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Conformability of a Thin Elastic Membrane
Laminated on a Rigid Substrate

With Corrugated Surface
Shutao Qiao, Jean-Baptiste Gratadour, Liu Wang, and Nanshu Lu

Abstract— When laminating a thin elastic membrane on a
substrate with surface roughness, three scenarios can happen:
1) fully conformed, i.e., the membrane completely follows the
surface morphology of the substrate without any interfacial gap;
2) partially conformed; and 3) nonconformed, i.e., the membrane
remains flat if gravity is not concerned. Good conformability
can enhance effective membrane-to-substrate adhesion and can
facilitate heat/signal transfer across the interface, which are of
great importance for micromembranes or nanomembranes trans-
ferred on target substrates and for flexible electronics laminated
on rough biotissues. To reveal the governing parameters in this
problem and to predict the conformability, energy minimization
method is implemented with two different interfacial models,
adhesion energy versus traction-separation relation. Depending
on the complexity of the models, one to four dimensionless
governing parameters have been identified to analytically predict
the conformability status and the point of delamination if partial
conformability is expected. In any case, partial conformability is
achieved only when membrane energy is considered.

Index Terms— Adhesion, conformability, rough surfaces.

I. INTRODUCTION

ALL surfaces have roughness. For example, the root-mean-
squared (rms) roughness of high-end polished silicon

wafers can be as small as 0.3 nm [1] and the rms surface
roughness of human skin ranges from 0.03 to 45 μm [2].
When laminating a thin membrane on a substrate with surface
roughness, three scenarios can happen: 1) fully conformed
(FC) [Fig. 1(a)], i.e., the membrane completely follows the
surface morphology of the substrate without any interfacial
gap; 2) partially conformed (PC) [Fig. 1(b)], i.e., a part of the
membrane forms intimate contact with the substrate surface
while other part is suspended; and 3) nonconformed (NC)
[Fig. 1(c)], i.e., the membrane remains flat if gravity is not
concerned.

Conformability is important for the adhesion between
micromembranes or nanomembranes and their supporting
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Fig. 1. (a)–(c) Three possible conformability statuses when a thin membrane
is laminated on a sinusoidally rough rigid substrate. (d) Magnified view
of (b) with geometric parameters labeled. xd is the horizontal projection of
the delaminated part.

substrates. Many crystalline inorganic semiconductor thin
films have to be grown on certain crystalline substrates and
then transferred from the growth substrate to the target sub-
strate for device fabrication. For example, large-area mono-
layer graphene has to be epitaxially grown on a catalyst copper
substrate through chemical vapor deposition [3]. To build a
device, graphene has to be transferred from the conductive
copper to an insulating substrate, which can be rigid substrates
like SiO2 on silicon wafers or flexible substrates like Kapton
or polyethylene terephthalate (PET) sheets. Depending on the
surface morphology of the substrate, adhesion of monolayer
graphene transferred to foreign substrates can significantly
vary: from 0.357 J/m2 on silicon wafer with an rms roughness
of 0.3 nm [1] to 0.51 J/m2 on copper film (a foreign copper,
not the growth copper) with an rms roughness of 0.15 mm
[4], both of which are measured by the same research group.
Since atomically thick graphene can conform to almost all
surfaces but copper surface rms is much larger than silicon sur-
face, the higher effective adhesion energy between graphene
and copper may come from larger effective interface contact
area due to conformability if van der Waals interaction is
assumed for both interfaces. Membrane thickness also affects
adhesion. For example, while monolayer graphene to SiO2
adhesion is measured to be 0.45 J/m2, two to five layer
graphene is only 0.31 J/m2 [5]. An analytical model has
been developed to reveal how substrate surface roughness
and membrane thickness may affect the conformability and
hence adhesion between graphene and their substrates [6].
The interface is modeled by van der Waals interaction that is
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appropriate for graphene–substrate interaction but other
traction-separation relations (TSR) are not explored. The
reduced adhesion of thicker graphene is attributed to less
conformability but the area of contact is not predicted in this
model. Because of the interplay between conformability and
adhesion, conformability-based metrology has been applied
to estimate the interface adhesion between graphene and
precorrugated polydimethylsiloxane substrate [7].

