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Abstract

In this paper we covariantly obtain the governing equations of linearized elasticity.
Our motivation is to see if one can make a connection between (global) balance of energy
in nonlinear elasticity and its counterpart in linear elasticity. We start by proving a
Green-Naghdi-Rivilin theorem for linearized elasticity. We do this by first linearizing
energy balance about a given reference motion and then by postulating its invariance
under isometries of the Euclidean ambient space. We also investigate the possibility
of covariantly deriving a linearized elasticity theory, without any reference to the local
governing equations, e.g. local balance of linear momentum. In particular, we study
the consequences of linearizing covariant energy balance and covariance of linearized
energy balance. We show that in both cases, covariance gives all the field equations of
linearized elasticity.
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1 Introduction

Linear elasticity is based on the assumption that displacement gradients are small compared
to the characteristic length(s) of the deformed body. Balances of linear and angular mo-
menta in linear elasticity have the same forms as those of nonlinear elasticity. Kinematics is
described with respect to a reference state and deformed and undeformed manifolds are not
distinguishable. For example, Cauchy and the first Piola-Kirchhoff stress tensors are the
same. In constitutive equations, stress and strain tensors are linearly related by a fourth-
order tensor of elastic constants. Governing equations of linear elasticity can be obtained by
linearizing those of nonlinear elasticity about a reference motion. In the geometric theory,
where a body deforms in a Riemannian ambient space, one can obtain the governing equa-
tions of linear elasticity by geometric linearization of the governing equations of nonlinear
elasticity [Marsden and Hughes, 1983]. Recently, Steigmann [2007] studied frame indiffer-
ence of the governing equations of linear elasticity. His main conclusion is that linearized
elasticity is frame-indifferent if it is properly formulated.

It is well known that balance laws in nonlinear elasticity can be obtained by postulating
an energy balance and its invariance under isometries of the ambient space if it is Euclidean
[Green and Rivilin, 1964] and diffeomorphisms of the ambient space if it is Riemannian
(covariance) [Marsden and Hughes, 1983; Simo and Marsden, 1984; Yavari, et al., 2006].
Now one may ask what the connection between linearized and nonlinear elasticity is in
terms of energy balance and its invariance. In this paper, we make this connection in both
cases of Euclidean and Riemannian ambient space manifolds. In the case of a Euclidean
ambient space manifold, we first linearize/quadratize energy balance. Note that if one starts
with an equilibrium configuration, the linearization of internal energy density is null and
therefore one needs to look at the higher order terms, namely the quadratic approximation,
besides, a calculation to linear order in the stresses requires the energy to be treated to
quadratic order. After linearization/quadratization of energy balance, we find a linearized
energy balance and a quadratized energy balance that are separately satisfied. We then
postulate the invariance of energy balance under time-dependent rigid translations and
rotations of the ambient space. We will show that invariance of the linearized energy balance
gives the equations of linearized elasticity. Interestingly, the quadratized energy balance is
trivially invariant under isometries of the ambient space. We show that both linearization
of invariant energy balance and invariance of linearized energy balance will give all the
governing equations of linearized elasticity.

In the case of a general Riemannian manifold ambient space, we study two things: (i)
linearization of covariant energy balance and (ii) covariance of linearized energy balance. By
“linearization of covariant energy balance” we mean linearization of difference of energy bal-
ance for a nearby motion with respect to a reference motion. We show that this linearization
will give the governing equations of linearized elasticity. In the more interesting case, we
first linearize energy balance with respect to a reference motion

◦
ϕt and then postulate the

invariance of the linearized energy balance with respect to diffeomorphisms of the ambient
space. We also extend the ideas of first variation of “energy” of maps [Nishikawa, 2002] to
elasticity, where energy has a more complicated form.

This paper is structured as follows. In §2 we give a brief introduction to geometric
elasticity in order to make the paper self contained. In §3 we study invariance of linearized
energy balance when the ambient space is Euclidean. We show the connection between
energy balance in nonlinear and linear elasticity. We review Marsden and Hughes’ idea of
geometric linearization of elasticity in §4 and present some new results. We also revisit
linearization of elasticity using variation of maps and ideas from geometric calculus of vari-
ations. In §5 we study different notions of covariance in linearized elasticity. In particular,
we covariantly obtain all the governing equations of linearized elasticity. Conclusions are
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given in §6.

2 Linearized Elasticity in Euclidean Ambient Space

It has long been known that one can obtain all the balance laws of elasticity by postulating
balance of energy and its invariance under (time-dependent) rigid translations and rotations
of the current configuration [Green and Rivilin, 1964]. Here we are interested in formulating
a version of the Green-Naghdi-Rivilin theorem for linearized elasticity.

Let ϕt denote a motion of a body. Energy balance for an arbitrary subbody U ⊂ B is
written as

d

dt

∫

ϕt(U)

ρ

(
e +

1
2
v · v

)
dv =

∫

ϕt(U)

ρ (b · v + r) dv +
∫

∂ϕt(U)

(t · v + h) da, (2.1)

in spatial coordinates, where ρ is the density, e, r and h are the internal energy function
per unit mass, the heat supply per unit mass and the heat flux, respectively, and v, b,
and t are spatial velocity, body force per unit mass, and traction, respectively. In material
coordinates

d

dt

∫

U
ρ0

(
Ψ +

1
2
V ·V

)
dV =

∫

U
ρ0 (B ·V + R) dV +

∫

∂U
(T ·V + H) dA, (2.2)

where Ψ = Ψ(t,X,F) is the free energy density per unit mass of the undeformed configura-
tion, ρ0 is the density per unit undeformed volume, and R, H, V, B and T are the per unit
undeformed mass versions of r, h, v, b and t, respectively. We start with material energy
balance as it is written for a fixed domain and makes the calculations simpler.

Let us assume that we are given a reference motion
◦
ϕt. Balance of energy for this fixed

motion is written as

d

dt

∫

U
ρ0

(
◦
Ψ +

1
2

◦
V · ◦V

)
dV =

∫

U
ρ0

( ◦
B · ◦V +

◦
R

)
dV +

∫

∂U

( ◦
T · ◦V +

◦
H

)
dA. (2.3)

Now consider a C∞ variation of this motion ϕt,s parametrized by s, such that ϕt,0 =
◦
ϕt.

For each value of s, the energy balance is of the form (2.3). Now let us assume that for
any value of s, energy balance is invariant under a time-dependent rigid translation of the
deformed configuration ξt(x) = x + (t − t0)w. This would give the following two relations
for s = 0 and s 6= 0 [Yavari, et al., 2006]

∫

U

∂ρ0

∂t

(
w· ◦V +

1
2
w ·w

)
dV =

∫

U
ρ0(

◦
B − ◦

A) ·wdV +
∫

∂U

◦
T ·wdA, (2.4)

∫

U

∂ρ0

∂t

(
w ·V +

1
2
w ·w

)
dV =

∫

U
ρ0(B−A) ·wdV +

∫

∂U
T ·wdA, (2.5)

where
◦
A and A are the material accelerations for motions

◦
ϕt and ϕt, respectively. Arbi-

trariness of w gives conservation of mass ∂ρ0
∂t = 0 and subtracting the above two relations

gives ∫

U
ρ0(A−

◦
A) ·wdV =

∫

U
ρ0(B−

◦
B) ·wdV +

∫

∂U
(T− ◦

T) ·wdA = 0. (2.6)
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Linearizing the above identity about
◦
ϕt gives

∫

U
ρ0δA ·wdV =

∫

U
ρ0δB ·wdV +

∫

∂U
δT ·wdA. (2.7)

Let U denote the vector field whose integral curves are given by ϕt=t0,s, i.e., U i = ∂ϕi
t,s

∂s

∣∣
s=0

.
Then, the linearized invariance equation (2.7) can be written in terms of U, once one observes
that V −V0 = δV = U̇, as

∫

U
ρ0Ü ·wdV =

∫

U
ρ0δB ·wdV +

∫

∂U
δT ·wdA. (2.8)

Since δT = Div δP · N̂, where N̂ is the unit normal vector to ∂U at X ∈ ∂U , arbitrariness
of w and U will imply the following.

