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FIELD OF THE INVENTION 

 

[0001]The present invention relates to a method for estimating the contact stiffness, 

and particularly in the Finite Element Analysis (FEA) developments and industrial 

applications. 

 

BACKGROUND OF THE INVENTION 

 

[0002]The section explains the contact stiffness, reviews the current arts in selecting 

the contact stiffness and points out the weaknesses. 

[0003]The finite element methods today have reached such a stage that they are well 

established in theories, well developed in commercial packages (such as Abaqus, Ansys, 

Ls-Dyna, Nastran, Adina, HyperWorks, AutoDesk, Comsol, and many other specialized 

FEA packages), and well accepted by every major industry from the aerospace and 

defense, the automobile, the high-tech, the consumer goods, the architecture and 

construction, to the energy and process and utilities.  

[0004]Most of engineering problems involve more than one component. The 

mechanical interactions between components form the contact. Contact enforcement is 

the most challenging topic in the FEA developments. It is the source of many 

unconvergences that FEA practitioners experience in industrial applications of FEA. 

Numerically, contact is either enforced by the Lagrange multiplier or the penalty method. 

The Lagrange multiplier formulation does not require the contact stiffness, but it is more 

expensive and may lead to convergence difficulties such as chattering when 

overconstraint occurs among the interaction surfaces.  
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[0005]Our focus of this invention is on the penalty-based methods, which include the 

penalty method and the augmented Lagrange method (which augments the penalty 

contact force by yet another term, designed to mimic a Lagrange multiplier). In the 

penalty method, the normal contact stress σ𝑛 as illustrated in Fig.1 is given by 

𝜎𝑛 = 𝑘ℎ, (1)  

where 𝑘 is the contact stiffness (in the unit of � 𝑁
𝑚3� − FORCE/LENGTH3), and ℎ is the 

contact penetration depth. In the augmented Lagrange method,  

𝜎𝑛 = 𝑘ℎ + 𝜆,   (2) 

where 𝜆 is the extra term. The normal contact stiffness 𝑘 is the most important 

parameter affecting both accuracy and convergence behavior. “All contact problems 

require a stiffness between the two contact surfaces. The amount of penetration between 

the two surfaces depends on this stiffness. Higher stiffness values decrease the amount of 

penetration but can lead to ill-conditioning of the global stiffness matrix, and to 

convergence difficulties. Ideally, you want a high enough stiffness that contact 

penetration is acceptably small, but a low enough stiffness that the problem will be well-

behaved in terms of convergence or matrix ill-conditioning.”  Currently, the choices of 

the contact stiffness, for instance by the different commercial FEA packages, are still of 

an art than a science.  

 

[0006]The way most often employed by commercial FEA packages in determining 

the contact stiffness is given by 

𝑘 = 𝑠 𝑘𝑒   (3) 

where 𝑘𝑒 is the underlying element stiffness, and 𝑠 is a scaling factor. Very few open 

literatures present a means/formula to estimate either the underlying element stiffness or 

the scaling factor, not to mention a physics-based method. Ls-Dyna adopts 𝑘𝑒 = 𝐾 𝐴𝑐
𝑉

 for 

solid underlying elements and 𝑘𝑒 = 𝐾 
max  𝑠ℎ𝑒𝑙𝑙 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

 for shell underlying elements, 

where 𝐾 is the material bulk modulus, 𝐴𝑐 is the contact area, and 𝑉 is the element 

volume. Ansys suggests to estimate the penalty stiffness as 𝑘𝑒 = 𝑓𝑏𝑢𝑙𝑘 𝐸 or  𝑘𝑒 = 𝐸 𝐴𝑐
𝑉

 for 

bulky solids, where the factor 𝑓𝑏𝑢𝑙𝑘 is usually between 0.1 and 10. AutoDesk employs 

 
2 



𝑘𝑒 = 𝐸 𝐴𝑐
𝑉

. Abaqus calculates the underlying element stiffness based on the element 

modulus and the characteristic element length, but does not give the details. 