Conformability of thin membranes on rough substrate is
also critical for biointegrated electronics [8], where flexible
and stretchable electronic sensing and therapeutic devices are
in intimate contact with biotissues for disease monitoring,
diagnosis, and even treatment. Examples of biointegrated elec-
tronic sheets or webs include soft electrodes on the cortex [9],
epicardial sensing and actuation web [10], as well as epidermal
electronic systems [11]. High conformability between device
sheets and biotissues not only affords large-area mapping
capability [9] and superior signal-to-noise ratio [12], but also
promotes efficient heat transfer for temperature sensing or
ablation treatment [10]. Mechanistic understanding of how
electronic sheets conform to biosurfaces can provide rational
guidance for the design of future biointegrated electronics.
Analytical models for the conformability of epidermal
electronics on human skin have been developed and the
divide between fully conformal and nonconformal has been
established and found consistecy with the experimental obser-
vations [13], [14]. However, partially conformed situations
[Fig. 1(b)] have never been discussed whereas they can be
clearly seen in experiments [12]. More models are needed to
predict this scenario and the actual contact area.

In this paper, energy method will be used to develop
four analytical models of an elastic membrane conforming to a
sinusoidally rough substrate and the dimensionless governing
parameters will be revealed for each model. We limit ourselves
to rigid substrates in this paper with the intension of extending
these models to soft, corrugated substrates in the future.
Two different ways of defining conformability will be
discussed when modeling the interface with adhesion energy
versus TSR, as will be discussed in Sections II and III,
respectively. When adhesion energy is used, three models with
different assumptions on the substrate roughness and the mem-
brane energy will be developed and compared. Conclusions are
presented in Section IV.

II. MODEL 1—INTERFACE MODELED BY

WORK OF ADHESION

When an elastic membrane is laminated on a sinusoidally
corrugated rigid substrate, a magnified partially conformed
configuration is shown in Fig. 1(d). The membrane is modeled
as a uniform linear elastic sheet with plane strain modulus Ē
and thickness t . The substrate is assumed to be rigid, so that
it does not deform or store any elastic energy. When an xy
coordinate is established as shown, the surface morphology
of the substrate can be simply characterized by a sinusoidal
equation

w0(x) = h0

(
1 − cos

2πx

λ

)
(1)

where h0 and λ denote the amplitude and wavelength of the
substrate surface, respectively. If we use xd to denote the
horizontal projection of the delaminated region in Fig. 1(d),
then xd = 0 means fully conformed [Fig. 1(a)], 0 < xd < λ/2
means partially conformed [Fig. 1(b)], and xd = λ/2 means
nonconformed [Fig. 1(c)].

The profile of a partially conformed membrane, w1(x) as
shown in Fig. 1(d), is going to be sectional: from A to B ,
i.e., when 0 ≤ x ≤ xd , the membrane is suspended and w1(x)
should take a parabolic shape if pure bending is assumed,
i.e., normal strain in the membrane is neglected; from B to C ,
i.e., when xd ≤ x ≤ λ/2, the membrane fully conforms
to the substrate and w1(x) should be the same as w0(x).
Therefore, w1(x) can be expressed as

w1(x) =
{

ax2 + b, 0 ≤ x ≤ xd

h0
(
1 − cos 2πx

λ

)
, xd ≤ x ≤ λ/2.

(2)

Applying the continuity condition at point B where both
the profile and slope of the membrane should be continuous,
i.e., w1(xd) = w0(xd) and w′

1(xd) = w′
0(xd), we can solve the

coefficients a and b in (2) and obtain the profile of the thin
film from A to B as

w1(x) = h0

[
π

λxd
sin

(
2πxd

λ

) (
x2−x2

d

) + 1 − cos

(
2πxd

λ

)]

0 ≤ x ≤ xd . (3)

The only unknown in (3) is xd , which means solving xd

can fully determine the membrane profile. To solve xd , we use
energy minimization method.

Since the rigid substrate does not store any elastic energy,
the total energy Utotal of this system can be written as

Utotal = Ubending + Umembrane + Uadhesion (4)

where Ubending is the bending energy of the membrane,
Umembrane is the membrane energy associated with normal
strain in the membrane, and Uadhesion is the adhesion energy
between the membrane and the substrate. Each individual
energy can be analytically expressed as follows.

The bending energy of the membrane (per unit length along
the wavelength direction) is given by

Ubending = 2

λ

[
1

2

∫ B

A
Ē Iκ2

1 ds + 1

2

∫ C

B
Ē Iκ2

0 ds

]
(5)

where, Ē I = Ē t3/12 is the bending stiffness of the membrane
and κ is its curvature. We use subscript 1 to represent the
detached part of the membrane and subscript 0 to represent
the adhered part of the membrane.