ρ0Ü = ρ0δB + Div δP, (2.9)

or
ρ0δA = ρ0δB + Div δP, (2.10)

which is nothing but linearization of the local balance of linear momentum. Similarly,
assuming invariance of energy balance under rotations with constant velocity, linearization
of energy balance difference will give linearization of balance of angular momentum.

Next, let us linearize the balance of energy about a reference motion first, and then
postulate its invariance under isometries of the Euclidean ambient space. This turns out to
be the more interesting case.

Let us consider motions that are “close” to
◦
ϕt and write ϕt =

◦
ϕt +δϕt, where ‖δϕt‖/‖

◦
ϕt

‖ ¿ 1, and similarly for the spatial and time derivatives of δϕ, where ‖.‖ is the standard
Euclidean norm. Balance of energy for the perturbed motion is written as

d

dt

∫

U
ρ0

[
◦
Ψ +δΨ +

1
2
(
◦
V +δV) · ( ◦V +δV)

]
dV

=
∫

U
ρ0

[
(
◦
B +δB) · ( ◦V +δV)+

◦
R +δR

]
dV

+
∫

∂U

[
(
◦
T +δT) · ( ◦V +δV)+

◦
H +δH

]
dA. (2.11)

Note that
B(X) = b(ϕt(X)) , (2.12)

and thus
δB =

∂b
∂x

· δϕt , (2.13)

which is shorthand for the following componentwise equations

δBi =
∑

j

∂bi

∂xj
δϕj

t . (2.14)

Also
Ψ = Ψ(X, Tϕt) , (2.15)
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where Tϕt = F = ∂ϕt

∂X denotes the deformation gradient. Therefore, to first order in δϕt

δΨ =
∂Ψ
∂F

· δF =
∂Ψ
∂F

· ∂δϕt

∂X
=
◦
P ·∂δϕt

∂X
, (2.16)

which, when written out in components, reads1

δΨ =
∂Ψ

∂F i
j
δF i

j =
∂Ψ

∂F i
j

∂δϕi
t

∂Xj
=

◦
Pi

j ∂δϕi
t

∂Xj
. (2.17)

Velocity variation is calculated as follows.

V = V(X) =
∂ϕt(X)

∂t
=

∂
(◦
ϕt +δϕt

)

∂t
=
◦
V +

∂δϕt(X)
∂t

. (2.18)

Thus

δV =
∂δϕt(X)

∂t
. (2.19)

Similarly

δA =
∂2δϕt(X)

∂t2
. (2.20)

Subtracting (2.3) from (2.11) yields
∫

U
ρ0

(
˙δΨ+

◦
V ·δA+

◦
A ·δV + δV · δA

)
dV

=
∫

U
ρ0

( ◦
B ·δV+

◦
V ·δB + δB · δV + δR

)
dV

+
∫

∂U

( ◦
T ·δV + δT· ◦V +δT · δV + δH

)
dA, (2.21)

where we have used conservation of mass ρ̇0 = 0. Note that

δV = U̇, δA = Ü. (2.22)

Note also that

ρ0δΨ = ρ0
∂Ψ
∂F

· δF +
1
2
δF · ρ0

∂2Ψ
∂F∂F

· δF + o
(‖δF‖2)

=
◦
P ·∇U +

1
2
∇U·

◦
C ·∇U + o

(‖∇U‖2) , (2.23)

where
◦
C is the elasticity tensor of the reference motion. We keep the quadratic term too

because we want to work to linear order in force, which means quadratic order in energy.2

Therefore

ρ0
˙δΨ =

◦̇
P ·∇U+

◦
P ·∇U̇ +

1
2
∇U ·

◦̇
C ·∇U + ∇U·

◦
C ·∇U̇. (2.24)

1From now on, we will mostly skip the component form of the equations, which will hopefully be apparent
from the context.

2Besides, if the reference motion is a static equilibrium configuration the first term would vanish.
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Variation of traction can be simplified to read

δT = δP · N̂ =
(

∂P
∂F

· δF
)
· N̂ =

◦
C ·∇U · N̂. (2.25)

Now (2.21) can be simplified to read

∫

U

[
◦̇
P ·∇U+

◦
P ·∇U̇ +

1
2
∇U ·

◦̇
C ·∇U

+ ∇U·
◦
C ·∇U̇ + ρ0

( ◦
V ·Ü+

◦
C ·U̇ + U̇ · Ü

) ]
dV

=
∫

U
ρ0

( ◦
B ·U̇+

◦
V ·δB + δB · U̇ + δR

)
dV

+
∫

∂U

[( ◦
P ·U̇+

◦
C ·∇U· ◦V +

◦
C ·∇U · U̇

)
· N̂ + δH

]
dA. (2.26)

Or

d

dt

∫

U

[
◦
P ·∇U +

1
2
∇U·

◦
C ·∇U + ρ0

( ◦
V ·U̇ + 1

2U̇ · U̇
)]

dV

=
∫

U
ρ0

( ◦
B ·U̇+

◦
V ·δB + δB · U̇ + δR

)
dV

+
∫

∂U

[( ◦
P ·U̇+

◦
C ·∇U· ◦V +

◦
C ·∇U · U̇

)
· N̂ + δH

]
dA. (2.27)

We call (2.27) the perturbed energy balance . Note that in (2.27) there are terms linear
and terms quadratic in U. Rescaling U by an arbitrary value, e.g. U → εU, one can
conclude that the sum of linear and quadratic terms should be zero separately, i.e.

d

dt

∫

U

[ ◦
P ·∇U + ρ0

◦
V ·U̇

]
dV =

∫

U
ρ0

( ◦
B ·U̇+

◦
V ·δB + δB · U̇ + δR

)
dV

+
∫

∂U

[ ◦
T ·U̇ + δT· ◦V +δH

]
dA, (2.28)

d

dt

∫

U

[
1
2
∇U·

◦
C ·∇U +

1
2
ρ0U̇ · U̇

]
dV =

∫

U
ρ0δB · U̇dV +

∫

∂U
δT · U̇dA. (2.29)

We call (2.28) the linearized energy balance and (2.29) the quadratized energy bal-
ance .

In classical linear elasticity, the initial motion is a stress-free static configuration, i.e.
◦
V= 0,

◦
P= 0, and

◦
B= 0 and it is assumed that there are no heat sources and fluxes, i.e.,

δR = δH = 0. In this case, the perturbed energy balance is identical to the quadratized
energy balance (2.29). This is the so-called Power Theorem in classical linear elasticity
[Fosdick and Truskinovsky, 2003]. In other words, in classical linear elasticity the linearized
energy balance is identically zero and one needs to look at the quadratized energy balance.

Postulating invariance of the perturbed energy balance under isometries of the Euclidean
ambient space one can consider both the linearized and the quadratized energy balances. It
can be shown that postulating invariance of the quadratized energy balance does not give
any new governing equations, i.e. the quadratized energy balance is trivially invariant under
isometries of the ambient space. Therefore, in the following we study the consequences of
postulating invariance of the linearized energy balance.



