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Abstract

Ferroelectric perovskites are used in various transducer, memory and optical applications due to
their attractive electromechanical and optical properties. In these applications, the ferroelectrics often
have complex geometries with a significant portion of the surface free and unshielded by electrodes.
The free surfaces play an important role in determining microstructure due to the intricate balance
between preferred polarization orientation, mechanical stresses, and stray electric fields that exist out-
side the specimen. In addition, the stray electric fields at free surfaces are exploited for photochemical
reactions and self-assembly. Hence, it is important to predict the domain patterns, stray fields, and
mechanical stresses that form in these geometries. We apply a phase-field model in combination with
finite element and boundary element methods for real-space calculations of microstructure at free-
surfaces in ferroelectrics. A key advantage of the boundary element method is that it enables us to
calculate the stray electric fields outside the specimen. We examine the effect of lattice orientation,
surface modulation and applied far-field stress and electric field on domain microstructure and stray
electric fields.

Keywords: Ferroelectric; Phase-field simulation; Free surfaces; Microstructure; Boundary ele-
ment method

1 Introduction

Ferroelectric materials are widely used in sensors and actuators [1, 2]. More recently, they have found
applications in high-speed memories [3], and have been proposed as elements of microwave circuits
[4] and as photonic switches at small length scales [5]. A more recent application exploits the stray
electric fields that appear on un-electroded ferroelectric surface as a means for templated self-assembly
and to drive photochemical reactions [6, 7]. All of these applications share the feature that geometries
and boundary conditions are complex and real-space methods are required. A particular geometry that
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appears in all these settings is that of a ferroelectric free surface. For instance, many of the devices
mentioned above use thin-film geometries and free surfaces play a dominant role in determining their
behavior [8]. In addition, when cracks form, predicting the domain patterns on crack faces requires an
understanding of the behavior at free surfaces. In the examples of self-assembly and chemical reactions,
polarization being oriented normal to the free surface leads to surface charges and consequent stray fields
that are central to the applications. Hence, understanding microstructure, stress, and stray electric fields
at free surfaces is important for reliability, functionality and design of ferroelectric devices.

While complex geometries require real-space techniques, a central challenge is dealing with stray electric
fields in this setting. These fields are long-range and exist over all space and not just within the specimen.
It is important to accurately obtain the energy in these fields as it contributes to the balance between
electrostatic energy, mechanical energy, and energy for the polarization to deviate from the preferred
states. Hence, it plays a significant role in determining domain patterns as well as stress. In this work, we
apply a recent real-space formulation that can handle these complexities [9]. In particular, our method
exploits a boundary element method that enables efficient and accurate calculation of electric fields within
the ferroelectric as well as the stray fields outside. We apply this to free-surface geometries and examine
the domain patterns and stray electric fields. We examine the effect the relative orientation of the free
surface with respect to the crystal axes, the effect of surface modulations, and the effect of applied
normal stress parallel to the free surface, and applied electric fields parallel to the free surface. Instances
where different relative orientations can arise include due to deposition strategies, or due to crack face
orientations. Surface modulations can also appear for the same reasons. The applied fields can arise in
thin-films, for instance by straining the substrate, and they lead to significant changes in stray fields and
domain patterns. They can also arise due to stress concentrations such as crack tips, though here we focus
on far-field applied stresses that are uniform at the scale of computation.

Ferroelectric thin-films have received much attention from first-principles calculations, e.g. [11, 12, 13,
14]. First principle calculations typically focus on extremely thin films and are restricted to zero tempera-
ture. In combination with the method of effective Hamiltonians, they have been used to examine domain
patterns at finite temperature. They have provided much insight into the detailed properties near the free
surface and the scale of resolution is at the (sub-) atomic scale. While these methods provide valuable
understanding of ultra thin-films and the free surface, in particular issues such as possible supression of
ferroelectricity in extremely thin films, they are too computationally demanding for microstructure that
forms at larger scales. In addition, due to issues related to setting up the surface terminations, these have
all examined films with the crystal axis oriented along the plane of the film.

