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In a recent letter [1], Fontana and Palffy-Muhoray pro-
posed a connection between materials failure statistics
and the St. Petersburg paradox by linking the average
load carrying capacity of a wire to its length. The result,
however, was derived assuming that ”the force required
to fracture the fiber is a linear function of the defect size”
[1], which is in glaring contrast with fracture mechanics.
Here we address the problem combining extreme value
theory (EVT) [2] with the Griffith’s stability crack crite-
rion [3]. According to the Griffith’s assumption, the fail-
ure stress should be inversely proportional to the square
root of the largest defect size. We also show that in the
asymptotic limit, the wire strength follows the Gumbel’s
distribution, in full agreement with the data reported
in [1], as we demonstrate using the maximum likelihood
method. We thus conclude that the load carrying capac-
ity of the wires studied in [1] follows EVT, in agreement
with previous observations for different materials [2].

We consider a wire of length L which we divide in
N = L/L0 independent elements of size L0. Following
Ref. [1], we want to relate the statistics of the micro-
cracks present in the wire with its failure strength. Defin-
ing P (n) as the probability density function (pdf) of
micro-cracks of length w ≡ nL0, F (z) =

∫ z
0
dnP (n) is

the probability that no micro-crack larger than z will be
found in the wire. We then define nmax as the largest
micro-crack in the wire, with the only constraint that
wmax = nmaxL0 � L [4]. If ρN (nmax) is the pdf for the
largest micro-crack, then FN (z) =

∫ z
0
dnmax ρN (nmax) =

[F (z)]
N

. The Fisher-Gnedenko-Tippet theorem ensures
that FN (z) → G(z) for large N , where G belongs to
one of three families only: Weibull, Fréchet or Gumbel
[5, 6]. The convergence to either one of these univer-
sal distributions depends on the asymptotic properties
of P (n) [7, 8]. If the distribution of micro-cracks has
an exponential tail [4, 8, 9], G(z) converges asymptot-

ically to the Gumbel distribution [10]. To derive the
fracture strength, the authors of Ref. [1] assume that
it is linearly dependent on the size of a defect, obtained
through the St. Petersburg model, but this assumption
is not justified by fracture mechanics. A relation be-
tween crack length and fracture strength in an elastic
medium is provided by the Griffith’s stability criterion,
for which a crack of length w subject to a normal stress
σ is stable as long as σ < K1C/Y w

−1/2[3], where K1C

is the critical stress intensity factor and Y is a geometric
factor. In our context, the wire should break when the
largest micro-crack becomes unstable, hence the proba-
bility that a wire of length L does not fail under a stress σ

is given by ΣL(σ) ∼ exp
[
−L/L0 e

−(σ0/σ)
2
]
. This is the

Duxbury-Leath-Beale distribution [4], which was shown
to converge to the Gumbel distribution as L � L0 , i.e.
ΣL(σ) → exp

[
−L/L0 e

(σ−µ)/β] [8]. The average break-
ing stress is then given by 〈σ〉 = β [γ − ln (L/L0)] + µ
which recovers Eq.(1) of [1]: γ is the Euler-Mascheroni
constant and β and µ are Gumbel’s parameters.

The tensile experiments performed in [1] on polyester
and polyamide wires, corroborate the extreme value
statistics over 6 order of magnitude. We fitted the data
using the Gumbel form of the generalized EVT, which
is purposely designed to account for strain and thermal
effects (Fig.1 main panels) [2, 11]. Since the experiments
were performed with different strain rate for each sample
size, the statistical analysis can only be performed using
the maximum likelihood method for parameters estima-
tion [2]. Our fit would indicate a very small strain rate
dependence in the parameters in agreement with the ex-
periments on polyester (inset Fig.1a). The experiments
on polyamide indicate a strain-rate dependence that is
not captured by the fit. A possible reason for this dis-
crepancy is that the precise value of the strain-rate is not
known and can only be estimated indirectly by 1/trup, as
also acknowledged by the authors [12].
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FIG. 1. Main panels: fracture stresses of polyester (a) and
polyamide (b) fibers from the experiments in [1] (Fig.2). The
maximum likelihood estimates were used to calculate 〈σ〉 (red
dashed line). Insets: breaking stresses as a function of the
rupture times (Fig.3 in [1]). Dashed blue lines are 〈σ〉, eval-
uated using the same parameters values fitted in the main
panels, and using 1/trup as strain rate.
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