2.1 Invariance of the Linearized Energy Balance Under Isometries of the Euclidean Ambient Space 7

2.1 Invariance of the Linearized Energy Balance Under Isometries
of the Euclidean Ambient Space

Let us first consider a rigid translation of the deformed configuration defined as

x′ = ξt(x) = x + (t− t0)w, (2.30)

where w is a constant vector. Under this change of frame we have

ϕ′t = ξt ◦ ϕt,
◦
ϕ
′
t= ξt◦

◦
ϕt . (2.31)

Therefore at t = t0

V′ = V + w,
◦
V
′
=
◦
V +w. (2.32)

Also
U′ = U, U̇′ = U̇. (2.33)

Linearized balance of energy in the new frame at t = t0 is written as

∫

U
ρ0

(
◦̇
P ·∇U+

◦
P ·∇U̇ + (

◦
V +w) · Ü+

◦
C ·U̇

)
dV

=
∫

U
ρ0

[ ◦
B ·U̇ + (

◦
V +w) · δB + δR

]
dV

+
∫

∂U

[(
◦
P ·U̇+

◦
C ·∇U · ( ◦V +w)

)
· N̂ + δH

]
dA. (2.34)

Subtracting (2.26) from (2.34) yields
∫

U
ρ0Ü ·wdV =

∫

U
ρ0δB ·wdV +

∫

U
Div

(◦
C ·∇U

)
·wdV. (2.35)

Because U and w are arbitrary, we conclude that

Div
(◦
C ·∇U

)
+ ρ0δB = ρ0Ü. (2.36)

Let us now consider a rigid rotation of the deformed configuration, i.e.

x′ = eΩ(t−t0)x, (2.37)

where ΩT = −Ω. Therefore at t = t0

V′ = V + Ωx,
◦
V
′
=
◦
V +Ω

◦
x . (2.38)

This means that
U′ = U, U̇′ = U̇. (2.39)

Subtracting balance of energy for
◦
ϕt from that of

◦
ϕ
′
t and using balance of linear momentum

for the perturbed motion, we obtain
∫

U

(◦
C ·∇U

)
: ΩdV = 0. (2.40)
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Because U and w are arbitrary, we conclude that

(◦
C ·∇U

)T

=
◦
C ·∇U. (2.41)

Therefore, we have proven the following proposition.

Proposition 2.1. Invariance of the linearized balance of energy under time-dependent rigid
translations and rotations of the Euclidean ambient space is equivalent to linearized balance
of linear and angular momenta.

2.2 Lagrangian Field Theory of Linearized Elasticity

Note that similar ideas can be used in obtaining equations of linear elasticity in the frame-
work of Lagrangian mechanics. The starting point in Lagrangian field theory of elasticity is
a Lagrangian density L = L(X, t, ϕ, ϕ̇,F). Hamilton’s principle of least action states
that for the equilibrium configuration first variation of the action integral vanishes, i.e.,
δS = 0, where

S =
∫ t1

t0

∫

B
LdV dt. (2.42)

Given the configurations
◦
ϕ and ϕs, where ϕ0 =

◦
ϕ, we can write

δ

∫ t1

t0

∫

B

◦
L dV dt = 0 and δ

∫ t1

t0

∫

B
L(s)dV dt = 0. (2.43)

Or

δ

∫ t1

t0

∫

B

[
L(s)− ◦

L
]

dV dt = 0. (2.44)

Linearization of L(s)− ◦
L will give the governing equations of linearized elasticity.

3 Geometric Elasticity

In this section, in order to make the paper self-contained, we review some notation from the
geometric approach to elasticity. Refer to [Marsden and Hughes, 1983] for more details and
also [Abraham, Marsden and Ratiu, 1988] and [Marsden and Ratiu, 2003].

For a smooth n-manifold M , the tangent space to M at a point p ∈ M is denoted TpM
and the whole tangent bundle is denoted TM . We denote by B a reference manifold for our
body and by S the space in which the body moves. We assume that B and S are Riemannian
manifolds with metrics G and g, respectively. Local coordinates on B are denoted by {XA}
and those on S by {xa}.

A deformation of the body is a C1 embedding ϕ : B → S. The tangent map of ϕ is
denoted F = Tϕ : TB → TS, which is often called the deformation gradient. In local charts
on B and S, the tangent map of ϕ is given by the Jacobian matrix of partial derivatives of
the components of ϕ, as

F = Tϕ : TB → TS, Tϕ(X,Y) = (ϕ(X),Dϕ(X) ·Y). (3.1)

If F : B → R is a C1 scalar function, X ∈ B and VX ∈ TXB, then VX[F ] denotes the
derivative of F at X in the direction of VX, i.e., VX[F ] = DF (X) ·V. In local coordinates
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{XA} on B,

VX[F ] =
∂F

∂XA
V A. (3.2)

For f : S → R, the pull-back of f by ϕ is defined by

ϕ∗f = f ◦ ϕ. (3.3)

If F : B → R, the push-forward of F by ϕ is defined by

ϕ∗F = F ◦ ϕ−1. (3.4)

If Y is a vector field on B, then ϕ∗Y = Tϕ ◦Y ◦ ϕ−1, or using the F notation, ϕ∗Y =
F ◦Y ◦ ϕ−1 is a vector field on ϕ(B) called the push-forward of Y by ϕ. Similarly, if y is
a vector field on ϕ(B) ⊂ S, then ϕ∗y = T (ϕ−1) ◦ y ◦ ϕ is a vector field on B and is called
the pull-back of y by ϕ.

The cotangent bundle of a manifold M is denoted T ∗M and the fiber at a point p ∈ M
(the vector space of one-forms at p) is denoted by T ∗p M . If β is a one-form on S, i.e., a
section of the cotangent bundle T ∗S, then the one-form on B defined as

(ϕ∗β)X ·VX = βϕ(X) · (Tϕ ·VX) = βϕ(X) · (F ·VX) (3.5)

for X ∈ B and VX ∈ TXB, is called the pull-back of β by ϕ. Likewise, the push-forward
of a one-form α on B is the one form on ϕ(B) defined by ϕ∗α = (ϕ−1)∗α.

We can associate a vector field β] to a one-form β on a Riemannian manifold M through
the equation

〈βx,vx〉 =
〈〈
β]
x,vx

〉〉
x

, (3.6)

where 〈 , 〉 denotes the natural pairing between the one form βx ∈ T ∗xM and the vector vx ∈
TxM and where

〈〈
β]
x,vx

〉〉
x

denotes the inner product between β]
x ∈ TxM and vx ∈ TxM

induced by the metric g. In coordinates, the components of β] are given by βa = gabβb.

A type
(

m
n

)
-tensor at X ∈ B is a multilinear map

T : T ∗XB × ...× T ∗XB︸ ︷︷ ︸
m copies

×TXB × ...× TXB︸ ︷︷ ︸
n copies

→ R. (3.7)

T is said to be contravariant of order m and covariant of order n. In a local coordinate
chart

T(α1, ..., αm,V1, ...,Vn) = T i1...im
j1...jnα1

i1 ...α
m
im

V j1
1 ...V jn

n , (3.8)

where αk ∈ T ∗XB and Vk ∈ TXB.

Suppose ϕ : B → S is a regular map and T is a tensor of type
(

m
n

)
. Push-forward of T

by ϕ is denoted ϕ∗T and is a
(

m
n

)
-tensor on ϕ(B) defined by

(ϕ∗T)(x)(α1, ..., αm,v1, ...,vn) = T(X)(ϕ∗α1, ..., ϕ∗αm, ϕ∗v1, ..., ϕ∗vn), (3.9)

where αk ∈ T ∗xS,vk ∈ TxS,X = ϕ−1(x), ϕ∗(αk) ·vl = αk · (Tϕ ·vl) and ϕ∗(vl) = T (ϕ−1)vl.
Similarly, pull-back of a tensor t defined on ϕ(B) is given by ϕ∗t = (ϕ−1)∗t.

