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Introduction 
 

Welcome to the first edition of the newsletter for the ASME AMD-MD Joint Committee on 
Constitutive Equations.  The purpose of this newsletter is to publicize the activities of the 
committee and the committee members.  The committee meets each year at the ASME 
International Mechanical Engineering Congress and Exposition.  If you are interested in 
membership, please contact the chair of the Committee, George Voyiadjis 
(voyiadjis@eng.lsu.edu). 
 

Homogenization and Size of Representative Volume Element (RVE) 
Martin Ostoja‐Starzewski, University of Illinois Urbana‐Champaign 
 

The need for homogenization has been driven by recognition 
that matter is (highly) heterogeneous while the conventional 
fluid and solid mechanics rely on a homogeneous continuum 
concept.  In fluids problems the heterogeneous nature of a 
medium needs to be accounted for scales comparable to the 
mean free path.  [The distinction between continuum and 
discrete problems is then established with the help of the 
Knudsen number = the molecular mean free path divided by the 
representative length scale.]  In solids problems the situation is complicated by the presence of 
many length scales (atomistic, dislocation fields, polycrystalline, etc.) as well as the possibility 
of change of a material as it evolves, such as going from elastic to plastic behavior, aging or 
fracture.   By and large, all the homogenization studies are confined to one particular situation, 
and so, there is a whole body of literature dealing with, say, scaling laws in fracture of disordered 
materials (lattices, composites, polycrystals, etc.).  The term homogenization, however, typically 
connotes a passage from a fine level in some microstructure to a coarser level, so that an 
effective continuum-type constitutive response can be established.  There are several ways in 
which one can classify such homogenization theories.  The first one is to distinguish either those 
models predicting an effective medium response (via so-called mean field theories, e.g. a self-
consistent approximation), or those rigorously bounding such a response, e.g. [1,2,3,4].  Another 
way to classify these theories is according to whether they are deterministic or probabilistic in 
character.  Yet another classification would ask whether a given theory pertains to a static or a 
dynamic behavior of the system.   
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The challenge of establishing a homogenized material behavior is closely linked to the 
postulate of separation of scales on which every continuum theory hinges.  This postulate 
involves two inequalities 

 
 macrod L L  (1) 

 
where we distinguish three scales (Fig. 1): 
  ·  the microscale d (such as a crystal size, when trying to homogenize a polycrystal) 
  ·  the mesoscale L, size of the Representative Volume Element (RVE) 
  ·  the macroscale macroL , i.e. the macroscopic body size. 
The inequality on the right defines a continuum body in the sense that L is a mathematical point 
relative to the macroscopic body dimensions.  For example, we may model a very large 
polycrystalline sheet by a biharmonic equation with an Airy stress function, under a tacit 
understanding that we do not resolve any local details at the crystal level.   How far above the 
crystal level we actually need to go is expressed by the left inequality, and it must be 
immediately noted that, perhaps, d L<  may be sufficient in a particular problem. 

This leads us to the issue of size of a Representative Volume Element (RVE): What should 
the non-dimensionalized mesoscale /L dδ =  be in a specific problem?  The answer is provided 
by considering the Hill (or Hill-Mandel) condition of micromechanics 
 

 ij ijij ijσ ε σ ε=  (2) 
 
where the overbars indicate volume average.  Here we recognize that the material is random in 
the sense that we are dealing with an ensemble of deterministic specimens, so that (2) applies to 
any ( )B ω  of the ensemble ( ){ };B B ω ω= ∈Ω .  Note: (2) assures that a theoretician's 
interpretation of the constitutive response of a microstructured material (as expressed through the 
left-hand-side) corresponds to that of an experimentalist's interpretation (right-hand-side).  For 
an unbounded space domain (δ→∞), Hill's condition is trivially satisfied, but for a finite body it 
requires that ( )B ω  be loaded in a specific way on its boundary ( )B ω∂ .  Here we have the 
following classical result: 
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which, clearly, is satisfied by three different types of uniform boundary conditions on the 
mesoscale: displacement, traction, and displacement-traction (also called orthogonal-mixed), 
e.g. [5].  It follows from (i) the assumption of spatial ergodicity and statistical homogeneity of 
the material as well as (ii) the extremum principles of elasticity, that the displacement condition 
provides an upper (stiffer) bound on the effective stiffness tensor eff

ijklC , while the traction 
condition a lower (softer) bound.  Applying these conditions on various mesoscales and carrying 
out ensemble averaging over ( ){ };B ω ω∈Ω , one obtains scale-dependent (i.e. in function of δ ) 
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bounds on eff
ijklC .  In other words, this gives scaling towards the RVE, which allows one to say 

whether we actually need d L  or d L<  in (1).   
 

Providing (i) the Hill condition is generalized to 
nonlinear and/or inelastic microstructures – such as 
viscoelasticity, elasto-plasticity, finite elasticity, and 
even flow in porous media – and (ii) there are 
extremum principles available, one can use the same 
approach to obtain scale-dependent bounds and scaling 
laws for a wide range of other materials [5].  In all these 
problems, just like in linear elastic ones, one can 
alternatively employ periodic boundary conditions.  The 
latter necessitate an artificial change of the material in a 
boundary zone, and display some scale dependence 
without (!) any bounding property.  One has to increase 
the domain until finally that dependence is close to nil.  
Clearly, both approaches have their pros and cons.   