The membrane energy can be written as

Umembrane = 2

λ

[
1

2

∫ B

A
Ētε2

1 ds + 1

2

∫ C

B
Ētε2

0 ds

]
(6)

where ε1(x) = (1 + w′ 2
1 )1/2 − 1 and ε0(x) = (1 + w′ 2

0 )1/2 − 1
are the normal strains in the detached and adhered sections of
the membrane, respectively.

Adhesion between the membrane and the substrate actually
reduces the system energy so it should be negative. Given the
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membrane–substrate interface work of adhesion γ, adhesion
energy becomes

Uadhesion = − 2

λ

∫ C

B
γ ds. (7)

Minimization of the total energy as given in (4) can then
yields equilibrium contact point xd as a function of the
substrate wavelength and amplitude, membrane thickness and
modulus, as well as membrane–substrate interface work of
adhesion. When making different assumptions about κ and
Umembrane, three different models are developed and compared.

A. Model 1.1—Small Roughness With Membrane
Energy Neglected

Starting from the simplest scenario, we consider the
substrate to have a small roughness, i.e., h0/λ � 1. In this
case, the membrane is going to experience small deflection
even when it fully conforms to the substrate, hence κi ≈ w′′

i
(i = 0, 1), ds ≈ dx , and w′

i ≈ 0 are adopted. As a result,
εi (x) ≈ 0 in the membrane and Umembrane = 0. The three
energy components hence can be written as

Ubending ≈ Ē I

λ

[∫ xd

0

(
w′′

1

)2
dx +

∫ λ/2

xd

(
w′′

0

)2
dx

]

Umembrane = 0

Uadhesion ≈ −γ

(
1 − 2xd

λ

)
. (8)

The total energy then becomes

Utotal = Ē I

λ

[
4h2

0
π2

λ2xd
sin2

(
2πxd

λ

)

+ h2
0

16π4

λ4

(
λ − 2xd

4
− λ

8π
sin

(
4πxd

λ

))]

− γ
(

1 − 2
xd

λ

)
. (9)

Through dimensional analysis, the normalized total energy can
be written as

Û = Utotalλ
4

4π2h2
0 Ē I

= 2

x̂d
sin2(π x̂d) +

(
π2 − α

β2

)
(1 − x̂d) − π

2
sin(2π x̂d)

(10)

where α = γ λ2/(Ē I ), β = 2πh0/λ, and x̂d = 2xd/λ are the
dimensionless variables and α/β2 = γ λ4/(4π2h2

0 Ē I ).
It is evident from (10) that the normalized total energy

is only determined by α/β2 and x̂d . Fig. 2(a) plots Û as a
function of x̂d with different α/β2 values. For all possible
Û(x̂d), minimal energy falls at either x̂d = 0 or x̂d = 1,
which means that depending on α/β2, the conformability can
be tuned between full or none, but not partial. The critical
condition can be determined by Û(x̂d = 0) = Û(x̂d = 1),
which yields

α/β2 = π2. (11)

When α/β2 > π2, as shown in Fig. 2(a), the total energy
would minimize at x̂d = 0 and full conformability can be

Fig. 2. Normalized total energy as a function of xd for Models
(a) 1.1 (10), (b) 1.2 (15), and (d) 1.3 (19). (c) Blue and red curves,
plotted from (11) and (17), represent the boundary between FC and NC in
Models 1.1 and 1.2, respectively.

achieved, sometimes with a little external help to overcome
the energy hump from x̂d = 1 to x̂d = 0. When α/β2 < π2,
as shown in Fig. 2(a), the total energy would minimize at
x̂d = 1 and the membrane is predicted to stay nonconformed
at all. The fact that larger α/β2 yields better conformability
indicates that a soft and thin film (Ē I is small) is more likely
to conform to sticky substrates (large γ) with long wavelength
(large λ) and small amplitude (small h0), which fully agrees
with our intuition. The importance of λ is manifested by the
power of 4 in the governing parameter α/β2.