[0007]For contacts in cases where the bending deformation, by either beam and/or 

shell elements, may dominate, there exists no such a rational method to select a penalty 

contact stiffness value that is just enough to push the contact in acceptable penetration 

and cause no ill-conditioning of the system, either. The other case in which the contact 

may often cause the convergence difficulty is two contacting bodies having dramatically 

different material modulus, for instance, one made of steel, and the other made of foam. 

In both cases, to the best knowledge of the inventor, the current best way is still by the 

'trial and error' method as suggested by Abaqus, Ansys and Ls-Dyna, in which relaxed 

penalty stiffness is used to establish the appropriate contact status at the early stage and 

the penalty stiffness is increased incrementally until the result converges at a normal 

contact stiffness, so that the final accuracy is acceptable. One such an example is the user 

adaptive stiffness (*CONTACT CONTROLS, STIFFNESS SCALE FACTOR=USER ADAPTIVE) that 

the inventor implemented in Abaqus. Besides the extra computational costs by iteratively 

adjusting the contact stiffness to the final one, industrial FEA engineers are still faced 

with the puzzles such as: how much relaxed the early stiffness should be and how many 

iterations are appropriate and why the default element stiffness computed by commercial 

FEA packages such as Abaqus could be accepted as the NORMAL contact value? 

Unfortunately, no answers can be found on these questions. 

[0008]For continuum element, the underlying element stiffness 𝑘𝑒 can be roughly 

estimated using a simplified model by analogy to the response of a rod under uniaxial 

compression as illustrated in Figure 2a. Under uniaxial compression, the rod stress is 

given by 

 𝜎 = 𝐸
𝑙
𝛥𝑙,    (4) 

where E is the elastic Young’s modulus of the bar, 𝑙 is the length of the bar, and 𝛥𝑙 is the 

displacement. Hence, 𝑘𝑒 = 𝐸
𝑙
 or 𝐸𝐴

𝑉
, where 𝐴 is the area of the bar cross section. The 

physical equivalence of contact stiffness is the axial stiffness of the rod. The contact 

penetration depth ℎ plays the role of 𝛥𝑙, as illustrated in Figure 2b for a contact element. 

This analogy method forms the base of the method that uses the underlying element 
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stiffness as the contact element stiffness most widely adopted by commercial FEA 

packages today.    

[0009]For beam and shell underlying elements, no simplified models can be uniquely 

adopted. The major mode of deformations for beam and shell elements is bending. 

Hence, the bending stiffness should be used to represent their contact stiffness. However, 

as will become clear below, three difficulties are: first, the bending stiffness strongly 

depends on the element dimensions and profile; second, the bending stiffness depends on 

the loading type and boundary conditions; and third, the contact element behaves as a 

spring, and does not imbed a bending mode of deformation. The bending stiffness of 

beams and shells cannot be used directly as the contact stiffness, as they are not in the 

consistent units.  

[0010]We demonstrate the above difficulties with a rectangle beam example. The 

beam is fixed at the left end and subjected to three types of loading as illustrated in 

Figure 3. For the loading case Fig. 3a, the applied moment is related to the deflection as 

𝑀 = 1
6
𝐸𝑤 𝑡3

𝑙2
 𝛿.    (5) 

For the loading case Fig. 3b, the applied force is related to the deflection as 

𝐹 =
1
4
𝐸𝑤 �

𝑡
𝑙
�
3

 𝛿.   (6) 

For the loading case Fig. 3c, the pressure (in the unit of [𝑁/𝑚], not [𝑁/𝑚2]) is related to 

the deflection as 

𝑝 = 2
3
𝐸𝑤 𝑡3

𝑙4
 𝛿.   (7) 

[0011]The bending stiffness varies with the loading type. No physical guidance or 

literature reference can be found on how to convert the different bending stiffness to 

contact stiffness. In order to be consistent with the unit of 𝑘𝑒, equations (5-7) are 

rewritten as 

 

