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Fig. 1. The DSC data for Las; 4AlissNiy 35Cuy 35 amorphous alloy, obtained using a scanning rate of 20 °K/min. The inset represents the XRD pattern for the same alloy,

indicating the amorphous nature of the as-cast specimen.
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where Jo = fo exp {4 —2}. With respect to the terms on the
right-hand side of Eq. (9), the first term is the diffusion of free vol-
ume, the second term is the creation of free volume by plastic defor-
mation, the third term is the generation of free volume due to
hydrostatic pressure, and the fourth term is the generation of free
volume by structural relaxation. Here s5 > 0 (units of energy per
unit volume) represents the resistance to free volume generation
due to free volume diffusion, hydrostatic pressure and structural
relaxation. Finally, ¢ ) > 0 represents the dimensionless free
volume creation parameter.
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2.6. Balance of energy
From the first law of thermodynamics, we obtain:
b=c 1{km(VZ()) " r—3r\‘1,y,{tmce E’}()Vs‘zk,,;‘() ; m} (10)

where @ = Tj + [s:1(V?¢) — s2(¢ — &) — pIé > O represents the rate
of plastic dissipation per unit reference volume,  the referential heat

rate per unit volume, and ky = ki (0) > 0 the thermal con-
ty coefficient. In Eq. (10), the Taylor-Quinney coefficient,

i.e. the fraction of plastic work rate converted into heating is unity.
To summarize, the list of constitutive parameters/functions

needed to be calibrated are

{1 K, 2,501,522, 53, Ko, Og, &g, fo, 0,2, Q, €, kin, T}

A time-integration procedure based on the constitutive model
for metallic glasses listed above has been developed and imple-
mented in the Abaqus (2008) finite-element program by writing
a user-material subroutine.

3. Experimental procedure and finite-element simulations

The focus of the present work is on the modeling of the
Lag) 4Ali5gNij135CUs 35 BMG system developed by Tan et al.
(2003). We choose this alloy for our present study due to its
combined advantages of having a relatively lower glass transition

temperature (0, ~ 410 K) compared to other families of metallic
glasses, its wider super cooled liquid region (approximately 70 K)
and its high glass-forming ability with a critical thickness of
10.5 mm. The raw materials La (99.9%), Al(99.9%), Ni(99.98%) and
Cu(99.9999%) were used for preparing metallic glass plates having
dimensions of 80 mmx 30 mm x 5 mm. The alloy mixture placed
in a quartz crucible is melted by means of an induction furnace.
The molten alloy is subsequently chill cast by pouringitintoa copper
mold in presence of a high purity argon atmosphere. The cast speci-
mens are subsequently examined using X-ray diffraction (XRD) in
order to verify the glassy nature of the as-cast sample. Furthermore,
the critical temperatures for this alloy are determined by carrying
out a Differential Scanning Calorimetry (DSC) study of the as-cast
specimen. The DSC test was done by employing a continuous heating
rate of 20 °K/min. The obtained results from the DSC analysis is
shown in Fig. 1 with the inset figure depicting the corresponding
XRD trace for the Lag; 4Al;5oNi; 55Cuyy 35 (La-based) metallic glass
alloy. The DSC results identified the glass transition temperature,
0 and the crystallization temperature, 0, as 407 K and 479 K, respec-
tively. The absence of any discrete crystalline peaks in the XRD result
confirms that the alloy is fully amorphous. A note regarding XRD
measurements: XRD technique is only capable of detecting crystal-
line structure when the volume fraction of crystallinity exceeds a
few percent. The information on the amount of crystallinity is impor-
tant since the flow property and pressure sensitivity of the metallic
glass strongly depends on it.

The batch of test specimens required for the experiments were
cut from the same as-cast metallic glass plate. In this work, we
have performed three types of experiments on the La-based BMG
in the supercooled liquid region: (a) simple compression, (b)
three-point bending and (c) superplastic forming. The cuboidal
specimens used for the simple compression experiments have ini-
tial dimensions of 4 mm x 4 mm x 8 mm. The three-point bending
experiments were conducted on cuboidal specimens having initial
dimensions of 4mm x 6 mm x 45 mm. Finally, the superplastic
forming experiments were performed on cylindrical specimens
having initial dimensions of 5 mm in height and 4 mm diameter.

The surface of the specimens which comes into contact with the
testing machines/die during testing are polished using 1200 grit
silicon carbide paper, and a thin film of molybdenum disulphide
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Recently, Thamburaja and Ekambaram (2007) have developed a
finite-deformation-based and thermo-mechanically-coupled con-
stitutive model for metallic glasses. Their constitutive theory was
derived using fundamental thermodynamic laws and the principle
of micro-force balance (Fried and Gurtin, 1994). Furthermore, they
have also implementer their constitutive model into the Abaqus
(Abaqus, 2008) finite-element program. In this work, we shall
use the constitutive model of Thamburaja and Ekambaram
(2007) and its numerical-implementation into the Abaqus finite-
element program to study the uniaxial and multi-axial deforma-
tion behavior of a recently-developed BMG system.

