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Abstract

In this paper we make a connection between covariant elasticity based on covariance of energy balance and
Lagrangian field theory of elasticity with two background metrics. We use Kuchař’s idea of reparametrization
of field theories and make elasticity generally covariant by introducing a “covariance field”, which is a time-
independent spatial diffeomorphism. We define a modified action for parameterized elasticity and show that
the Doyle-Ericksen formula and spatial homogeneity of the Lagrangian density are among its Euler-Lagrange
(EL) equations.

1 Introduction

In the geometric field theory of classical elasticity [Marsden and Hughes, 1983; Simo and Marsden, 1984; Yavari,
et al., 2006], one introduces two background metric fields one for the material manifold and one for the ambient
space manifold. In the classical theory of nonlinear elasticity and in the absence of defects, these background
metrics are given geometric objects with no dynamics, and in this sense not all fields are on the same footing.
These metrics are “absolute” in the sense of Anderson [1967] and “structural fields” in the sense of Post [1997].
It should also be emphasized that the material and ambient space manifolds are, in general, genuinely different.
We should mention that there are concrete examples for which the material metric is a dynamic field, e.g.
in geometric formulation of growth mechanics [Yavari, 2010], thermoelasticity [Ozakin and Yavari, 2010], and
dislocation mechanics [Yavari and Goriely, 2011].

There are two parallel approaches for geometric formulation of elasticity with no clear explicit connection
between them. These are: (1) Postulating energy balance and its invariance under arbitrary time-dependent
spatial diffeomorphisms (covariance) gives all the known balance laws of elasticity and the Doyle-Ericksen
formula all covariantly. (2) Lagrangian field theory of elasticity can be formulated geometrically. Here one
assumes existence of a Lagrangian density that, in addition to the standard fields, explicitly depends on the
metrics of the material and ambient space manifolds. Hamilton’s principle of least action then gives the Euler-
Lagrange equations. The only known connection between these two approaches is through Noether’s theorem
[Yavari, et al., 2006]; covariance of Lagrangian density results in the Doyle-Ericksen formula and homogeneity
of the Lagrangian density in both spatial and material settings.

There have been attempts in the literature in making field theories with background metrics generally
covariant [Kuchař, 1973; Isham and Kuchař, 1985]. Recently, Lopez, et al. [2008] and Lopez and Gotay [2010]
extended Kuchař’s idea to multisymplectic field theories. The basic idea is to consider two separate copies of
space-time, one with a fixed metric and one with a pulled-back metric induced by a diffeomorphism η between
the two copies of the space-time. The diffeomorphism η is considered a field by which the space-time metric
is reduced to a mere geometric object. Then, Hamilton’s action principle for a modified action with η as an
extra field gives the standard EL equations and some vacuous EL equations stating that the stress-energy-
momentum tensor is divergence free. In other words, the covariance field η makes the resulting field theory
generally covariant and has vacuous EL equations. Our motivation in this paper is to make a connection
between covariant balance laws resulting from covariance of energy balance and the Lagrangian field theory
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of elasticity. We generalize Kuchař’s parametrization idea to elasticity and show how one can make elasticity
spatially covariant.

This paper is structured as follows. In §2 we first briefly review geometric elasticity, the Lagrangian field
theory of elasticity, covariance of energy balance, and the role of background metric. In §3, following Kuchař’s
idea of parametrization of field theories, we parameterize elasticity by introducing a “covariance field” that
makes the background metric dynamic and obtain its EL equations. Conclusions are given in §4.

2 The Background Metric in Geometric Elasticity

Let us assume that reference configuration is a Riemannian manifold (B,G) and that the body deforms in a
Riemannian ambient space (S,g). Motion is a one-parameter family of maps ϕt ∶ B → S, where t is time. Let
us denote local coordinates on B and S by {XA} and {xa}, respectively. For a fixed t, ϕt(X) = ϕ(X, t), where
X is position of material points in the undeformed configuration B. The material velocity is the map Vt ∶ B →
Tϕ(X)S given by Vt(X) = ∂ϕ(X,t)

∂t
. The material acceleration is defined by At(X) = ∂Vt(X)

∂t
. In components

Aa = ∂V a

∂t
+γabcV bV c, where γabc is the Christoffel symbol of the local coordinate chart {xa}. Deformation gradient

is the tangent map of ϕ and is denoted by F = Tϕ. Thus, at each point X ∈ B, it is a linear map

F(X) ∶ TXB → Tϕ(X)S. (2.1)