𝑀
𝑤𝑡𝑙

= 1
6

 �𝐸
𝑙
�  �𝑡

𝑙
�
2
𝛿,   (8) 

𝐹
𝑤𝑡

= 1
4
�𝐸
𝑙
� �𝑡

𝑙
�
2
𝛿,   (9) 
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𝑝𝑙
𝑤𝑡

= 2
3

 �𝐸
𝑙
�  �𝑡

𝑙
�
2
𝛿.   (10) 

 

The left-hand side of equations (8-10) can be thought as representing some stress. The red 

terms on the right-hand side of equations (8-10) represent the element stiffness (in the 

unit of [𝑁/𝑚3]).  The fraction constants before the red terms are not important, since it is 

the scaling contribution from the beam profile that we care the most.  

[0012]With the above rearrangement, the stiffness of the beam is unified for the 

different loadings for the beams with a fixed end. They all scale the axial stiffness �𝐸
𝑙
� by 

a factor of  �𝑡
𝑙
�
2
. Hence, it is advisable to adopt the contact stiffness of beams as 

𝑘𝑒 =
𝐸
𝑙

 �
𝑡
𝑙
�
2

.   (11) 

This definition provides a partial solution to the three challenges above. The contact 

stiffness of shells can be pursued along the same line of thoughts. But this definition is 

not faultless, because 1) some stress on the left-hand side of equations (8-10) can only be 

vaguely defined in the sense of the consistency of units; 2) for a given beam height 𝑡, the 

stiffness strongly depends on the beam length, which in turn depends on the mesh 

discretization; and 3) still, the stiffness would depend on the boundary conditions. 

[0013]In summary, defining the contact stiffness with the underlying element 

stiffness, however it is defined, is only a convenient way (as all element information are 

readily available). One inevitable consequence is the so-defined contact stiffness depends 

on the element length. This is not seen as an issue for bulky elements (except the case in 

which two materials differ dramatically in modulus), but when flexible structural 

elements are present and in contact, convergence issues often arise. The reason is because 

a flexible structure behaves much softer than the local contact elements do, due to the fact 

that the overall structural length is much longer than one individual element 

(remembering that the beam stiffness is inversely proportional to 𝑙3) . Physically 

speaking, for the flexible structure, the deformation is carried out through the cooperation 

of all the elements along the length, not particularly contributed by a single 

element/region. This invention provides the first ever rational global structure stiffness 
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based method to overcome the difficulties of using the underlying element stiffness for 

estimating the contact stiffness.  

 

DESCRIPTION OF DRAWINGS 

 

[0014]FIG. 1 is a schematic view of the normal contact stress σ𝑛 versus the contact 

penetration h. 

[0015]FIG. 2 is a schematic view of compression of a rod and its analogy to a contact 

element.  

[0016]FIG. 3 is a schematic view of three types of bending of a beam with a fixed 

end. 

[0017]FIG. 4 is a schematic view of the geometry and boundary conditions of the 

arch model. 

[0018] FIG. 5 shows contour plots of the contact stress on the shell arch. 

 

DETAILED DESCRIPTION 

 

[0019]In order to establish the relationship between the global structure stiffness and 

the contact stiffness of an individual contact element, there are two obstacles that have 

not been touched. First, what can best represent the global stiffness? Second, how can it 

be connected to the stiffness of the contact element?  

[0020]It is known that the global stiffness matrix can best represent the global 

stiffness. It is sufficient enough, as it embodies in it every detail of the structure. But it is 

not specific enough to the useful point, as we need only some ‘reduced’ representative 

values of the matrix, so as to potentially bridge it to the contact stiffness. The first key 

point lies in the fact that the flexible structure deforms according to the dominance of the 

modes. The first fundamental mode, with the lowest eigenvalue of the system (except the 

modes of rigid motion), can best represent the structural global response. The best herein 

is understood in the sense of the largest participation factor of the first base mode. The 

first base mode is usually associated with bending deformation (if present), and requires 

the least applied energy. The base modal stiffness associated with the first fundamental 
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mode is the stiffness that the structure will mostly reveal itself when subjected to an 

external loading. Hence, it is the fundamental modal stiffness that is interest here. 