The main tool of choice in understanding domain microstructure in ferroelectric thin-films is the phase-
field approach. It enables the study of much larger specimens than first-principle calculations. It has
been widely used to examine various aspects of ferroelectric microstructure in thin films, e.g. reviewed in
[15, 16]. These aspects include, e.g., the effect of substrate constraint on microstructure [17], the related
effect of strain-tuning on ferroelectric properties [18], the interplay between stress and transformation
temperature [19], the role of dislocation [20], and many other questions. However, the typical electrical
boundary condition, both in periodic and real-space settings, is to assume either electrodes on the surface
or complete charge compensation. This assumption has the effect of completely cancellation of the stray
fields outside the film and hence that contribution to the energy is not required. In [21], the authors
compare complete charge compensation boundary conditions with the approximate boundary condition
that electric displacement vanishes on the free surface. The latter boundary condition is essentially the
approximation that stray fields are not allowed outside the body. They find interesting differences in the
microstructure with these different boundary conditions, in particular, the formation of domains similar to
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our results of the case when the crystal axis is parallel to the plane of the film. Here, we use the boundary
condition that the normal component of the displacement is continuous across the free surface; this is the
exact boundary condition from fundamental electromagnetism at the interface of two dielectrics, in this
case ferroelectric and vacuum. Hence, this enables us to account for the stray fields outside the body.

A computational and scaling analysis of free-surface domains was provided in [9] for the relatively sim-
ple geometry when the crystal axes are oriented along the free surface. Thus, both the surface charge
contribution and the anisotropy contributions favor the same polarization state (parallel to the surface).
This essentially leaves a competition between mechanical energy, from the fact that the microstructure is
not stress-free, and the electrostatic energy and anisotropy energy due to distortions to accommodate the
microstructure. Free surface geometries are also ubiquitous in ferroelectric crack problems. However, the
scale of resolution, both in theoretical and experimental studies, is typically much coarser than individual
domains and averages over grains polycrystalline samples. Recent experimental efforts aimed at domain
scale measurements include [22, 23] and a domain-level understanding of this process is underway [24].
We also mention phase-field studies of cracks in ferroelectrics [26, 27] including the first of a growing
crack [25]; although these use approximate boundary conditions predicated on the non-existence of stray
fields, they compute closure domains similar to those studied here. However, due to the geometry that
is chosen for the crack, the free surface is oriented along the crystal axes. Another interesting example
related to closure domains in ferroelectric rubbers appears in [28]. They make a simple ansatz for the
deformation, not allowing closure, but use this to provide scaling arguments for the stray field energy to
be expected when closure domains do not form.

The paper is organized as follows. We present the formulation in Section 2 and a description of the
real-space method in Section 3. Section 4 describes closure domains observed at different orientations of
the free surface, Section 5 describes the effect of surface modulation, Section 6 describes the effects of
applied stress, and Section 7 examines the effect of applied electric field. We conclude in Section 8.

2 The Phase-field Formulation

The potential energy E of a ferroelectric body Ω (Fig. 1) with elastic strain field ε and the polarization
field p may be written following [29] as

E[ε,p] =

∫
Ω

[U(∇p) +W (ε,p)] dΩ +
ε0
2

∫
R3

|∇φ|2 dV (2.1)

where U penalizes gradients in p and models the energy contributions from domain walls, and the stored
(Devonshire) energy densityW penalizes p and ε deviating from the spontaneous polarization and strain.
The last term represents the electrostatic energy contained in the electric field E = −∇φ, where φ is
electric potential obtained from Maxwell’s equation:

∇ · (p− ε0∇φ) = 0 over R3. (2.2)

The first 2 terms in the energy (2.1) are local to the body being considered, while the electrostatic contri-
bution is over all space.