Components of F are F aA(X) = ∂ϕa

∂XA (X). Suppose B and S are Riemannian manifolds with inner products
⟪,⟫G and ⟪,⟫g based at X ∈ B and x ∈ S, respectively. Transpose of F is defined by

FT ∶ TxS → TXB, ⟪FV,v⟫g = ⟪V,FTv⟫G ∀ V ∈ TXB, v ∈ TxS. (2.2)

In components (FT(X))Aa = gab(x)F bB(X)GAB(X). The right Cauchy-Green deformation tensor is defined
by C(X) = F(X)TF(X), where g and G are metric tensors on S and B, respectively. In components CAB =
(FT)AaF aB . One can show that C♭ = ϕ∗(g) = F∗gF, i.e., CAB = (gab ○ ϕ)F aAF bB .

Lagrangian field theory of elasticity. In elasticity one assumes existence of a Lagrangian density L [Mars-
den and Hughes, 1983] such that1

L = L(X,G, ϕ, ϕ̇,F,g), (2.3)

where F = Tϕ is the so-called deformation gradient. Action is defined on the material manifold (B,G) as

S = ∫
t1

t0
∫
B
L dV dt, (2.4)

where dV = dV (X) is the Riemannian volume element on B. Hamilton’s principle of least action states that
δS = dS ⋅δϕ = 0. This gives the following Euler-Lagrange (EL) equations that are equivalent to balance of linear
momentum [Yavari, et al., 2006].

∂L
∂ϕa

− d

dt

∂L
∂ϕ̇a

− ( ∂L
∂F aA

)
∣A
− ∂L
∂F bA

F cAγ
b
ac + 2

∂L
∂gcd

gbdγ
b
ac = 0. (2.5)

When non-conservative forces are present the governing equations can be obtained using the Lagrange-d’Alembert
principle. Denoting the non-conservative force by f , the above EL equations are modified to read

∂L
∂ϕa

− d

dt

∂L
∂ϕ̇a

− ( ∂L
∂F aA

)
∣A
− ∂L
∂F bA

F cAγ
b
ac + 2

∂L
∂gcd

gbdγ
b
ac + fa = 0. (2.6)

Remark 2.1. Note that the metric g cannot be variational because if it is assumed that g is variational, then
the corresponding EL equation would be ∂L

∂g
= 0, which cannot be the case as was explained in the previous foot

note.

1To make a scalar out of the vector field ϕ̇ and the two-point tensor F, L has to explicitly depend on both G and g.
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Covariance of energy balance. Another approach in deriving the balance laws of elasticity is to first
postulate an energy balance

d

dt
∫
U
ρ0 (E + 1

2
⟪V,V⟫g)dV = ∫

U
ρ0 (⟪B,V⟫g +R)dV + ∫

∂U
(⟪T,V⟫g +H)dA, (2.7)

where E = E(X,N,G,F,g ○ ϕ) is the material internal energy density, N, ρ0, B, T, R, and H are specific
entropy, material mass density, body force per unit undeformed mass, traction vector, heat supply, and heat
flux, respectively. Then one postulates that energy balance is covariant, i.e. it is invariant under an arbitrary
time-dependent spatial change of frame ξt ∶ S → S, i.e. [Marsden and Hughes, 1983]

d

dt
∫
U
ρ′0 (E′ +

1

2
⟪V′,V′⟫g′)dV = ∫

U
ρ′0 (⟪B′,V′⟫g′ +R′)dV + ∫

∂U
(⟪T′,V′⟫g′ +H ′)dA. (2.8)

It can be shown that the following are necessary and sufficient for covariance of energy balance [Yavari, et al.,
2006]

∂ρ0
∂t

= 0, (2.9)

Div P + ρ0B = ρ0A, (2.10)

2ρ0
∂E

∂g ○ ϕ = τ , (2.11)

τT = τ , (2.12)

where P is the first Piola-Kirchhoff stress and τ = Jσ is the Kirchhoff stress.

Remark 2.2. Note that for energy balance to be covariant, in addition to the standard balance laws, a nontrivial
relation, i.e. the Doyle-Ericksen formula must hold.

3 Covariantization of Elasticity

We consider a time-independent spatial change of frame η ∶ S → S as our covariance field (see Fig. 3.1)2. Let
us define L̃ as

L̃(X,G, ϕ, ϕ̇, Tϕ, η, η̇, Tη) ∶= L (X,G, η ○ ϕ, ˙η ○ ϕ,Tη ⋅ Tϕ, η∗g)
= L (X,G, η ○ ϕ,∂η/∂t + Tη ⋅ ϕ̇, Tη ⋅ Tϕ, η∗g) . (3.1)

Note that in components

g̃αβ ∶= (η∗g)αβ =
∂xa

∂ηα
∂xb

∂ηβ
gab ○ ϕ. (3.2)

A modified action S̃ is defined as

S̃ = ∫
t1

t0
∫
B
L̃(X,G, ϕ, ϕ̇, Tϕ, η, η̇, Tη) dV dt. (3.3)

Next we obtain the ϕ and η-variations of the modified action.