B. Model 1.2—Large Roughness With Membrane
Energy Neglected

In Model 1.1, small roughness (h0/λ � 1) is assumed.
In this model, we relax this assumption and therefore have to
adopt the full expressions of the curvature κ

κi = w′′
i[

1 + (
w′

i

)2]3/2 (12)

and the curve length ds

ds =
√

1 + (
w

′
i

)2
dx . (13)

Still pretending membrane energy is negligible, the three
different energies become

Ubending = Ē I

λ

[∫ xd

0

(
w′′

1

)2

[
1 + (

w′
1

)2]3 dx

+
∫ λ/2

xd

(
w′′

0

)2

[
1 + (

w′
0

)2]3 dx

]

Umembrane = 0

Uadhesion = −2γ

λ

∫ λ/2

xd

√
1 + (

w′
0

)2
dx . (14)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY

After integration and nondimensionalization, the total
energy becomes

Û = Utotalλ
4

4π2h2
0 Ē I

= 2(3 + 2β2 sin2(π x̂d)) sin2(π x̂d) − π x̂d sin(2π x̂d)

3x̂d(1 + β2 sin2(π x̂d))
3
2

− π

3

1 + 2β2

1 + β2

sin(2π x̂d)

(1 + β2 sin2(π x̂d))
1
2

+ 2π

3

F(π x̂d ,−β2) − 2K (−β2)

β2

+ 2E(−β2) − E(π x̂d ,−β2)

β2

(
2π

3

1 + 2β2

1 + β2 − α

π

)
(15)

where F(φ, k) and E(φ, k) are the incomplete elliptic integral
of the first and second kinds, respectively. K (k) = F(π/2, k)
and E(k) = E(π/2, k) are the complete elliptic integral of the
first and second kinds, respectively.

There are only three independent dimensionless variables
appear in the nondimensionalized total energy given in (15):
α = γ λ2/(Ē I ), β = 2πh0/λ, and x̂d = 2xd/λ. At given
α and β, Û can be plotted as a function of x̂d , as shown
in Fig. 2(b). Curves with the same color share the same
α/β2 values, whereas the three different curves within one
bunch have different values of β, with an arrow indicating
increasing β. The curves with β > 0 in Fig. 2(b) can fully
overlap with the curves in Fig. 2(a), indicating that when the
roughness is small, Model 1.1 can be recovered from
Model 1.2. Similar to Fig. 2(a), the minimal energy points fall
either at x̂d = 0 or x̂d = 1 in Fig. 2(b), which suggests that no
partial conformability can be predicted by Model 1.2 either.
The critical condition separating full conformability and non-
conformability is

α = 2π2

3

[
1 + 2β2

1 + β2 − K (−β2)

E(−β2)

]
. (16)

Again, the conformability can be fully captured by an
equation of α and β similar to (11). When β → 0,
(16) recovers (11). When plotting (11) and (16) in the same
α–β graph as shown in Fig. 2(c), both curves suggest that
smaller β and larger α can afford better conformability. Also
note that when β is small, the two curves fully overlap but
when β is large, (11) (Model 1.1) defines a smaller zone of
full conformability than (16) (Model 1.2). The reason is that
in Model 1.1, the curvature κ and contact area ds are highly
simplified because of small roughness assumption, resulting
in a larger curvature and smaller contact area than those used
in Model 1.2, which means that larger bending energy while
smaller adhesion energy are used in Model 1.1. Since bending
energy penalizes conformability whereas adhesion promotes
it, it is more difficult to reach full conformability in Model
1.1 than in Model 1.2.

C. Model 1.3—Large Deflection With Membrane
Energy Considered

While Model 1.2 intentionally neglects the membrane
energy, in this model, the membrane energy will be added

by substituting (13) into (6):
Umembrane

= 2

λ

[
1

2

∫ xd

0
Ē t

(√
1 + w′

1
2 − 1

)2[
1 + (

w
′
1

)2]1/2
dx

+ 1

2

∫ λ/2

xd

Ēt
(√

1 + w′
0

2 − 1
)2[

1 + (
w

′
0

)2]1/2
dx

]
.

(17)

The nondimensionalized membrane energy can be analytically
expressed as

Ûmembrane

= Umembraneλ
4

4π2h2
0 Ē I

= 12

η2

{
7x̂d

16β2

sinh−1(β sin(π x̂d))

β sin(π x̂d)

− x̂d

3
sin2(π x̂d) + x̂d

8β2 (1 + β2 sin2(π x̂d))3/2 − 1

β2

− 1 − x̂d

2
+ 7 + 2β2

6πβ2 [2E(−β2) − E(π x̂d ,−β2)]

− 1 + β2

6πβ2 [2K (−β2) − F(π x̂d ,−β2)] − sin(2π x̂d)

4π

+
(

7x̂d

16β2 + sin(2π x̂d)

12π

) √
1 + β2 sin2(π x̂d)

}
(18)

where η = t/λ, which is a new dimensionless variable that
appears due to the consideration of membrane energy. Adopt-
ing the same bending and adhesion energies as Mode 1.2,
the normalized total energy of Model 1.3 is given by the
summation of (15) and (18). The total energy now is a
function of four dimensionless variables, α, β, η, and x̂d .
To plot a Û ∼ x̂d curve, we need to fix the other three
variables, like what Fig. 2(d) does. It is evident that unlike
Fig. 2(a) and (b), in Fig. 2(d), some Û ∼ x̂d curves show
local minimum valleys at 0 < x̂d < 1, which indicates
the possibility of partial conformability. It is important to
point out that in Model 1.3, full conformability can only be
achieved when α/β2 is much larger than those required for
Models 1.1 and 1.2, as the strain energy can well exceed the
bending energy, which requires significant adhesion energy to
overcome.