The governing equations are obtained as a gradient flow of the potential energy [30]:

µ
dpi
dt

=

(
∂U

∂pi,j

)
,j

− ∂W

∂pi
− φ,i over Ω , (2.3a)
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(
∂W

∂εij

)
,j

= 0 over Ω , (2.3b)

pi,i − ε0φ,ii = 0 over R3 . (2.3c)

The boundary conditions for the polarization evolution (2.3a) are ∇p · n̂ = 0, where n̂ is the outward
normal to the boundary. Conventional elasticity boundary conditions are used for the elastic equilibrium
equation (2.3b). Finally, the boundary conditions associated with Maxwell’s electrostatic equation (2.3c)
are potential (voltage) specified at the electrodes and decaying at infinity.

We use tetragonal barium titanate in two-dimensions as our model material, and use the same model as
in [30]:

U(∇p) =
a0

2

(
p2

1,1 + p2
1,2 + p2

2,1 + p2
2,2

)
, (2.4)

W (ε,p) =
a1

2

(
p2

1 + p2
2

)
+
a2

4

(
p4

1 + p4
2

)
+
a3

2
p2

1p
2
2 +

a4

6

(
p6

1 + p6
2

)
+
a5

4
p4

1p
4
2

+
1

2
(ε− εT (p)) · C · (ε− εT (p)) .

We also use the constants a0, a1, a2, a3, a4, a5,C and the expression for εT (p) as in [30]. In that non-
dimensionalized system, the spontaneous polarization is 1, the elastic moduli are O(102), and the break-
down voltage across the thickness is O(10).

This phase-field formulation has been widely used in real-space and periodic calculations of microstruc-
ture, e.g. [30, 9, 31, 32, 33]. Though superficially different, it is also equivalent to formulations in
[34, 35, 15, 36, 37, 38, 39] to name a few.

3 Real-space Solution Technique for Stress and Stray Electric Fields

We solve the governing equations (2.3) as follows. We start with an initial polarization field that we use
to obtain the strain and electric potential from (2.3bc). We then update the polarization using (2.3a). This
process is repeated until convergence.

The polarization update uses a standard finite element method (FEM). We multiply (2.3a) by a test func-
tion v, integrate over the domain Ω and apply integration by parts to obtain the weak form:∫

Ω

((
∂U

∂pi,j

)
vi,j −

∂W

∂pi
vi − φ,ivi

)
dΩ =

∫
Ω

µ
dpi
dt
vidΩ (3.1)

We use standard linear triangle elements with linear shape functions to discretize p. A similar approach
with triangle elements and linear shape functions is used for the mechanical equilibrium equation (2.3b)
with displacement as the primary variable. However, the electrostatic equation (2.3c) needs attention
as the electric fields that arise on Ω are not confined to the body but extend over all space. We use a
boundary element method (BEM) to resolve the electrostatic field. This enables us to efficiently solve
the electric field in a finite domain (not necessarily the same as Ω) while retaining consistency with the
formulation over an infinite domain. This has been described elsewhere [9, 10] and we summarize only
the key points.

The electrostatic potential (2.3c) must satisfy the conditions:

ε0J∇φ(x)K · n = p · n (specified bound surface charge) on ∂Ω1

φ(x) = V0(x) (specified voltage on electrodes) on ∂Ω2

(3.2)
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as well as the decay conditions in the far-field. The key idea of the BEM is to consistently transform
these conditions to the solution of

ε0∇2φ = ρ∗ on Ω′, φ = V ′0 on ∂Ω′ (3.3)

This equation is readily solved with FEM with standard linear triangle elements with linear shape func-
tions. We note that Ω′ need not coincide with the specimen Ω, and by defining Ω′ appropriately, we can
calculate the stray electric field outside the specimen in the vicinity of the free surface. We also note that
the BEM uses the Green’s function for the geometry in a critical manner. Hence, in Appendix A, we
present the Greens function for two-dimensions with periodicity in a single direction, as required for the
geometries of interest in this paper.