ϕ-Variation. ϕ-variation of action is written as

δϕS̃ = ∫
t1

t0
∫
B
( ∂L̃
∂ϕa

δϕa + ∂L̃
∂ϕ̇a

δϕ̇a + ∂L̃
∂F aA

δF aA)dV dt. (3.4)

2If η is time dependent, one of the Euler-Lagrange equations would be ∂L/∂ϕ̇ = 0, which is not physical unless the problem
is static. Note that in Noether’s theorem one considers a time-independent vector field and its flow [Marsden and Hughes, 1983;
Yavari, et al., 2006].
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Figure 3.1: Covariance field for nonlinear elasticity.

Or

δϕS̃ = ∫
t1

t0
∫
B

⎡⎢⎢⎢⎢⎣

∂L̃
∂ϕa

− d

dt
( ∂L̃
∂ϕ̇a

) − ( ∂L̃
∂F aA

)
∣A
− ∂L̃
∂F cA

F bAγ
c
ab

⎤⎥⎥⎥⎥⎦
δϕa dV dt. (3.5)

It can be shown that

∂L̃
∂ϕa

= ∂L
∂ϕ̃α

∂ηα

∂xa
+ 2

∂L
∂g̃αβ

g̃βµ
∂xm

∂ηα
∂ηµ

∂xd
γdam, (3.6)

∂L̃
∂ϕ̇a

= ∂L
∂ ˙̃ϕα

∂ηα

∂xa
, (3.7)

∂L̃
∂F aA

= ∂L
∂F̃αA

∂ηα

∂xa
. (3.8)

Also

( ∂L̃
∂F aA

)
∣A
= ( ∂L

∂F̃αA
)
∣A

∂ηα

∂xa
. (3.9)

We know that the connection coefficients are transformed as follows

γcab =
∂xc

∂ηµ
∂ηα

∂xa
∂ηβ

∂xb
γ̃µαβ +

∂2ηλ

∂xa∂xb
∂xc

∂ηλ
. (3.10)

After some lengthy calculations, it can be shown that

δϕS̃ = ∫
t1

t0
∫
B

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

∂L
∂ϕ̃α

− d

dt
( ∂L
∂ ˙̃ϕα

) − ( ∂L
∂F̃αA

)
∣A
− ∂L
∂F̃µA

F̃ βAγ̃
µ
αβ + 2

∂L
∂g̃βλ

g̃βµγ̃µαλ

⎤⎥⎥⎥⎥⎦

∂ηα

∂xa
δϕa

+ (2
∂L
∂g̃βµ

g̃αµ −
∂L

∂F̃αA
F̃ βA)

∂2ηα

∂xa∂xb
∂xb

∂ηβ
δϕa − ∂L

∂ ˙̃ϕα
d

dt

∂ηα

∂xa

⎫⎪⎪⎬⎪⎪⎭
dV dt. (3.11)

Note that
d

dt

∂ηα

∂xa
= ∂2ηα

∂xa∂xb
ϕ̇b. (3.12)
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Also note that

˙̃ϕ β = ∂η
β

∂xb
ϕ̇b. (3.13)

Hence

ϕ̇b = ∂xb

∂ηβ
˙̃ϕ β . (3.14)

Therefore
d

dt

∂ηα

∂xa
= ˙̃ϕ β ∂2ηα

∂xa∂xb
∂xb

∂ηβ
. (3.15)

Substituting (3.15) into (3.11), one obtains

δϕS̃ = ∫
t1

t0
∫
B

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎣

∂L
∂ϕ̃α

− d

dt
( ∂L
∂ ˙̃ϕα

) − ( ∂L
∂F̃αA

)
∣A
− ∂L
∂F̃µA

F̃ βA γ̃µαβ + 2
∂L
∂g̃βλ

g̃βµ γ̃µαλ

⎤⎥⎥⎥⎥⎦

∂ηα

∂xa
δϕa

+ (2
∂L
∂g̃βµ

g̃αµ −
∂L

∂F̃αA
F̃ βA −

∂L
∂ ˙̃ϕ α

˙̃ϕ β) ∂2ηα

∂xa∂xb
∂xb

∂ηβ
δϕa

⎫⎪⎪⎬⎪⎪⎭
dV dt = 0. (3.16)