Since

α = γ λ2

Ē I
= γ

Ēλ

12

η3 (19)

for the sake of physical interpretation, we replace α with
γ /Ēλ and use {γ /Ēλ, h0/λ, t/λ} instead of {α, β, η}
to describe the normalized total energy. For any possible
combination of {γ /Ēλ, h0/λ, t/λ}, the minimum Û can
be obtained as well as the corresponding x̂d , which not
only predicts the conformability outcome, but also the
conformed area, as shown in both Figs. 3 and 4. γ /Ēλ
is set to be 0.01 in Fig. 3(a) and 0.2 in Fig. 3(b) and
the x̂d corresponding to the minimum Û is plotted for
various substrate roughnesses (h0/λ) and film thickness
ratios (t/λ). By increasing γ /Ēλ, i.e., enhancing the
interface work of adhesion or decreasing the film stiffness,
nonconformed configuration could be avoided. Fig. 4 predicts
the conformability outcome as a function of three
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Fig. 3. x̂d that corresponds to the minimum Û is plotted for various substrate
roughnesses (h0/λ) and film thickness ratios (t/λ) with (a) γ/Ēλ = 0.01 and
(b) γ/Ēλ = 0.2.

Fig. 4. (a) 3-D critical surfaces dividing FC/PC and PC/NC given by
Model 1.3. (b)–(d) Cross-sectional views of (a) by making planer cuts
at (b) t/λ = 0.15, (c) h0/λ = 0.4, and (d) γ/Ēλ = 0.025.
The boundaries in (b)–(d) between FC and PC and between PC and NC
are plotted in blue and red curves, respectively.

variables γ /Ēλ, h0/λ, and t/λ. By numerically solving the
minimization problem of Model 1.3, the 3-D plot in Fig. 4(a)
shows the critical surfaces dividing FC/PC and PC/NC.
Cross-sectional views of the 3-D critical surfaces can be
achieved by making planar cuts at t/λ = 0.15, h0/λ = 0.4,
and γ /Ēλ = 0.025, respectively, and are shown in
Figs. 4(b)–(d). Again, conformability can be enhanced
using thinner and softer membranes, reducing the substrate
amplitude, and enlarging the substrate wavelength and
interface work of adhesion.

III. MODEL 2—INTERFACE MODELED BY TSR

In Section II (Model 1), membrane-substrate adhesion is
only characterized by the interface work of adhesion γ.
A more sophisticated way of looking at interface inter-
action is the TSR. When a continuous TSR is adopted,
and if the membrane profile is also assumed to be sinu-
soidal, of the same wavelength but a different amplitude
from the substrate surface profile [Fig. 5(a)], we can avoid
working with sectional functions as what was done in
Model 1. Indeed, van der Waals type of continuous TSR

Fig. 5. (a) Schematic for Model 2 where the membrane is assumed to be
in sinusoidal shape that has the same wavelength but different amplitudes
compared with the substrate. The membrane-substrate separation is denoted

by δN . The normalized interface potential is plotted as a function of
normalized δN in (b).

has been used to model the interaction between graphene
and rough substrate, so that the conformability can be pre-
dicted [15]. Therefore, in Model 2, we adopt a similar
approach by employing popular continuous exponential inter-
face potential [16]

�(δN ) = 9

16
T0δ0

[
1 −

(
1+ 16e

9

δN

δ0

)
exp

(
−16e

9

δN

δ0

)]
(20)

where δN denotes the separation between the two surfaces in
contact, δ0 is the characteristic separation, T0 is the maximum
interface traction, and e is the base of the natural logarithm.
The normalized interface potential is plotted as a function of
δN /δ0 in Fig. 5(b). The relation between work of adhesion γ
and � is given by

γ = �(∞) = 9

16
T0δ0. (21)

The membrane profile is assumed to be sinusoidal with the
same wavelength as the substrate but amplitude h1 = ξh0,
where ξ is a dimensionless coefficient and 0 ≤ ξ ≤ 1.
In this model, ξ is also an indicator of different status of
conformability: ξ = 1 corresponds to full conformability and
ξ = 0 means nonconformed, so 0 < ξ < 1 represents partial
conformability. Since (20) is an asymptotic equation, we actu-
ally need to set two arbitrary thresholds of ξ as the criteria to
differentiate full conformability and nonconformability from
partial conformability: we take ξ ≥ 0.99 as fully conformed
and ξ ≤ 0.01 as nonconformed.