We note that spectral elements [47, 16] are an alternative to finite elements to solve phase-field equations
on complex geometries. However, in the current context, neither spectral nor finite elements are directly
suitable because of the fact that electric stray fields exist over all space and the problem is posed on an
unbounded domain. Once boundary elements and the Dirichlet-to-Neumann map have transformed the
problem to a finite domain, then various methods, including spectral and finite elements, are applicable.

4 Effect of Relative Orientation between Crystal Axes and Free
Surface

The formation of closure domains at a free surface involves a balance between anisotropy energy (that
penalizes polarization and strain deviating from the crystallographically preferred states), elastic energy
from stresses, and the electrostatic energy in the electric field. The electrostatic field is generated by
bound bulk charges, −∇ · p, as well as bound surface charges, p · n. The latter contribution is partic-
ularly important at free surfaces. Minimizing this contribution, in the absence of other contributions,
would align p tangential to the free surface. In previous work [9], we examined the specific case when
the crystallographically preferred direction of polarization was indeed aligned with the free surface. This
enabled the formation of relatively simple microstructure as both anisotropy and surface charge contri-
butions could be minimized by the same polarization state. In this work, we examine the more complex
balance that occurs when the crystal axes are not aligned with the free surface, hence forcing a competi-
tion between these contributions.

A schematic of our calculation is shown in Fig. 2. We model a ferroelectric specimen with crystal axes
oriented at an angle θ to the free surface by considering a computational domain that is aligned along the
free surface. We use periodicity only along the x1 direction along the free surface, and apply far-field
normal stresses and electric fields in that direction. In this section, we assume that both applied normal
stress and electric field are absent but will consider them in later sections. We also assume that the body
is traction free at the free surface, and can undergo only horizontal displacements on the bottom surface.

We begin from θ = 0 that corresponds to the crystal axes aligned with the free surface and increase θ
in discrete increments up to θ = 51◦. For each case, we use a domain structure of 180-domains aligned
along the crystal axes but with no closure domains as the initial guess for p. This domain pattern is stable
in the interior but gives rise to electric fields due to the normal component of p at the free surface. The
closure domains form as p and ε evolve towards an energy-minimizing configuration.

When θ is small, e.g. 14◦, the closure domains that form are fairly simple and comparable to θ = 0,
Fig. 3(a). There is an energetic penalty as p at the surface is aligned tangentially and that is not a
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crystallographically preferred state. In addition, the strain in the closure domains is not at the preferred
value and this causes stresses and elastic energy. However, the electric field term dominates over these
contributions and this remains the case until θ ' 27◦.

The domain patterns beyond θ = 27◦ are more complex. For instance, Fig. 3(b) shows the domain
pattern and Fig 4(a) a detailed view of a single closure domain vector plot. At the surface, p remains
horizontal so that the surface charge is absent. However, directly beneath the free surface, a new domain
pattern nucleates. Some portion of this domain is aligned in the classical 90◦ closure domain pattern,
while the remainder transitions from this state to a horizontally aligned state on the free surface (marked
on Fig. 4(a)). This domain structure balances between the anisotropy and mechanical contributions that
favor sharp domain walls with p oriented along the crystal axes, and electrical contributions that favor
p aligned tangential to the free surface. The nature of this competition is also obvious in the stress and
electric potential plots, Figs. 5, 6. A signature of the appearance of this new domain pattern is also
evident from Fig. 9 (the stress-free curve). The electric field magnitude increases steadily until 27◦,
at which point the transition domain nucleates and electric field remains fairly constant. At 37◦, the
transition domain is fully developed and there is an electrical energy penalty for further increase in θ.