A two-point tensor T of type
(

m r
n s

)
at X ∈ B over a map ϕ : B → S is a multilinear
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map

T : T ∗XB × ...× T ∗XB︸ ︷︷ ︸
m copies

×TXB × ...× TXB︸ ︷︷ ︸
n copies

× T ∗xS × ...× T ∗xS︸ ︷︷ ︸
r copies

×TxS × ...× TxS︸ ︷︷ ︸
s copies

→ R, (3.10)

where x = ϕ(X).
Let w : U → TS be a vector field, where U ⊂ S is open. A curve c : I → S, where I is

an open interval, is an integral curve of w if

dc
dt

(r) = w(c(r)) ∀ r ∈ I. (3.11)

If w depends on the time variable explicitly, i.e., w : U × (−ε, ε) → TS, an integral curve is
defined by

dc
dt

= w(c(t), t). (3.12)

Let w : S × I → TS be a vector field. The collection of maps Ft,s such that for each s
and x, t 7→ Ft,s(x) is an integral curve of w and Fs,s(x) = x is called the flow of w. Let w
be a C1 vector field on S, Ft,s its flow, and t a C1 tensor field on S. The Lie derivative
of t with respect to w is defined by

Lwt =
d

dt

(
F ∗t,stt

)∣∣∣
t=s

. (3.13)

If we hold t fixed in t then we denote

£wt =
d

dt

(
F ∗t,sts

)∣∣∣
t=s

, (3.14)

which is called the autonomous Lie derivative. Therefore

Lwt =
∂

∂t
t + Lwt. (3.15)

Let y be a vector field on S and ϕ : B → S a regular and orientation preserving C1 map.
The Piola transform of y is

Y = Jϕ∗y, (3.16)

where J is the Jacobian of ϕ. If Y is the Piola transform of y, then the Piola identity
holds:

Div Y = J(div y) ◦ ϕ. (3.17)

A p-form on a manifold M is a skew-symmetric
(

0
p

)
-tensor. The space of p-forms on

M is denoted by Ωp(M). If ϕ : M → N is a regular and orientation preserving C1 map and
α ∈ Ωp(ϕ(M)), then ∫

ϕ(M)

α =
∫

M

ϕ∗α. (3.18)

Let π : E → S be a vector bundle over a manifold S and E(S) be the space of smooth
sections of E and X (S) the space of vector fields on S. A connection on E is a map
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∇ : X (S)× E(S) → E(S) such that ∀ f, f1, f2 ∈ C∞(S), ∀ a1, a2 ∈ R

i) ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y, (3.19)
ii) ∇X(a1Y1 + a2Y2) = a1∇X(Y1) + a2∇X(Y2), (3.20)
iii) ∇X(fY) = f∇XY + (Xf)Y. (3.21)

A linear connection on S is a connection in TS, i.e., ∇ : X (S) × X (S) → X (S). In a
local chart

∇∂i∂j = γk
ij∂k, (3.22)

where γk
ij are Christoffel symbols of the connection and ∂i = ∂

∂xi . A linear connection is
said to be compatible with the metric of the manifold if

∇X 〈〈Y,Z〉〉 = 〈〈∇XY,Z〉〉+ 〈〈Y, ∇XZ〉〉 . (3.23)

It can be shown that ∇ is compatible with g if and only if ∇g = 0. Torsion of a connection
is defined as

T(X,Y) = ∇XY −∇YX− [X,Y], (3.24)

where
[X,Y][F ] = X[Y[F ]]−Y[X[F ]] ∀ F ∈ C∞(S), (3.25)

is the commutator of X and Y. ∇ is symmetric if it is torsion-free, i.e.,

∇XY −∇YX = [X,Y]. (3.26)

It can be shown that on any Riemannian manifold (S,g) there is a unique linear connection
∇ that is compatible with g and is torsion-free with the following Christoffel symbols

γk
ij =

1
2
gkl

(
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)
. (3.27)

This is the Fundamental Lemma of Riemannian Geometry [Lee, 1997] and this con-
nection is called the Levi-Civita connection.

Curvature tensor R of a Riemannian manifold (S,g) is a
(

1
3

)
-tensor R : T ∗xS ×

TxS × TxS × TxS → R defined as

R(α,w1,w2,w3) = α
(∇w1∇w2w3 −∇w2∇w1w3 −∇[w1,w2]w3

)
(3.28)

for α ∈ T ∗xS, w1,w2,w3 ∈ TxS. In a coordinate chart {xa}

Ra
bcd =

∂γa
bd

∂xc
− ∂γa

bc

∂xd
+ γa

ceγ
e
bd − γa

deγ
e
bc. (3.29)

Let us next review a few of the basic notions of geometric continuum mechanics.
A body B is identified with a Riemannian manifold B and a configuration of B is a

mapping ϕ : B → S, where S is another Riemannian manifold. The set of all configurations
of B is denoted C. A motion is a curve c : R→ C; t 7→ ϕt in C.

For a fixed t, ϕt(X) = ϕ(X, t) and for a fixed X, ϕX(t) = ϕ(X, t), where X is position
of material points in the undeformed configuration B. The material velocity is the map
Vt : B → R3 given by

Vt(X) = V(X, t) =
∂ϕ(X, t)

∂t
=

d

dt
ϕX(t). (3.30)
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Similarly, the material acceleration is defined by

At(X) = A(X, t) =
∂V(X, t)

∂t
=

d

dt
VX(t). (3.31)

In components

Aa =
∂V a

∂t
+ γa

bcV
bV c, (3.32)

where γa
bc is the Christoffel symbol of the local coordinate chart {xa}.

Here it is assumed that ϕt is invertible and regular. The spatial velocity of a regular
motion ϕt is defined as

vt : ϕt(B) → R3, vt = Vt ◦ ϕ−1
t , (3.33)

and the spatial acceleration at is defined as

a = v̇ =
∂v
∂t

+∇vv. (3.34)

In components

aa =
∂va

∂t
+

∂va

∂xb
vb + γa

bcv
bvc. (3.35)

Let ϕ : B → S be a C1 configuration of B in S, where B and S are manifolds. Recall
that the deformation gradient is denoted by F = Tϕ. Thus, at each point X ∈ B, it is a
linear map

F(X) : TXB → Tϕ(X)S. (3.36)

If {xa} and {XA} are local coordinate charts on S and B, respectively, the components of
F are

F a
A(X) =

∂ϕa

∂XA
(X). (3.37)

The deformation gradient may be viewed as a two-point tensor

F(X) : T ∗xS × TXB → R; (α,V) 7→ 〈α, TXϕ ·V〉. (3.38)

Suppose B and S are Riemannian manifolds with inner products 〈〈, 〉〉X and 〈〈, 〉〉x based at
X ∈ B and x ∈ S, respectively. Recall that the transpose of F is defined by

FT : TxS → TXB, 〈〈FV,v〉〉x =
〈〈
V,FTv

〉〉
X

(3.39)

for all V ∈ TXB, v ∈ TxS. In components

(FT(X))A
a = gab(x)F b

B(X)GAB(X), (3.40)

where g and G are metric tensors on S and B, respectively. On the other hand, the dual
of F, a metric independent notion, is defined by

F∗(x) : T ∗xS → T ∗XB; 〈F∗(x) · α,W〉 = 〈α,F(X)W〉 (3.41)

for all α ∈ T ∗xS,W ∈ TXB. Considering bases ea and EA for S and B, respectively, one
can define the corresponding dual bases ea and EA. The matrix representation of F∗ with
respect to the dual bases is the transpose of F a

A. F and F∗ have the following local
representations

F = F a
A

∂

∂xa
⊗ dXA, F∗ = F a

AdXA ⊗ ∂

∂xa
. (3.42)
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The right Cauchy-Green deformation tensor is defined by