The plan of this paper s as follows: in Section 2, we summarize
the key equations in the constitutive model of Thamburaja and
Ekambaram (2007). In Section 3, we describe the procedure for
the preparation of the raw BMG material, the experimental set-
ups and provide details regarding the calibration of the constitu-
tive parameters. In this Section, we will also present results
obtained from a series of simple compression, three-point bending
and superplastic forming experiments conducted on the BMG
alloy. The results obtained from the numerical simulations of the
aforementioned experiments will also be presented and discussed
in Section 3. Finally, we conclude in Section 4.

2. Constitutive equations

Here we summarize the key constitutive equations from the
constitutive model developed by Thamburaja and Ekambaram
(2007). For more details regarding the development of the consti-
tutive model, please refer to aforementioned work. All material
parameters in the constitutive model are treated as constants un-
less stated otherwise.

The governing variables? in the constitutive model are: (i) the
Helmholtz free energy per unit reference volume, . (i) Absolute
temperature, 0. (iii) The deformation gradient, F with det F> 0.
(iv) The plastic distortion, F* with det F* > 0. (v) The elastic distor-
tion, F* with F* = FF""' and det F* > 0. (vi) The elastic stretch, U°
with U* = U and det U° > 0. The spectral representation of the
elastic stretch is given by U° =33 | 7 r, @, with {252 =1,2,3}
representing the positive-valued eigenvalues and {r,|2 = 1,2,3} the
mutually orthonormal eigenvectors of U’. (vii) The elastic rotation,
R° with R® = R°" = F°U°"" and det R° = 1. (viii) The elastic logarith-
mic (Hencky) strain, E = (1/2) In € where C° = U represents the
elastic right Cauchy-Green strain. (ix) The Cauchy stress, T with
T =T'. (x) The work-conjugate stress to the elastic strain E*, T with
T = (det FRYTR® (i) The plastic shear strain, 7 > 0. (xii) The free
volume concentration (units of volume per unit volume), ¢ > 0.

2.1. Free energy

The Helmholtz free energy density, i is taken to be in the sep-
arable form

U =0(C,0,VE,8) =y + g’ +yF gt with (1)

Ve = U (C7,0)
= p|dev E°]? + K[(1/2) trace E° — 3uy(0 — 6,)) trace E°,  (2)

2 Notation: ¥ and V? denote the referential gradient and the referential Laplacian,
respectively. The inverse of a second-order tensor B is denoted by B~'. The
transpose of tensor B is denoted by B', and (B~')" = B~". The determinant of the
tensor B is denoted by det B. The second-order identity tensor is denoted by 1. The
trace of the tensor B is denoted by trace B 1-B. The magnitude of the tensor B is
denoted by |B| = vB~B. The deviatoric (traceless) portion of tensor B is denoted by
dev B=B-(1/3)]trace BJ1

Y= (0) = c[(0 - 0,) — 0 In (6/6,)], 3)
¥ = 8(VE) = (1/2)sa| Ve, V(E.0)
=122 @ -5 ¢ & @

Here the variables y¢, ",/ and y° represent the thermo-elastic,
purely thermal, gradient and flow-defect free energies, respectively.
The material constants s> 0,k > 0 and o represent the shear
modulus, bulk modulus and the linear thermal expansion coeffi-
cient, respectively. The specific heat per unit volume is denoted
by ¢ > 0. The material parameter s, > 0 (units of energy per unit
length) represents the coefficient that amplifies the changes in the
gradient free energy, ¥ due to variations in V¢. The material
parameter s; > 0 (units of energy per unit volume) represents
the coefficient that amplifies the changes in the flow-defect free
energy, * due to variations in . Finally, ¢; denotes the thermal
equilibrium free volume concentration which can be approximated
by a Vogel-Fulcher-Tammann (VFT)-like linear in temperature
function (Masuhr et al., 1999):

g+ Kel0 - O] ®)

where 0 is the glass transition temperature, &, the thermal equilib-
rium free volume concentration at g, and k, (units of temperature
inverse) a constant of proportionality.

2.2. Stress-strain constitutive equation

The constitutive equation for the stress T is given by

. o
T2 u'(()c-,)ue

=2pu[dev E°| + Ktrace E° — 30,4(6 — 0,)]1. (6)

2.3. Flow rule

The flow rule provides the evolution equation for the plastic
distortion, F’. With the variable L” denoting the plastic velocity gra-
dient, we write the flow rule as:

7T .

s LAV Ty L (1

’VZ(\devT'\ 3 @
The quantities § > 0 and ¢ represent the plastic shear strain-

rate and the free volume generation rate, respectively.

P =L"F where L’

2.4 Evolution equation for the plastic shear strain

The expression for the plastic shear strain-rate is given by

with 7= /172 |devT| >0, p=—(1/3) trace T and %,=sz
(¢ — &) — 54(V?¢) denoting the equivalent shear stress, the hydro-
static pressure and the viscous stress, respectively. The parameters
f, (units of time inverse) denote the frequency of atomic vibration,
Z > 0 the activation energy (units of energy), k, the Boltzmann con-
stant, @ > 0 the activation volume (units of volume), ¢ > 0 a
less geometric overlap factor, and 7 the pressure-sensitivity
parameter. The dimensionless fit parameter, ¢, determines the sen-
sitivity of the plastic flow to the viscous stress, 7,.

2.5. Kinetic equation for the free volume concentration

The diffusion-creation-annihilation equation for the free vol-
ume concentration is