As we increase θ, the microstructure continues to evolve. For instance, at θ = 45◦, Figs. 3(c), 4(b)
show that the polarization in the transition region between the classical 90◦ closure domain pattern has
extremely small magnitude At an even higher value of θ = 51◦ , we find that p has changed direction1.
We compare Figs. 3(b), 4(a) for θ = 37◦ with Figs. 3(d), 4(c) for θ = 51◦. In the latter, there is no
longer a simple transition to the free surface; instead there is a circular “vortex”-like structure with an
anti-clockwise sense, and the direction of polarization at the surface is anti-parallel to that observed for
θ = 37◦. The polarization magnitudes within this circular region are however quite small. We also note
the steady increase in the stress and electric potential fields, Figs. 5, 6.

5 Effect of Surface Modulations

In this section, we examine the influence of periodic modulations of the free surface on closure domains
microstructure. Figure 7 shows the profile of the free surface and also the corresponding triangle mesh
with high density at the regions where microstructure is expected. The shape of the free surface is a sinu-
soid with the equation: 100 sin(πx/400), based on the approach of [40]. To enable simpler calculations,
[40] use a uniform finite difference mesh and approximate boundary conditions. The FEM / BEM that
we have described above enables an accurate description of the free surface and also the calculation of
fields outside the specimen.

Our initial condition for p with no lattice orientation and the entire surface is traction free. We use
θ = 0 to enable comparison to the simple 90◦ closure domains. Figure 8 shows the closure domains
under the modulated surface. An important feature is that the peaks are better able to accommodate the
competition between the surface (gradient) energy and the surface charges in comparison to the valleys.
The gradient term drives p to transition smoothly while the electric field energy drives p to be normal to
the surface. As the vector plot in Fig. 8 shows, it is possible to do both these things in the peaks unlike in
the valleys. This contrast is also clearly visible in the stress field variations. A consequence is that surface
modulations reduce the stray and interior electric fields by providing more options for the polarization to

1The crystal symmetry implies that θ = 51◦ and θ = 39◦ are equivalent. However, the initial condition that we use for the
polarization enables a meaningful distinction in our calculations.
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align itself tangential to the free surface

6 Effect of Far-Field Applied Stresses

We next examine the effect of moderate normal stress applied in the far-field along the horizontal direc-
tion, such as might be applied through substrate-thin film interactions. We focus on the influence of the
applied stress, in conjunction with variation of θ, on the stray electric fields. We examine three values of
applied stress: σ0 = 0, σ0 = −0.4 and σ0 = −0.8 (recall from section 2 that the non-dimensionalized
elastic moduli are O(102)). The first case, stress free, is simply that described above, and the others are
applied compressive stress. In all cases, the domain microstructure appears similar to the stress-free case
and the differences can be clearly seen in the electric field magnitudes.

A general trend that we see in Fig. 9 is that increased stress leads to an increase in the maximum
magnitude (over space) of the stray electric field. We also notice that increasing θ leads to a steady
increase in stray field magnitude until about 27◦. At this point, the transition closure domains nucleate
and the electric field holds steady until about 37◦ when it again begins a steady increase. An interesting
feature is that this trend is independent of stress level, though the specific magnitudes are different.

We also calculate an example of the interaction between applied stress and modulated surfaces. From
Fig. 10, we notice that electric fields at modulated surfaces, with σ0 = −0.4, are significantly smaller
than those under flat surfaces with θ = 21◦. This suggests that modulated surfaces accommodate p better
than flat surfaces and give rise to lower stray fields, even under applied stress when stress concentrations
may have been expected to have an effect.

7 Effect of Far-Field Applied Electric Fields

The last case that we study is closure domain microstructure with different θ under far-field electric fields
that are applied parallel to the free-surface. We study two values of applied field: −0.002 and −0.005,
the negative sign indicating that they tend to cause p to point to the left. We recall from section 2 that the
non-dimensionalized breakdown voltage (for the computational domain height) is O(10).