C(X) : TXB → TXB, C(X) = F(X)T F(X). (3.43)

In components
CA

B = (FT )A
aF a

B . (3.44)

It is straightforward to show that

C[ = ϕ∗(g) = F∗gF, i.e. CAB = (gab ◦ ϕ)F a
AF b

B . (3.45)

Let ϕt : B → S be a regular motion of B in S and P ⊂ B a p-dimensional submanifold.
The Transport Theorem says that for any p-form α on S

d

dt

∫

ϕt(P)

α =
∫

ϕt(P)

Lvα, (3.46)

where v is the spatial velocity of the motion. In a special case when α = fdv and P = U is
an open set

d

dt

∫

ϕt(P)

fdv =
∫

ϕt(P)

[
∂f

∂t
+ div(fv)

]
dv. (3.47)

Balance of linear momentum for a body B is satisfied if for every nice open set
U ⊂ B

d

dt

∫

ϕt(U)

ρvdv =
∫

ϕt(U)

ρbdv +
∫

∂ϕt(U)

tda, (3.48)

where ρ = ρ(x, t) is mass density, b = b(x, t) is body force vector field and t = t(x, n̂, t) is
the traction vector. Note that according to Cauchy’s stress theorem there exists a contra-
variant second-order tensor σ = σ(x, t) (Cauchy stress tensor) with components σab such
that t = 〈〈σ, n̂〉〉. Note that 〈〈, 〉〉 is the inner product induced by the Riemmanian metric g.
Equivalently, balance of linear momentum can be written in the undeformed configuration
as

d

dt

∫

U
ρ0VdV =

∫

U
ρ0BdV +

∫

∂U

〈〈
P, N̂

〉〉
dA, (3.49)

where, P = Jϕ∗σ (the first Piola-Kirchhoff stress tensor) is the Piola transform of Cauchy
stress tensor. Note that P is a two-point tensor with components P aA. Note also that this
is the balance of linear momentum in the deformed (physical) space written in terms of
some quantities that are defined with respect to the reference configuration.

Let us emphasize that balance of linear momentum has no intrinsic meaning because
integrating a vector field is geometrically meaningless, i.e., it is coordinate dependent. Geo-
metrically, forces (interactions) take values in the cotangent bundle of the ambient space
manifold (see [Kanso, et al., 2007] for a detailed discussion). The ambient space manifold
is not linear in general and hence balance of forces cannot be written in an integral form,
in general. In classical continuum mechanics, this balance law makes use of the linear (or
affine) structure of Euclidean space.

Balance of angular momentum is satisfied for a body B if for every nice open set
U ⊂ B

d

dt

∫

ϕt(U)

ρx× vdv =
∫

ϕt(U)

ρx× bdv +
∫

∂ϕt(U)

x× 〈〈σ, n̂〉〉 da. (3.50)

Balance of linear momentum, similar to balance of angular momentum, makes use of the
linear structure of Euclidean space and this does not transform in a covariant way under a
general change of coordinates.
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Balance of energy holds for a body B if, for every nice open set U ⊂ B
d

dt

∫

ϕt(U)

ρ

(
e +

1
2
〈〈v,v〉〉

)
dv =

∫

ϕt(U)

ρ (〈〈b,v〉〉+ r) dv +
∫

∂ϕt(U)

(〈〈t,v〉〉+ h) da, (3.51)

where e = e(x, t), r = r(x, t) and h = h(x, n̂, t) are internal energy per unit mass, heat
supply per unit mass and heat flux, respectively.

4 Geometric Linearization of Nonlinear Elasticity

Marsden and Hughes [1983] formulated the theory of linear elasticity by linearizing nonlinear
elasticity assuming that reference and ambient space manifolds are Riemannian. Here we
review their ideas and obtain some new results. We denote by C the set of all deformation
mappings ϕ : B → S. We do not discuss boundary conditions, but assume that deformation
mappings satisfy all the displacement (essential) boundary conditions. One can prove that

C is an infinite-dimensional manifold. For
◦
ϕt∈ C, an element of T◦

ϕt

C is tangent to a curve

ϕt,s ∈ C such that ϕt,0 =
◦
ϕt. This is called variation of the configuration U = δϕt. Note

that U = d
ds |s=0ϕs.

Suppose π : E → C is a vector bundle over C and let f : C → E be a section of this
bundle. Let us assume that E is equipped with a connection ∇. With these assumptions,
linearization of f(ϕ) at

◦
ϕt∈ C is defined as

L
(
f ;

◦
ϕt

)
:= f(

◦
ϕt) + ∇f(

◦
ϕt) ·U, U ∈ T◦

ϕt

C, (4.1)

where
∇f(

◦
ϕt) ·U =

d

ds
αs · f(ϕt,s)

∣∣∣
s=0

(4.2)

and αs is parallel transport of members of Eϕt,s to E◦
ϕt

along a curve ϕt,s tangent to U at
◦
ϕt.

In [Marsden and Hughes, 1983] it is shown that deformation gradient has the following

linearization about
◦
ϕt.

L
(
F;

◦
ϕ
)

=
◦
F +∇U, (4.3)

where
◦
F= T

◦
ϕt. One can think of F as a vector-valued one-form with the local representation

F = F a
A ea ⊗ dXA. (4.4)

Thus
ε := L

(
F;

◦
ϕ
)
− ◦

F= Ua|A ea ⊗ dXA (4.5)

can be thought of as a geometric linearized strain, which is a vector-valued one form. See
[Yavari, 2007] for more discussion on this geometric strain and constitutive equations written
in terms of it. Material velocity is linearized at follows.

L
(
V;

◦
ϕ
)

=
◦
V +U̇, (4.6)
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where U̇ is the covariant time derivative of U, i.e.

U̇a =
∂Ua

∂t
+ γa

bc

◦
V

b

U c. (4.7)

This can be rewritten as

U̇a =
(

∂Ua

∂Xb
+ γa

bcU
c

)
◦
V

b

. (4.8)

Or U̇ = ∇ ◦
V
U.

Material acceleration is linearized as follows.

L
(
A;

◦
ϕ
)

=
◦
A +Ü + R(

◦
V,U,

◦
V), (4.9)

where R is the curvature tensor of (S,g). In components, the linearized acceleration has
the following form

Üa +Ra
bcdV

bU cV d. (4.10)

Proof of this result is lengthy but straightforward. Note that this is a generalization of
Jacobi equation. Note also that in [Marsden and Hughes, 1983] it is implicitly assumed that
R = 0.

We know that transpose of deformation gradient is defined as

〈〈FW, z〉〉g =
〈〈

W,FTz
〉〉

G
∀ W ∈ TXB, z ∈ TxS. (4.11)

Thus

L
(
FT;

◦
ϕ
)

=
◦
F

T

+ (∇U)T. (4.12)

The right Cauchy-Green strain tensor has the following linearization

L
(
C;

◦
ϕt

)
=
◦
C +

◦
F

T

∇U + (∇U)T
◦
F . (4.13)

Or in component form

L
(
C;

◦
ϕt

)
AB

=
◦
CAB +gab

◦
F

a

A U b|B + gab

◦
F

b

B Ua|A. (4.14)

Balance of angular momentum in component form reads

P aAF b
A = P bAF a

A. (4.15)

This also implies that
◦
P

aA ◦
F

b

A =
◦
P

bA ◦
F

a

A. (4.16)

Linearization of this relation about
◦
ϕ reads

◦
P

aA ◦
F

b

A+
◦
P

aA

U b|A +
(◦
C

aA

c
B

) ◦
F

b

A U c|B

=
◦
P

bA ◦
F

a

A+
◦
P

bA

Ua|A +
(◦
C

bA

c
B

) ◦
F

a

A U c|B , (4.17)
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Using (4.16) this is simplified to read

◦
P

aA

U b|A +
(◦
C

aA

c
B

) ◦
F

b

A U c|B =
◦
P

bA

Ua|A +
(◦
C

bA

c
B

) ◦
F

a

A U c|B . (4.18)

In terms of Cauchy stress this reads

◦
σ: ∇u+

◦
a: ∇u = ∇u :

◦
σ +∇u :

◦
a . (4.19)

Or in components
◦
σ

ac
ub|c+

◦
a

ab

c
d uc|d =

◦
σ

bc
ua|c+

◦
a

ba

c
d uc|d, (4.20)

where [Marsden and Hughes, 1983]

◦
a

ac

b
d =

1
J

F c
AF d

B

◦
A

aA

b
B and u = U ◦ ϕ−1. (4.21)

Independent works have been done in the literature of geometric calculus of variations
(see [Nishikawa, 2002] and [Baird, et al., 2004] and references therein) on similar problems.
There, the idea is to obtain the first and second variations of “energy” of maps between two
given Riemannian manifolds. In the following, we make a connection between these efforts
and geometric elasticity.