[0021]To extract the fundamental modal stiffness, the first step is extracting the first 

few natural frequencies on the disjoint components of the regular elements only. The 

‘disjoint’ herein means that no contact will be included in the extracting process, since it 

is assumed we do not know the contact stiffness yet. Nearly all major commercial FEA 

packages can extract the natural frequencies of a structure, and often, very efficiently. The 

second step is selecting the lowest eigenvalue 𝜆𝑏or natural frequency 𝜔𝑏 with its 

associated lumped mass 𝑚𝑏from the results. Most often, the rigid modes can be easily 

detected and excluded from the selection, as their eigenvalues are very close to the 

zeroes. From the frequency analysis, one has 

𝑘𝑏 = 𝑚𝑏𝜆𝑏 = 𝑚𝑏(2𝜋𝜔𝑏)2,   (12) 

where 𝑘𝑏 is the base modal stiffness of the structure. Note that the unit of the stiffness 𝑘𝑏 

is [𝑁/𝑚], not [𝑁/𝑚3] as that of the contact stiffness 𝑘𝑒.  

[0022]One clarification needs to be made on the base modal mass 𝑚𝑏. Most FEA 

packages normalize the eigenvectors either by the displacement or by the mass. In the 

former case, the largest displacement entry in each vector is made unity; while in the 

latter case, the generalized mass for each mode is made unity.  In either case, the 

generalized mass reported is not the actual modal mass. When the normalization is by the 

mass, the effective modal masses (in any translational direction) sums to the total mass of 

the model, with one mass dominating in the base modal effective mass vector, and the 

rest being tiny negligibly small. This dominating mass is chosen as the base modal mass 

𝑚𝑏 . It is noticed that the boundary conditions affect the base mode, and accordingly the 

base eigenvalue and effective mass. The boundary conditions in the natural frequency 

extraction are best selected to mimic that of the physical model. It is strongly advisable to 

visually verify that the mode shape if uncertainty in the selection prevails. Also, it is 

strongly advisable to remove the rigid motions if physically permitted, especially the 

translational rigid motion for structural elements. It is noticed that the effective masses 

for the rigid motions if not removed will overwhelm the one for the base mode of 

interest. 

 
7 



[0023]For a cantilever beam, the first natural frequency of the beam can be derived 

analytically as  

𝜔𝑏 = 1.8752

2𝜋 � 𝐸𝐼
𝜌𝐴𝑙4

,   (13) 

and its effective mass is  

𝑚𝑏 = 0.6131𝜌𝐴𝑙,   (14) 

where 𝐴 is the beam cross section area. The fundamental modal stiffness of a cantilever 

beam is  

𝑘𝑏 = (2𝜋𝜔𝑏)2𝑚 = 7.58  
𝐸
𝑙
𝐼
𝑙2

,   (15) 

which provides a generic form that accounts for the beam profile and length. For a 

rectangle beam, it simplifies to 

𝑘𝑏 = 0.63 𝑤𝑡 𝐸
𝑙

 �𝑡
𝑙
�
2
.   (16) 

This definition can be extended to a rectangle shell, when 𝑡 ≪ 𝑤. 

 

[0024]The static stiffness of a structure differs conceptually from the model stiffness 

and those two are calculated using different methods. But as Wahyuni et al. showed that 

the static stiffness and the modal stiffness are correlated, and that the fundamental modal 

stiffness dominates the contributions to the static stiffness. Putting all these together, this 

invention employs the fundamental modal stiffness as the global structure stiffness.  

