8.0375 8.3938 9.5634 11.150
MP 2.5240 3.8806 5.9955 7.1838 8.0877 8.5365 9.6706 11.307
Table 10 The dimensionless frequencies @ for case SFSF
a/b h/b 1 2 3 4 5 6 7 8
04 0.001 Liew 6.1807 6.9892 9.5383 13.745 19.742 24.847 25.648 27.657
MP 6.2499 6.9891 9.5383 13.745 19.742 24.999 25.648 27.653
0.100 Liew 5.5840 6.2084 8.1490 11.150 15.086 18.340 18.755 19.774
MP 5.6580 6.2529 8.2534 11.326 15.309 18.473 18.811 20.017
0.200 Liew 4.5595 4.9810 6.2614 8.1230 10.396 12.310 12.533 12.881
MP 4.6183 5.0201 6.3594 8.2989 10.655 12.388 12.551 13.267
% 1.27 0.78 1.54 2.12 2.43 0.63 0.14 291
0.6 0.001 Liew 2.7342 3.4998 5.8305 9.8322 11.015 11.832 14.510 15.735
MP 2.7778 3.4995 5.8303 9.8322 11.111 11.832 14.510 15.735
0.100 Liew 2.6011 3.2590 5.2083 8.3506 9.3476 9.9040 11.744 12.564
MP 2.6491 3.2953 5.3047 8.4916 9.4447 9.9547 11.843 12.716
0.200 Liew 2.3178 2.8243 4.2593 6.3805 7.0589 7.3974 8.5104 8.9583
MP 2.3612 2.8674 4.3674 6.5369 7.1273 7.4303 8.5883 9.1476
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The good agreements of present results with existed results
validate present work. The present solutions would be useful
to the initial parametric design and analyses in practice.
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