4.1 Linearization of Elasticity Using Variation of Maps

Here we follow Nishikawa [2002] but with a notation closer to ours. The main motivation for
studying variational problems in [Nishikawa, 2002] is to understand geodesics in Riemannian
manifolds as minimization problems. Interestingly, these studies are closely related to elas-
ticity. Let us consider two Riemannian manifolds (B,G) and (S,g) and a time-dependent
motion ϕt : B → S. What Nishikawa denotes by dϕ is F in our notation, which is an element
of T ∗XB ⊗ TxS, i.e. a vector-valued one-form.3 One can then define an inner product on
T ∗XB ⊗ TxS such that in this inner product

|F|2 = tr(C). (4.22)

Energy density of the map ϕ is defined as

e(ϕ,X) =
1
2

tr(C(X)). (4.23)

Note that this is a very special case of energy density in elasticity. Energy of the map ϕ is
then defined as

E(ϕ) =
∫

B
e(ϕ,X) dV (X). (4.24)

Let us denote the Levi-Civita connections induced by G and g by ∇0 and ∇, respectively.
One can define a connection ∇̃ = ϕ∗∇ by

∇̃V(y ◦ ϕ) = ∇(ϕ∗V)y ∀ y ∈ Tϕ(X)S, V ∈ TXB. (4.25)

Consider a reference deformation map
◦
ϕt and a C∞ variation of it ϕt,s such that s ∈ I =

3For a discussion on reformulating continuum mechanics using bundle-valued forms see [Kanso, et al.,
2007].
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(−ε, ε) and ϕt,0 =
◦
ϕt. Let us define

U = Ut(X) =
d

ds

∣∣∣
s=0

ϕt,s(X). (4.26)

First variation of deformation gradient is defined as

∇ ∂
∂s

F(s)
∣∣∣
s=0

= ∇ ∂
∂s

(
∂ϕt,s

∂X

) ∣∣∣∣∣
s=0

= ∇U. (4.27)

Note that for each s ∈ I and W ∈ TXB, F(s)W ∈ Tϕt,s(X)S, i.e. F(s)W lies in different
tangent spaces for different values of s and this is why covariant derivative with respect to
s is used.

Tension field of ϕ is defined as

τ (ϕ) = tr(∇F), (4.28)

or in components
τa(ϕ) = F a

A|BGAB . (4.29)

It can be shown that [Nishikawa, 2002]

d

ds
E(ϕt,s)

∣∣∣
s=0

=
∫

B
〈FT, ∇U〉dV = −

∫

B
〈〈τ (ϕ),U〉〉dV, (4.30)

where the first integrand on the right-hand side in components reads
(
FT

)B
bU

b|B . A C∞

map ϕt ∈ C∞(B,S) is called a harmonic map if its tension field τ (ϕ) vanishes identically.
In other words, ϕt is a harmonic map if for any variation ϕt,s

d

ds
E(ϕt,s)

∣∣∣
s=0

= 0. (4.31)

In elasticity, this corresponds to an equilibrium configuration in the absence of body and
inertial forces.

The left Cauchy-Green strain tensor for the perturbed motion ϕt,s is defined as

CAB(s) = F a
A(s)F b

B(s)gab(s). (4.32)

Note that for any s ∈ I and W ∈ TXB, C(s)W ∈ TXB, i.e., C(s)W lies in the same linear
space for all s ∈ I. Thus, the first variation of C can be calculated as

d

ds
CAB(s) = ∇ ∂

∂s
F a

A(s)F b
B(s)gab(s) + F a

A(s)∇ ∂
∂s

F b
B(s)gab(s). (4.33)

Note also that [Nishikawa, 2002]

∇ ∂
∂s

(
∂ϕt,s

∂XA

)
= ∇ ∂

∂XA

(
∂ϕt,s

∂s

)
. (4.34)

Therefore
d

ds

∣∣∣
s=0

CAB(s) = Ua|A
◦
F

b

B gab+
◦
F

a

A U b|B gab, (4.35)

which is identical to (4.13).
We know that material free energy density has the following form [Marsden and Hughes,
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1983]
Ψ = Ψ(X, t,C). (4.36)

Thus
Ψ(s) = Ψ(X, t,C(s)). (4.37)

We also know that

Ψ(s) = Ψ(0) +
[

d

ds

∣∣∣
s=0

Ψ(s)
]

s + o(s). (4.38)

Thus

d

ds

∣∣∣
s=0

Ψ(s) =
∂
◦
Ψ

∂
◦
C
·
(

∇U ·G ◦
F

T

+G
◦
F

T

·∇U
)

=
1
2
◦
S ·

(
∇U ·G ◦

F
T

+G
◦
F

T

·∇U
)

,

(4.39)

is the linearization of Ψ and where
◦
S is the second Piola-Kirchhoff stress. Using such ideas

one can linearize all the governing equations of nonlinear elasticity about a given reference
motion

◦
ϕt. In this work, we are interested in obtaining the governing equations of linearized

elasticity covariantly using energy balance and its symmetry properties.

5 A Covariant Formulation of Linearized Elasticity

There are two possibilities for postulating covariance in linearized elasticity: (i) To postulate
invariance of energy balance under spatial diffeomorphisims of the ambient space and then
linearizing the energy balance about a given motion (Linearization of Covariance), and (ii)
To first write energy balance for a perturbed motion and then postulate its invariance under
spatial diffeomorphisms of the ambient space (Covariance of Linearized Energy Balance).
In this section, we study the consequences of both postulates.