 

[0025]The question now becomes: how can the global structure stiffness be related to 

the contact stiffness? To be more precise mathematically, we look at the stiffness matrix 

of a contact element ‘𝑒’ formulated by the penalty method, which takes the form as  

[𝒌]𝑒 = 𝑘𝑒𝐴𝑐 �[𝒈]𝑙𝑖𝑛𝑒 +
ℎ
𝑙

[𝒈]𝑛𝑙𝑔𝑜𝑒𝑚𝑒 + 𝑂 �
ℎ
𝑙
�
2

�   (17) 

where 𝐴𝑐 is the area of the contact element, ℎ is the contact penetration, 𝑙 is a 

characteristic length of the underlying element, and [𝒈]𝑙𝑖𝑛𝑒  and [𝒈]𝑛𝑙𝑔𝑜𝑒𝑚𝑒 are non-

dimensional geometrically linear and nonlinear matrices contributed only by the 

orientation and position of the contact surfaces. All terms of [𝒈]𝑙𝑖𝑛𝑒  and [𝒈]𝑛𝑙𝑔𝑜𝑒𝑚𝑒  have 

well bounded values in the order of the unity. Equation (17) shows the element contact 
 
8 



area 𝐴𝑐 raises the contact element stiffness  𝑘𝑒 in the unit of [𝑁/𝑀3] to that of the 

structural stiffness [𝑁/𝑀].   

 

[0026]The key to the bridging is enforcing the fundamental mode onto the systems 

including the contacts. As emphasized above, the fundamental mode is the mode that the 

structure is likely to take in the predominant sense, so its stiffness would best represent 

the one that is likely to occur, even in the presence of the contact.  Hence, it is physically 

reasonable to write 

𝑘𝑒𝐴𝑐 = 𝑠 𝑘𝑏,   (18) 

which yields, 

𝑘𝑒 = 𝑠
𝑘𝑏

𝐴𝑐
.   (19) 

The unitless scaling factor ‘𝑠’ is to give the user more flexibility so that the contact force 

induced by the penalty method can be controlled within a given tolerance to that as 

calculated by the Lagrange multiplier method. One example is given in the Appendix to 

illustrate how the scaling factor ‘𝑠’ is related to the relative error of the contact force 

between the two methods. Note that the enforcement of the base mode onto the systems is 

only virtual in nature, so as to balance the contact responses. 

 

[0027]The most advantage features of the contact stiffness thus defined are that the 

contact stiffness is proportional to the base stiffness of the structure 𝑘𝑏. Hence, it has the 

global contribution made by the structure as a whole. This is very important an 

improvement over any forms of contact stiffness defined locally using the underlying 

element, especially in cases when the global response can be much softer than that of an 

individual element, due to the length scale involved, for beams and shells. This 

improvement is also expected to work effectively for the contact difficulty when two 

materials differ dramatically in modulus.  The fundamental modal stiffness 𝑘𝑏 changes as 

the structure deforms. But as I noticed through many example problems, use of the initial 

𝑘𝑏 has already improved the convergence behavior dramatically. It is possible to extract 

the fundamental modes with time, which is a costly procedure and not taken by the 

inventor yet. If the variation of fundamental modal stiffness 𝑘𝑏 with time is made 
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available, either through some automatic script or built-in routines, it is an easy extension 

to make the contact stiffness time-dependent. 

 

[0028]To demonstrate the advantage, a comparison is made of the two definitions of 

contact stiffness for a rectangle beam – the local-based contact stiffness (denoted as 𝑘𝐿 

now) by equation (1)  where the underlying element stiffness is defined by equation (11) 

and the global-based contact stiffness (denoted as 𝑘𝐺)  by equations (16) and (19) from 

the mode analysis. Special attention has to be paid now on the physical meanings of the 

lengths attached to each definition. In equation (11), the length 𝑙 is a characteristic length 

of the underlying element, which is denoted as 𝑙𝑒 here, while in equations (16) and (19), 

the length 𝑙 is the total beam length 𝐿. Hence, one has 

𝑘𝐿

𝑘𝐺
=

𝐸
𝑙  �𝑡𝑙�

2

𝑠𝑘
𝑏

𝐴𝑐

=
𝐴𝑐

𝐸
𝑙𝑒 � 𝑡𝑙𝑒�

2

𝑠 0.63𝑤𝑡  𝐸𝐿 �𝑡𝐿�
2.   (20) 

[0029]For beams and trusses, Abaqus defines 𝑙𝑒 as the length along the element axis. 