We find that the structure of the closure domains very close to the free surface changes due to applied
field. We focus on the particular case θ = 45◦, Fig. 12. For reference, we show again p without applied
field in Fig. 12(a) and note that the triangular closure domains are roughly equal in both directions. Under
applied field−0.002 that tends to align p to point to the left, Fig. 12(b), we find that the fraction of closure
domains pointing in the preferred direction has grown at the expense of those pointing against the field.
This is even more pronounced under applied field −0.005, Fig. 12(c), when the domain pointing against
the field has almost vanished. This coupling between closure domain structure and applied field causes
changes in the total electric fields not just along the applied field but also in the transverse direction.

The effect of applied field is also clearly seen in the electrostatic fields that are generated (Fig. 11). If we
look away from the free surface where the potential is high in both cases, we see that the larger electric
field causes a larger external and internal electric field, but also one that is more delocalized. As we did
with applied stress, we also examine the interaction between orientation θ and applied field, Fig. 9. We
note that the general trend remains that increased θ leads to increased external electric fields. However,

7



Effect of Lattice Orientation, Surface Modulation, and Applied Fields on Free-Surface Domain Microstructure in Ferroelectrics (to appear in Acta Materialia) L. Yang, K. Dayal

we find that the plateau between 27◦ and 37◦ is less pronounced. Interestingly, we find that an applied
electric field of −0.002 has a smaller electric field magnitude than without applied field. This can be
understood by noting that the applied electric field, unlike applied stress, breaks the left-right symmetry
of the crystal: θ and −θ are physically different situations. In this case, the applied electric field cancels
(to some extent) the electric field due to bound charges; in the case with −θ these electric fields would
add up. We note that the applied electric field of −0.005 dominates the field due to bound charges, and
hence the electric field magnitude is larger than without applied field.

8 Conclusions

We have applied a real space phase-field approach to calculate the domain microstructure beneath a fer-
roelectric free surface. We have investigated the influence of three parameters: first, the orientation of
the free surface relative to the crystal directions; second, the effect of far-field applied normal stress; and
third, the effect of far-field applied electric field. We have also examined the effect of surface modula-
tions.

In general, the closure domain patterns are complex due to the competition between anisotropy energy,
electrical energy and elastic energy. Some broad trends and conclusions emerge from our calculations. In
the case of variation in surface orientation, we find that stray fields and stresses increase monotonically
with increase in orientation angle, though there is a plateau during which the closure domain structure
changes significantly. In the case of surface modulations, we find that providing a varying surface profile
enables relatively low-energy domain structures with smaller stresses and electric fields compared to flat
surfaces. The cause of this is that polarization can now be easily accommodated tangential to the free
surface. However, we also observe an interesting contrast between the behavior of peaks and troughs,
where the former lead to lower stresses due to allowing smoother changes in the field. We find that
applied normal far-field stresses in general lead to higher stray electric fields, and also that the interaction
between orientation and applied stress preserves the trends observed without applied stress. With applied
electric fields, we observe the interesting cancellation between applied electric fields and those formed
due to bound charges; when the magnitude of the applied fields is increased, they dominate and stray
fields are larger than without applied field.

Stray fields at free surfaces have been experimentally observed, and are further being exploited [6, 7]
as mentioned in the introduction. These and other works, e.g. scanning-probe microscopy measure-
ments [41], show that periodic stray fields exist above the surface of a periodically-poled microstructure.
These provide support for the possibility that charge compensation is incomplete at free surfaces and
the existence of stray fields as we have calculated. However, these experimental efforts have focused on
specimens with crystal axes oriented along the film surface. Our results for other orientations, as well
as with applied fields, can enable experimental strategies to obtain stray fields of larger magnitude. We
also mention analytical work [42, 43] that looks at stray fields in ferroelectrics; however, two important
differences between those calculations and ours are that first, it is simplified to one dimension to enable
analysis, and second, mobile charges are included in the analysis.