As η is arbitrary, it can be chosen such that Tη is independent of x. This would imply that one has the following
two sets of EL equations:

∂L
∂ϕ̃α

− d

dt
( ∂L
∂ ˙̃ϕα

) − ( ∂L
∂F̃αA

)
∣A
− ∂L
∂F̃µA

F̃ βAγ̃
µ
αβ + 2

∂L
∂g̃βλ

g̃βµγ̃µαλ = 0, (3.17)

2
∂L
∂g̃βµ

g̃αµ −
∂L

∂F̃αA
F̃ βA −

∂L
∂ ˙̃ϕα

˙̃ϕβ = 0. (3.18)

Note that (3.17) is the standard EL equations (2.5) written with respect to (B,G) and (S, η∗g) and (3.18) is
the Doyle-Ericksen formula again with respect to (B,G) and (S, η∗g).

η-Variation. η-variation of action is written as

δηS̃ = ∫
t1

t0
∫
B
( ∂L̃
∂ηα

δηα + ∂L̃
∂FηaA

δFη
a
A)dV dt. (3.19)

Note that
∂L̃
∂ηα

= ∂L
∂ηα ○ ϕ = ∂L

∂ϕ̃α
. (3.20)

After some lengthy manipulations, it can be shown that

∂L̃
∂FηaA

= ( ∂L
∂F̃αA

F̃ βA +
∂L
∂ ˙̃ϕ α

˙̃ϕ β − 2
∂L
∂g̃βµ

g̃αµ)
∂xa

∂ηβ
. (3.21)

Therefore, the η-variation of the modified action reads

δηS̃ = ∫
t1

t0
∫
B
[ ∂L
∂ϕ̃α

δηα − (2
∂L
∂g̃βµ

g̃αµ −
∂L

∂F̃αA
F̃ βA −

∂L
∂ ˙̃ϕα

˙̃ϕβ) ∂x
a

∂ηβ
δFη

a
A]dV dt. (3.22)

Hence, from δηS̃ = 0 and (3.18) we obtain
∂L
∂ϕ̃α

= 0. (3.23)

In summary, we have proved the following proposition.

Proposition 3.1. Given a Lagrangian density L, define an auxiliary Lagrangian density L̃ by (3.1) and its
corresponding action S̃ as in (3.3). Hamilton’s principle of least action for S̃, i.e. δS̃ = dS̃ ⋅ (δϕ, δη) = 0 gives
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the following Euler-Lagrange equations (written with respect to (B,G) and (S, η∗g)):

∂L
∂ϕ̃α

− d

dt
( ∂L
∂ ˙̃ϕα

) − ( ∂L
∂F̃αA

)
∣A
− ∂L
∂F̃µA

F̃ βAγ̃
µ
αβ + 2

∂L
∂g̃βλ

g̃βµγ̃µαλ = 0, (3.24)

2
∂L
∂g̃βµ

g̃αµ −
∂L

∂F̃αA
F̃ βA −

∂L
∂ ˙̃ϕα

˙̃ϕβ = 0, (3.25)

∂L
∂ϕ̃α

= 0. (3.26)

In other words, stationarity of the modified action S̃ gives the standard EL equations, the Doyle-Ericksen
formula, and spatial homogeneity of the Lagrangian density L.

Remark 3.2. Note that this result is similar to what was obtained in [Yavari, et al., 2006], where using Noether’s
theorem it was shown that spatial covariance of the Lagrangian density leads to the Doyle-Erciksen formula and
spatial homogeneity of the Lagrangian density.

Remark 3.3. There are subtle differences between spatial and material manifolds. The spatial manifold is
homogenous and isotropic. Material manifold – where the body is stress free – is inhomogenous, in general,
and has a nontrivial geometry [Yavari, 2010; Yavari and Goriely, 2011]. In other words, material metric is a
dynamic field and for this reason we do not discuss a material version of covariantization.

4 Concluding Remarks

In this paper we studied the problem of covariance of the field theory of elasticity. First, we observed that
the non-dynamic nature of the spatial metric prevents the field theory of elasticity to be generally covariant.
We extended Kuchař’s idea of parametrization of field theories to elasticity by defining a spatial covariance
field to be a time-independent spatial diffeomorphism. We then defined a modified action that, in addition to
depending on the standard fields, depends on the covariance field as well. We showed that the Euler-Lagrange
equations of the modified field theory, in addition to the standard EL equations, contain spatial homogeneity
of the Lagrangian density and the Doyle-Ericksen formula.
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