Assume that the beam is divided into 𝑛 elements along the axis, i.e., 𝐿 = 𝑛𝑙𝑒 . Meanwhile, 

the contact is assumed to occur on the element top surface, i.e., 𝐴𝑐 ≅ 𝑤𝑙𝑒 . Then, 
𝑘𝐿

𝑘𝐺
= 1.59

𝑠
 𝑛2 𝐿

𝑡
,   (21) 

from which, it becomes clear that, for a scaling factor of 10 (see the Appendix), the 

contact stiffness locally defined based on the underlying element can easily overestimate 

that of the global response by several orders. What is missing in the definition of the 

contact stiffness based on the underlying element is the slenderness of the beam (𝐿
𝑡
) and 

the element discretization (𝑛2).  

[0030]Besides the beam contact example problem in the Appendix, several other 

numerical examples are tested in this invention to show the effectiveness of the contact 

stiffness based on the fundamental global response. The first example presented here is a 

shell arch with a radius of 1 m, a thickness of 2 𝑚𝑚, a central angle of 60o , and a width 

of 1.05 m, as shown in Figure 4(a).  Steel is the assumed material with 𝜌 =

7800 𝑘𝑔 𝑚3⁄ , 𝐸 = 2 × 1011𝑁/𝑚2, and 𝜐 = 0.32, where 𝜐 is the Poisson’s ratio. The 

arch is divided into 20 SR4 elements along both the arc and the width directions. To 

illustrate the importance of contact stiffness, the initial and the minimum time steps are 
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both set to 1, so as to test the convergence of the arch in a single increment. The 

boundary conditions are shown in Figure 4(b), so set as to remove the rigid modes for the 

frequency analysis. A rigid plate is placed just in contact with the arch from the top 

initially, and driven down by 5 𝑚𝑚 in the loading step.  The loading fails to converge 

with Abaqus default hard contact. 

 
Abaqus provides a technology (*CONTACT CONTROLS, STIFFNESS SCALE 

FACTOR=USER ADAPTIVE) that is intended to improve convergence behavior without 

sacrificing accuracy by using reduced penalty stiffness in the early iterations of the first 

increment and returning to the default penalty stiffness for the final iterations of the first 

increment and all subsequent increments. Reduced early penalty stiffness is to find a 

contact status approximate to the final converged one, while increased subsequent 

stiffness is to correct the solution accuracy. The price paid is higher computational cost 

since all intermediate ‘converged’ results are discarded until the last one, since their 

penalty stiffness used are lower than the default one. This cost is affordable, since this 

technology is only valid for the first increment, when non-convergence arises due to the 

contact status changes over a large portion of the contact area initially. For the arch 

problem, using Abaqus default scale factors for the user adaptive stiffness, the job 

converges in a total of 21 iterations. The contour plot of the contact pressure is shown in 

Figure 5 (a). 

  

The base eigenvalue and its effective mass of the shell component are extracted 

using the boundary conditions as shown in Figure 5(b). Their values are 860.7 and 13.2, 

respectively. Hence, the base modal stiffness  𝑘𝑏 = 860.7 × 13.2 = 11361. Abaqus 

UINTER is employed to implement the user defined interfacial constitutive 𝑘𝑒 = 𝑠𝑘𝑏/

𝐴𝑐, where the element contact area 𝐴𝑐 is supplied by Abaqus into UINTER. The scaling 

factor ‘𝑠’ is left as a user input, set to 1, 10, 100, and 1000 for comparison purpose. 