Compared with the three energies in Model 1.3, the only
difference in Model 2 is the expression of adhesion energy.
Under Model 2 assumption, the profile of the membrane is
given by

w1(x) = h0

(
2 − ξ

(
1 + cos

2πx

λ

))
. (22)

The vertical separation between the surface of the substrate
and the membrane is therefore

δN (x) = w1(x) − w0(x). (23)

Therefore, the total adhesion energy (per unit length) in
Model 2 now is

Uadhesion = 2

λ

∫
�(δN (x))dx . (24)
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Fig. 6. (a) 3-D critical surfaces dividing FC/PC and PC/NC given by Model 2
when δ0/λ = 0.1 is fixed. (b)–(d) Cross-sectional views of (a) by making
planer cuts at (b) t/λ = 0.15, (c) h0/λ = 0.4, and (d) γ/Ēλ = 0.025. The
results of Model 1.3 are plotted in solid curves as a comparison.

Applying the same bending energy as given in (14) and the
same membrane energy as given in (18), the dimensionless
total energy of Model 2 can be expressed in a continuous form:

Û = Utotalλ
4

4π2h2
0 Ē I

= 16

3β2 π

[
1 + 2β2ξ2

1 + β2ξ2 E(−β2ξ2)−K (−β2ξ2)

]
+ 12

η2β2[
−

(
1 + β2ξ2

2

)
+ E(−β2ξ2)

π
− 1

3π

√
1 + β2ξ2

×
(

−2(2 + β2ξ2)E

(
β2ξ2

1 + β2ξ2

)
+ K

(
β2ξ2

1 + β2ξ2

))]

+ α

β2 [1 + e−k(−(1 + k)I0(k) + k I1(k))] (25)

where α = γ λ2/(Ē I ), β = 2πh0/λ, η = t/λ, ξ = h1/h0, and

k = 8e

9π

λ

δ0
β(1 − ξ) (26)

K (k) is the complete elliptic integral of the first kind, E(k)
is the complete elliptic integral of the second kind, and I (k)
is the Bessel function of the first kind.

In (25), there are five independent dimensionless
variables that determine the total energy: α or γ /Ēλ
[see (12)], β or h0/λ, η or t/λ, k or δ0/λ [see (26)], and
ξ or h1/h0. Therefore, with the four dimensionless variables
{γ /Ēλ, h0/λ, t/λ, δ0/λ} given, minimization of (25) would
yield a solution of ξ .

Similar to Fig. 4(a), the 3-D critical surfaces dividing
FC/PC and PC/NC can be numerically obtained by varying
γ /Ēλ, h0/λ, and t/λ while fixing δ0/λ = 0.1, as shown
in Fig. 6(a). Cross-sectional views of the 3-D critical surfaces
are made by taking t/λ = 0.15, h0/λ = 0.4, and
γ /Ēλ = 0.025 in Fig. 6(b)–(d). Comparison is
made by plotting the same cross-sectional views from

Model 1.3 (solid curves) and Model 2 (dashed curves)
together in Fig. 6(b)–(d). As we can observe from
Fig. 6(b)–(d), for the given δ0/λ, the conformability obtained
from Model 2 behaves similar to that from Model 1.3 but
Model 2 generates smaller NC and FC zone while larger
PC zone.

IV. CONCLUSION

Using the method of energy minimization, this paper
develops and compares four analytical models with increasing
complexity to determine the conformability of thin elas-
tic membranes on rigid substrates with sinusoidal surface
morphology. Dimensionless governing parameters have been
identified in all models. It has been found that no matter
small or large substrate roughness, partial conformability only
shows up when the membrane energy is included. All four
models point to the same suggestions for enhancing the
conformability: 1) thin and soft membrane; 2) substrate surface
with long wavelength and small amplitude; and 3) large
membrane–substrate interface adhesion. These models are
generically applicable to macroscopic as well as microscopic
systems as long as continuum mechanics remains valid.
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