If one uses a mesoscale L smaller than necessary 
(within some precision) to homogenize the 
microstructure into a uniform continuum, one is faced 
with fluctuations such as seen in Fig. 1(b).  In the 
language of stochastic mechanics, this figure shows one 
realization of a continuum random field smoothing the 
material on a length scale smaller than the scale of 
RVE.  Now, the mesoscale domain of Fig. 1(a) plays 
the role of a Statistical Volume Element (SVE) of 

random field theories.  This is akin to seeing grayscale fluctuations in a sheet of paper, and then 
having these fluctuations vanish as the sheet is pulled, say, 2 meters away from one’s eyes.  
Clearly, our eye is smoothing (i.e. homogenizing) a cellulose fiber microstructure (millimeter 
scale) and its flocculation (centimeter scale) depending on its distance from the sheet.  

The Hill condition also provides a way to formulate continuum random fields of constitutive 
properties on the basis of micromechanics, as opposed to simply postulating them as is 
commonly done in the field of so-called stochastic finite elements (SFE).  Another challenge 
which can be handled through a suitably generalized approach is the choice of a non-classical 
(e.g. micropolar) rather than a classical continuum on the mesoscale.  Other typical situations 
where one wants/has to deal with random mirostructures are: wavefronts (taken as zones of finite 
thickness relative to grain size, rather than as idealized singular surfaces), cracks and crack tips, 
FGM, small scale devices (MEMS/NEMS), and fractals.  These and related issues in stochastic 
mechanics and geometry are treated in [5].  Extensive information on the passage from images to 
models within the general framework of mathematical morphology can be found in [6,7]. 
 
[1] Nemat-Nasser, S. & Hori, M. (1993), Micromechanics: Overall Properties of Heterogeneous 

Solids, North-Holland. 
 [2] Torquato, S. (2001), Random Heterogeneous Materials - Microstructure and Macroscopic 

Properties, Springer-Verlag.  

 
Fig. 1. Passage from a microscale of 
dimension d (a) via a mesoscale of dimension 
L (b) to a macroscale (c) of characteristic 
dimension  macroL ; from [5]. 
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Mechanics of Random and Multiscale Microstructures (eds. Jeulin, D. and Ostoja-
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Annoucements 
 
George Voyiadjis Awarded Newmark Medal 
Professor George Voyiadjis, the chair of the committee and Professor of Civil 
Engineering at Louisiana State University, has received the 2008 Nathan M. 
Newmark Medal.  Prof. Voyiadjis was chosen by the Structural Engineering 
Institute and the Engineering Mechanics Institute.  The award citation reads: 
“For his outstanding contributions to the fields of structural mechanics and 
geomechanics, his fundamental research in constitutive modeling and 
characterization of damage mechanisms in metals, composites, and soils, and his 
pioneering contributions in multi-scale modeling and localization problems.”    The selection 
committee particularly noted his development of a number of widely used nonlinear constitutive 
models for steel as well as ceramic and composite materials.  Prof. Voyiadjis will receive the 
medal during the Engineering Mechanics Institute’s inaugural International Conference, May 18-
21, 2008 in Minneapolis, MN.   
 
Gregory Odegard to Receive Beer and Johnston Award 
Dr. Gregory Odegard has been chosen as a recipient of the 2008 Ferdinand P. 
Beer and E. Russell Johnston, Jr. Outstanding New Mechanic Educator Award.  
Established in 1992, this award is given annually to up to three individuals who 
have shown a strong commitment to mechanics education.  The award consists 
of a $200 cash prize and a plaque.  The award will be presented at the ASEE 
Mechanics Division’s awards banquet at the ASEE Annual Conference in 
Pittsburgh on June 24, 2008. 
 
New Book by Martin Ostoja-Starzewski 
Professor Martin Ostoja-Starzewski has published a book 
"Microstructural Randomness and Scaling in Mechanics of Materials," 
Chapman & Hall/CRC Press/Taylor & Francis.  The book develops and 
reviews a number of stochastic models and methods useful in mechanics 
of random media, a field at the intersection of solid mechanics, materials 
science, stochastic mathematics and statistical physics.  The first six of 11 chapters include 
exercise problems, making the book suitable for a graduate course.  Among the book's unique 
features are: 
•       Basic coverage of random geometry and continuum random fields 
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•       Review of truss-type and beam-type lattices, and construction of corresponding classical 
and non-classical continua 

•       Theory and consequences of stress invariance in planar classical and micropolar elasticity 
•       Introduction to statistical continuum theories, including thermomechanics of random media 
•       Scaling to Representative Volume Element (RVE) in conductivity, linear or finite elasticity 

and thermoelasticity, elasto-plasticity, flow in porous media, … 
•       Methods for problems below the RVE – i.e., those lacking the separation of scales – via e.g. 

stochastic finite elements 
•       A study of effects of microscale material randomness on waves in (in)elastic/non-linear 

media, with focus on wavefronts 
 
Special sessions in memory of Thomas S. Gates 
Dr. Thomas “Tom” Gates passed away on April 18, 2008.  Tom work at 
NASA Langley Research Center for 18 years conducting research on 
multiscale modeling of nanostructured materials, characterization of 
viscoelastic materials, and experimental testing of polymer-composites.  In 
memory of his contribution to developing constitutive models for a host of 
materials, a series of special sessions are being organized for the 50th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference in Palm Springs, CA, May 4-7, 2009.  Please contact 
Greg Odegard (gmodegar@mtu.edu) for more information.   
 