Figure 5(b)-(d) show the contour plots of the contact stress for the jobs when 𝑠 = 1, 10, 

and 100, respectively. The job in which 𝑠 = 1000 does not converge, indicating that too 

large a contact stiffness, even with the current formula (19), can lead to non-convergence. 

The total iterations taken to complete the jobs in which 𝑠 = 1,10, and 100 are 8, 9, and 
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10, respectively.  Comparing the contact stress contour plots in Figure 5, it can be noticed 

that (1) the maximum contact stress can easily differ tens of percentage just by varying 

the scaling factor; (2) Abaqus default contact stiffness appears to overestimated, as it 

predicted the largest contact stress (1,837 Pa) ; (3) as that in the Appendix example 

problem, the best scaling factor for the arch problem appears to be ~10, as it produces the 

most uniform distribution of the contact stress along the top contact line; and (4) the 

mode based contact stiffness, besides being a generic physics-based formula, improves 

not only the solution accuracy, but also the solution efficiency.  
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WHAT IS CLAIMED IS: 

 

1. A physics-based method, comprising: 

 a natural frequency analysis, from which the base mode of the disjoint 

components of a mechanical system (or a structure) is determined, and from which the 

base eigenvalue (or frequency) and its associated effective modal mass are analyzed; 

            the base structural stiffness is calculated by multiplying the base eigenvalue (or 

frequency)  with its associated effective modal mass; 

            the contact stiffness of each individual contact element is set equal to the base 

structural stiffness over the element contact area, multiplied by a scale factor. 

 

2. The method of claim 1, where the components are disjoined in the sense that no 

mechanical contact between the components be considered in the frequency analysis. 

 

3. The method of claim 2, where the rigid motions of the system (especially the 

translational rigid motion) be eliminated for the disjoint components so that the effective 

modal masses reported are correct. 

 

4. The method of claim 3, where the eigenvectors are normalized by the mass so that 

the effective masses reported corresponds to the physical ones. 

 

5. The method of claim 1, where the analytical formula of the base structural 

stiffness of a beam is explicitly given. 

 

6. The method of claim 5, where the analytical formula of the base structural 

stiffness of a beam be extended to a shell. 

 

7. The method of claim 1, where the dimensionless scale factor be adjustable to 

optimize the computational efficiency and solution accuracy; 
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8.  The method of claim 8, an optimal scale factor exists in the order of tens for shell 

elements. 

  

9.        The method of claim 1, where the contact stiffness of each individual contact 

elements can be made a combination of the structural stiffnesses of the base, the first, the 

second, etc. of the frequency modes. 

 

10. The method of claim 1, where the method is either used initially at the beginning 

of a job analysis, or used iteratively during the course of a job analysis.  

 

11. The method of claim 1, where the method is implemented or employed  either 

manually, semi-automatically with a script, or automatically with built-in routines. 
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Appendix:  Selection of the scaling factor ‘𝐬’  

 

[0001] The scaling factor ‘𝑠’ plays the role as an adjuster between the accuracy and 

the efficiency.  In this Appendix, we provide some general guidance on selecting the 

scaling factor with the example problem of a cantilever beam.  

 

[0002] The cantilever beam of length 𝑙 = 0.45 𝑚 is subjected to a uniform pressure 

load 𝑝 = 100 𝑘𝑁
𝑚

. Its width and height are 0.02 𝑚 and 0.003 𝑚, respectively. Its Young’s 

modulus 2 × 1011𝑁/𝑚2, and its density 𝜌 = 7800 𝑘𝑔 𝑚3⁄ . A rigid block is placed 

beneath the free end. The initial gap 𝛿 = 0.001 𝑚. The contact force can be analytically 

derived from the no-penetration constraint  

ℎ(𝑥 = 𝑙) =
𝑝 𝑥2

24 𝐸𝐼
(𝑥2 + 6𝑙2 − 4𝑙𝑥) −

𝜆 𝑥2

6𝐸𝐼
(3𝑙 − 𝑥) − 𝛿 = 0,   (22) 

which gives  𝜆 = 16.58 𝑁. 