Among possible future questions of interest, we note two of particular importance. The first is to examine
the effect of space charges. These are well-known to play an important role at domain walls and as well
as free surfaces [42, 43]. Recent continuum field models for space charges [44] are readily integrated
with our numerical approach to electrostatics. The second question is to examine the effect of surface
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modulation on domain nucleation; this is of direct relevance to devices, e.g. thin-film switching. This has
recently been examined by [40] using approximate boundary conditions and finite difference methods
for simplicity. They find that the surface modulation act as sites for domain nucleation under applied
fields. Due to the sensitive dependence of nucleation processes on inhomogeneities from geometry, it
is important to study this question with a numerical method, such as presented here, that resolves the
surface accurately.
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A Electrostatic Greens Function in Two Dimensions with Periodic-
ity in One Direction

We calculate an analytical expression for the Greens function in two dimensions assuming periodicity in
a single direction following a general technique outlined in [45].

The fundamental solution of a single point source in 2-D at x is

G0(x,y) = log(|x− y|) (A.1)

and the components of the electric field at y due to the point source at x are

E0
1(x,y) =

∂G0

∂x1

=
x1 − y1

(x1 − y1)2 + (x2 − y2)2

E0
2(x,y) =

∂G0

∂x2

=
x2 − y2

(x1 − y1)2 + (x2 − y2)2

(A.2)

To obtain the Greens function for a periodic array of charges, we superpose the fields from charges
located at integer multiples of the periodicity L in the e1 direction:

G(x,y) =
n=+∞∑
n=−∞

log(|x+ nLe1 − y|) (A.3)

This sum is not convergent. Hence we work directly with the electric field:

E1(x,y) =
n=+∞∑
n=−∞

x1 + nL− y1

(x1 + nL− y1)2 + (x2 − y2)2

E2(x,y) =
n=+∞∑
n=−∞

x2 − y2

(x1 + nL− y1)2 + (x2 − y2)2

(A.4)
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The component E1 is conditionally convergent but E2 is absolutely convergent and is evaluated to be:

E2 =
π

L

cosh
(
π x2−y2

L

)
sinh

(
π x2−y2

L

)
cosh2

(
π x2−y2

L

)
− cos2

(
π x1−y1

L

) (A.5)

We can integrate this to obtain the desired Green’s function:

G =
1

2
log

(
cosh2

(
π
x2 − y2

L

)
− cos2

(
π
x1 − y1

L

))
(A.6)
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Figure 1: Domain and boundary condition for electrostatics problem.

Figure 2: Computational domain: (left) orientation relative to crystal axes; (right) boundary conditions.
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(a) θ = 14◦. (b) θ = 37◦.

(c) θ = 45◦. (d) θ = 51◦.

Figure 3: Closure domains (vertical component of p) with different orientations θ in the absence of applied far-
field stress and electric field.
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(a) θ = 37◦. (b) θ = 45◦.

(c) θ = 51◦.

Figure 4: Detail view of closure domains (vector plot of p) in the absence of applied far-field stress and electric
field with different orientations θ.

Figure 5: Electrostatic potential in the vicinity of closure domains for different orientations θ.
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Figure 6: Von Mises stress in the vicinity of closure domains for different orientations θ.

Figure 7: Surface modulation profile and unstructured fine mesh at the free surface.

Figure 8: Closure domains under sinusoidal surface with θ = 0: (left) polarization; (right) Von Mises stress
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Figure 9: Maximum (over space) of the magnitude of electric field as a function of θ for different applied far-field
stress and applied electric field.

(a) Polarization and electric potential at a flat sur-
face with θ = 21◦.

(b) Polarization and electric potential at modulated
surface with θ = 0◦.

Figure 10: Electrostatic potential and p for flat surface (θ = 21◦) and modulated surface with applied stress
σ0 = −0.4.
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Figure 11: Change in electrostatic potential due to applied electric fields.
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(a) Polarization field of closure domain with 45 de-
gree lattice orientation under free electric field.

(b) Polarization field of closure domain with 45 de-
gree lattice orientation under 0.002 electric field.

(c) Polarization field of closure domain with 45 de-
gree lattice orientation under 0.005 electric field.

Figure 12: Polarization field (θ = 45◦) with different applied electric fields.
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