5.1 Linearization of Covariant Energy Balance

For the sake of simplicity, we use the material energy balance. Let us first define

E(X, t,g) = e(ϕt(X), t,g(ϕt(X))). (5.1)

We know that under a spatial diffeomorphism ξt : S → S [Yavari, et al., 2006]

E′(X, t,g) = E(X, t, ξ∗g), (5.2)

where
ξ∗g = (Tξ)∗ · g · Tξ, (5.3)

is the pull-back of g by ξt. Therefore, at time t = t0

Ė′ = Ė +
∂E

∂g
: LgW, (5.4)

where W = w ◦ϕt and w = ∂
∂tξt. Material balance of energy for the motions

◦
ϕt and

◦
ϕ
′
t (at

time t = t0), respectively, reads

∫

U
ρ0

(
◦̇
E +

〈〈 ◦
V,

◦
A

〉〉)
dV =

∫

U
ρ0

(〈〈 ◦
B,

◦
V

〉〉
+

◦
R

)
dV +

∫

∂U

(〈〈 ◦
T,

◦
V

〉〉
+

◦
H

)
dA, (5.5)
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and

∫

U
ρ0

(
◦̇
E +

∂
◦
E

∂g
: LgW +

〈〈 ◦
A,

◦
V +W

〉〉)
dV =

∫

U
ρ0

(〈〈 ◦
B,

◦
V +W

〉〉
+

◦
R

)
dV

+
∫

∂U

(〈〈 ◦
T,

◦
V +w

〉〉
+

◦
H

)
dA. (5.6)

Note that
◦
ϕ
′
t was defined in (2.31). Subtracting (5.5) from (5.6), one obtains

∫

U
ρ0

(
∂
◦
E

∂g
: LWg +

〈〈 ◦
A,W

〉〉)
dV =

∫

U

〈〈
ρ0

◦
B,W

〉〉
+

∫

∂U

〈〈 ◦
T,W

〉〉
dA. (5.7)

Similarly, for the motion ϕt,s

∫

U
ρ0

(
∂E

∂g
: LWs

g + 〈〈A,Ws〉〉
)

dV =
∫

U
〈〈ρ0B,Ws〉〉+

∫

∂U
〈〈T,Ws〉〉 dA, (5.8)

where Ws = w ◦ ϕt,s. Therefore, for an arbitrary vector field w we have

∫

U
ρ0

[
∂E

∂g
: LWs

g − ∂
◦
E

∂g
: LWg + 〈〈A,Ws〉〉 −

〈〈 ◦
A,W

〉〉]
dV

=
∫

U
ρ0

(
〈〈B,Ws〉〉 −

〈〈 ◦
B,W

〉〉)
+

∫

∂U

(
〈〈T,Ws〉〉 −

〈〈 ◦
T,W

〉〉)
dA. (5.9)

Note that
∫

∂U

〈〈 ◦
T,W

〉〉
dA =

∫

U

(〈〈
Div

◦
P,W

〉〉
+

◦
τ : ω+

◦
τ : k

)
dV, (5.10)

∫

∂U
〈〈T,Ws〉〉 dA =

∫

U
(〈〈Div P,Ws〉〉+ τ : ωs + τ : ks) dV, (5.11)

where,
◦
τ=

◦
P
◦
F and τ = PF are Kirchhoff stresses and ω and k have the coordinate repre-

sentations kab = 1
2

(
Wa|b + Wb|a

)
and ωab = 1

2

(
Wa|b −Wb|a

)
with similar representations

for ωs and ks. Note also that

L
(
〈〈A,Ws〉〉 −

〈〈 ◦
A,W

〉〉
;
◦
ϕt

)
=

〈〈
Ü + R(

◦
V,U,

◦
V),W

〉〉

+
〈〈 ◦

A, ∇UW
〉〉

, (5.12)

L
(
〈〈B,Ws〉〉 −

〈〈 ◦
B,W

〉〉
;
◦
ϕt

)
=

〈〈
∇U

◦
B,W

〉〉
+

〈〈 ◦
B, ∇UW

〉〉
, (5.13)

L
(
τ : (ωs + ks)− ◦

τ : (ω + k);
◦
ϕt

)
=

[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: (ω + k)

+
◦
τ : ∇U∇W, (5.14)

L
(
〈〈Div P,Ws〉〉 −

〈〈
Div

◦
P,W

〉〉
;
◦
ϕt

)
=

〈〈
Div

(◦
C ·∇U

)
,W

〉〉

+
〈〈

Div
◦
P,∇UW

〉〉
. (5.15)
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For the derivative of the internal energy we have the following linearization.

L
(

∂E

∂g
: LWs

g − ∂
◦
E

∂g
: LWg;

◦
ϕt

)
= ∇U

(
∂
◦
E

∂g

)
: LWg +

∂
◦
E

∂g
: ∇U(LWg). (5.16)

Thus, (5.9) is now simplified to read

∫

U
ρ0

[
∇U

(
∂
◦
E

∂g

)
: LWg +

∂
◦
E

∂g
: ∇U(LWg) +

〈〈
Ü + R(

◦
V,U,

◦
V),W

〉〉

+
〈〈 ◦

A,∇UW
〉〉 ]

dV =
∫

U
ρ0

(〈〈
∇U

◦
B,W

〉〉
+

〈〈 ◦
B,∇UW

〉〉)

+
∫

U

{〈〈
Div

(◦
C ·∇U

)
,W

〉〉
+

〈〈
Div

◦
P, ∇UW

〉〉

+
[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: (ω + k)+

◦
τ : ∇U(ω + k)

}
dV. (5.17)

We can choose W such that ∇UW, ∇Uω, and ∇Uk are all zero. In this case arbitrariness
of W and U implies that

Div
(◦
C ·∇U

)
+ ρ0∇U

◦
B= ρ0

(
Ü + R(

◦
V,U,

◦
V)

)
, (5.18)

∇U
◦
τ= 2ρ0∇U

(
∂
◦
E

∂g

)
=
◦
P ∇U +

(◦
C ·∇U

) ◦
F, (5.19)

[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]T

=
◦
P ∇U +

(◦
C ·∇U

) ◦
F . (5.20)

Now substituting these back into (5.17) one obtains

∫

U
ρ0

[
∂
◦
E

∂g
: ∇Uk +

〈〈 ◦
A, ∇UW

〉〉]
dV =

∫

U
ρ0

〈〈 ◦
B,∇UW

〉〉

+
∫

U

{ 〈〈
Div

◦
P,∇UW

〉〉
+

◦
τ : ∇U(ω + k)

}
dV. (5.21)

Note that, as a consequence of covariance of energy balance for the motion
◦
ϕt, (5.21) is

trivially satisfied. Therefore, we have proven the following proposition.

Proposition 5.1. Linearization of covariant energy balance is equivalent to linearization
of all the field equations of elasticity.

5.2 Covariance of Linearized Energy Balance

The more interesting case is when one first linearizes energy balance about a reference motion
and then postulates its invariance under arbitrary spatial diffeomorphisms. Subtracting the
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balance of energy for the motion
◦
ϕt from that of ϕt,s yields

∫

U
ρ0

(
Ė − ◦̇

E + 〈〈A,V〉〉 −
〈〈 ◦

A,
◦
V

〉〉)
dV =

∫

U
ρ0

(
〈〈B,V〉〉 −

〈〈 ◦
B,

◦
V

〉〉)
dV

+
∫

U
ρ0

(
R− ◦

R
)

dV +
∫

∂U

(
〈〈Div P,V〉〉 −

〈〈
Div

◦
P,

◦
V

〉〉)
dV

+
∫

U

(
τ : ∇V− ◦

τ : ∇ ◦
V

)
dV +

∫

∂U
(H− ◦

H)dA = 0. (5.22)

Now let us linearize the integrands. Body force power has the following linearization

L
(
〈〈B,V〉〉 −

〈〈 ◦
B,

◦
V

〉〉
;
◦
ϕt

)
=

d

ds

∣∣∣
s=0

〈〈αs ·B,αs ·V〉〉

=
〈〈

d

ds

∣∣∣
s=0

αs ·B,V
〉〉

+
〈〈

◦
B,

d

ds

∣∣∣
s=0

αs ·V
〉〉

=
〈〈

∇U

◦
B,

◦
V

〉〉
+

〈〈 ◦
B, U̇

〉〉
. (5.23)

Similarly, inertial force power has the following linearization

L
(
〈〈A,V〉〉 −

〈〈 ◦
A,

◦
V

〉〉
;
◦
ϕt

)
=

d

ds

∣∣∣
s=0

〈〈αs ·A, αs ·V〉〉

=
〈〈

d

ds

∣∣∣
s=0

αs ·A,V
〉〉

+
〈〈

A,
d

ds

∣∣∣
s=0

αs ·V
〉〉

=
〈〈

Ü + R(
◦
V,U,

◦
V),

◦
V

〉〉
+

〈〈 ◦
A, U̇

〉〉
, (5.24)

where R is the curvature tensor of the ambient space manifold. Traction power is linearized
as follows

L
(
τ : ∇V− ◦

τ : ∇ ◦
V;

◦
ϕt

)
=

[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: ∇ ◦

V +
◦
τ : ∇U̇, (5.25)

L
(
〈〈Div P,V〉〉 −

〈〈
Div

◦
P,

◦
V

〉〉
;
◦
ϕt

)
=

〈〈
Div

(◦
C ·∇U

)
,
◦
V

〉〉
+

〈〈
Div

◦
P, U̇

〉〉
.