 

[0003] A simple Abaqus natural frequency job is set up for the cantilever beam, 

which gives the base eigenvalue as 5794.8, and its associated mass as 0.129. The exact 

solutions from formula (13-14) give the base eigenvalue 5796.3, and the associated mass 

0.129. Abaqus solutions match very well the exact solutions. The base stiffness of the 

beam is 5796.3×0.129 =747.7.  For the cantilever beam with contact, a simple Abaqus 

model is setup using 20 SR4 shell elements along the beam axis. The initial time step is 

set to 0.1 and the maximum time step is 0.25. The rigid block is modeled using an 

analytical rigid plate. Abaqus converges in a total of 12 iterations with the default penalty 

hard contact. The predicted contact force is 17.43 𝑁, with a relative error of 5.13%. 

Abaqus UINTER is employed to implement the user defined interfacial constitutive. The 

relative error is defined as 

𝑒 = 𝐹𝑝−𝜆
𝜆

,   (23) 

where 𝐹𝑝is the contact force reported at the reference point of the rigid plate . Table 1 

lists the calculated contact forces, their relative errors, and the total iterations.  
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Table 1: Calculated contact forces versus the scaling factor. 

𝑠 1 10 100 1000 

𝐹𝑝 (𝑁) 14.14 16.65 16.95 16.98 

𝑒 -14.7% -0.42%  +2.23 % +2.41% 

Iterations 11 7 10 13 

 

[0004] It is worth noting that the best scaling factor, for the cantilever beam problem 

under study, is about 10. The relative error is very small. An optimal scaling factor seems 

to exist. The scaling factor, if chosen appropriate, not only significantly decreases the 

relative error, but also improves the convergence speed. Too large a scaling factor harms 

both the accuracy and the efficiency.   

[0005] Abaqus beam elements were tested, but found to report the incorrect the 

contact area. For instance, the above beam was tested using 20 B31 elements. UINTER 

prints the contact area as 1.125E-2. When the same beam was modeled using the 20 SR4 

elements, the contact area is correctly reported as 3.75E-5. Abaqus reported beam contact 

area was overwhelmingly high.            
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ABSTRACT 

 

Contact stiffness is a key in the FEA modeling of objectives involving contact. 

The present invention theoretically derives a new method for estimating the contact 

stiffness based on the base mode of structural frequency responses. The method provides 

both physical insight and practical guide in contact stiffness estimation, thus avoiding the 

ambiguity that confronts the contact stiffness estimation in commercial FEA 

developments and FEA applications. The method works particularly effectively in cases 

when the objectives under deformation include shell or beam elements. It can alleviate 

the convergence difficulties and improve the convergence speeds due to overestimated 

contact stiffness based on the underlying element.  

 

11 Claims, 5 drawings 
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Fig. 1: the normal contact stress σ𝑛 versus the contact penetration h 

 

 

 

 
Fig. 2: compression of a rod and its analogy to a contact element 

 

 

 

 

 
Fig. 3: three types of bending with a fixed end 
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             (a)                                                         (b) 

Fig. 4: Geometry and boundary conditions of the arch model 

 

 

 

 

 
 

      
   (a) Abaqus user adaptive contact stiffness                  (b) 𝑘𝑒 = 𝑠 𝑘𝑏 𝐴𝑐⁄ , 𝑠 = 1 
 

          
                (c) 𝑘𝑒 = 𝑠 𝑘𝑏 𝐴𝑐⁄ , 𝑠 = 10                              (d) 𝑘𝑒 = 𝑠 𝑘𝑏 𝐴𝑐⁄ , 𝑠 = 100 
 

Fig. 5: Contour plots of the contact stress on the shell arch 
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