(5.26)

Internal energy part of energy balance is linearized as follows. Note that

d

dt

∫

U
ρ0EdV =

∫

U
ρ0

∂E

∂C
: ϕ∗(Lvg)dV =

∫

U
ρ0ϕ

∗
(

∂E

∂g

)
: ϕ∗(Lvg)dV

=
∫

U
ρ0

∂E

∂g
: LvgdV. (5.27)

Thus4

L
(

d

dt

∫

U
ρ0EdV ;

◦
ϕt

)
=

d

dt

∫

U
ρ0

◦
E dV

+
∫

U

[
∇U

(
ρ0

∂E

∂g

)
: Lvg + ρ0

∂E

∂g
: ∇U(Lvg)

]
dV. (5.28)

4Note that because g is time independent Lvg = Lvg.
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Therefore, material balance of energy for the perturbed motion reads
∫

U

[
∇U

(
ρ0

∂E

∂g

)
: Lvg + ρ0

∂E

∂g
: ∇U(Lvg)

]
dV

+
∫

U
ρ0

(〈〈
Ü + R(

◦
V,U,

◦
V)−∇U

◦
B,

◦
V

〉〉
+

〈〈 ◦
A − ◦

B, U̇
〉〉)

dV

=
∫

U
ρ0 dR ·U dV +

∫

∂U
dH ·UdA

+
∫

U

{[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: ∇ ◦

V +
◦
τ : ∇U̇

}
dV

+
∫

U

(〈〈
Div

(◦
C ·∇U

)
,
◦
V

〉〉
+

〈〈
Div

◦
P, U̇

〉〉)
dV. (5.29)

Under a spatial diffeomorphism ξt : S → S, we have

U′ = ξt∗U. (5.30)

Because U̇ = ∇ ◦
V
U, we have

U̇′ = ∇
(ξt∗

◦
V+w)

(ξt∗U) = ξt∗
(
∇ ◦

V
U

)
+ ∇w(ξt∗U). (5.31)

Hence at t = t0
U̇′ = U̇ + Z, (5.32)

where Z = ∇WU = ∇U ·W. We assume that at t = t0

◦
A
′
− ◦

B
′
=
◦
A − ◦

B, Ü′ + R′(
◦
V
′
,U′,

◦
V
′
)−∇U′

◦
B
′
= Ü + R(

◦
V,U,

◦
V)−∇U

◦
B . (5.33)

Now under this spatial reframing, perturbed energy balance (5.29) at time t = t0 reads
∫

U

[
∇U

(
ρ0

∂E

∂g

)
: (Lvg + Lwg) + ρ0

∂E

∂g
: [∇U(Lvg) + ∇U(Lwg)]

]
dV

+
∫

U
ρ0

( 〈〈
Ü + R(

◦
V,U,

◦
V)−∇U

◦
B,

◦
V +W

〉〉

+
〈〈 ◦

A − ◦
B, U̇ + Z

〉〉)
dV

=
∫

U

{[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: (∇ ◦

V +∇W)+
◦
τ : (∇U̇ + ∇Z)

}
dV

+
∫

U

(〈〈
Div

(◦
C ·∇U

)
,
◦
V +W

〉〉
+

〈〈
Div

◦
P, U̇ + Z

〉〉)
dV. (5.34)
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Subtracting (5.29) from (5.34) yields

∫

U

[
∇U

(
ρ0

∂
◦
E

∂g

)
: Lwg + ρ0

∂
◦
E

∂g
: ∇U(Lwg)

]
dV

+
∫

U
ρ0

(〈〈
Ü + R(

◦
V,U,

◦
V)−∇U

◦
B,W

〉〉
+

〈〈 ◦
A − ◦

B,Z
〉〉)

dV

=
∫

U

{[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: ∇W+

◦
τ : ∇Z

}
dV

+
∫

U

(〈〈
Div

(◦
C ·∇U

)
,W

〉〉
+

〈〈
Div

◦
P,Z

〉〉)
dV. (5.35)

Using the governing equations of the motion
◦
ϕt, i.e.

Div
◦
P +ρ0

◦
B= ρ0

◦
A, (5.36)

◦
τ= 2ρ0

∂
◦
E

∂g
, (5.37)

◦
τ=

◦
τ

T
, (5.38)

(5.35) is simplified to read

∫

U
∇U

(
ρ0

∂
◦
E

∂g

)
: Lwg dV +

∫

U
ρ0

〈〈
Ü + R(

◦
V,U,

◦
V)−∇U

◦
B,W

〉〉
dV

=
∫

U

[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]
: ∇WdV +

∫

U

〈〈
Div

(◦
C ·∇U

)
,W

〉〉
dV. (5.39)

Now arbitrariness of W and U implies that

Div
( ◦
A ·∇U

)
+ ρ0∇U

◦
B= ρ0

(
Ü + R(

◦
V,U,

◦
V)

)
, (5.40)

∇U
◦
τ= 2ρ0∇U

(
∂
◦
E

∂g

)
=
◦
P ∇U +

(◦
C ·∇U

) ◦
F, (5.41)

[ ◦
P ∇U +

(◦
C ·∇U

) ◦
F

]T

=
◦
P ∇U +

(◦
C ·∇U

) ◦
F . (5.42)

Thus, we have proved the following proposition.

Proposition 5.2. Covariance of the linearized energy balance is equivalent to linearization
of all the field equations of elasticity.

In other words, one can covariantly obtain all the governing equations of linearized elasticity
by postulating covariance of the linearized energy balance.

6 Conclusions

The main motivation for the present work is to understand the connection between governing
equations of linearized elasticity and energy balance and its invariance (or covariance).
We first looked at the case where the ambient space is Euclidean. Having a reference
motion

◦
ϕt, we quadratized the energy balance about

◦
ϕt. This leads to two identities:
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linearized energy balance and quadratized energy balance. We showed that postulating
invariance of the linearized energy balance under isometries of the ambient space will give
all the governing equations of linearized elasticity. We also showed that the quadratized
energy balance is trivially invariant under isometries of the ambient space. Classical linear
elasticity corresponds to choosing a stress-free reference motion. For such reference motions
all the terms in the linearized energy balance are identically zero and the quadratized energy
balance is identical to what is called “energy balance” or power theorem in classical linear
elasticity.

We then studied the case where the ambient space is a Riemannian manifold (S,g). We
first reviewed some previous ideas in geometric linearization of nonlinear elasticity and pre-
sented some new results. We also showed the close connection between these ideas and those
of geometric calculus of variations. We considered two notions of covariance: (i) lineariza-
tion of covariant energy balance and (ii) covariance of the linearized energy balance. We
showed that postulating either (i) or (ii) will give all the governing equations of linearized
elasticity. Of course, (ii) is more interesting. In other words, if one postulates invariance of

the linearized energy balance about a reference motion
◦
ϕt under spatial diffeomorphisms of

S (the same diffeomorphism acts on
◦
ϕt and its variations ϕt,s), one obtains all the govern-

ing equations of linearized elasticity. In this sense, linearized elasticity can be covariantly
derived.
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