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Abstract In this work some implications of a recent
model for the mechanical behavior of biological mem-

branes [20] are exploited by means of a prototypical

one-dimensional problem. We show that the knowledge

of the membrane stretching elasticity permits to estab-

lish a precise connection among surface tension, bend-
ing rigidities and line tension during phase transition

phenomena. For a specific choice of the stretching en-

ergy density, we evaluate these quantities in a mem-

brane with coexistent fluid phases, showing a satisfac-
tory comparison with the available experimental mea-

surements. Finally, we determine the thickness profile

inside the boundary layer where the order-disorder tran-

sition is observed.

1 Introduction

The mechanical behavior of biological membranes is

regulated by the interaction of a very rich list of fea-

tures, such as their elastic properties, their chemical
composition and their capability of undergoing ordering-

disordering phenomena. It is also well known that their

special constitutive nature enables them to sustain bend-
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ing moments but not in-plane shear stresses (unless
their viscosity is accounted for).

The resulting effects of this interaction are evidenced
by a wide variety of configurations that can be main-

tained by biological membranes at equilibrium for given

values of overall chemical composition, controlled tem-

perature or applied osmotic pressure [8,15,31,43].

In the last decade, the growing availability of ad-

vanced microscopy and imaging techniques has led to

a blooming of interest in the study of biological mem-
branes, revealing often spectacular examples of the in-

tricate interplay of the various features characterizing

their behavior (see, e.g., [6]).

The main literature on the modeling of the mechani-

cal behavior of biological membranes can be traced back

to the pioneering works of Canham [10] and Helfrich

[28], who derived elastic models describing the bend-
ing behavior of lipid bilayers, the building blocks of all

types of biological membranes. These and similar mod-

els of the bilayer bending elasticity have been fruitfully

exploited in the literature for the study of equilibrium

shapes of biomembranes, including red blood cells [10,
32], the effects of embedded proteins or rod-like inclu-

sions [2,9] and the analysis of phase transition phenom-

ena leading to the formation of buds [34], with the pos-

sible coexistence of phase domains characterized by dif-
ferent bending rigidities [1,7].

Aside from the study of the bending properties of

such structures, a significant area in the literature on
biomembranes is devoted to the analysis of the order-

disorder transition in planar lipid bilayers [3,11,26,31,

37] and to the effects of special molecules (such as choles-

terol) in relation to this type of transition [33,38,41].
Within this framework, a remarkable issue is the anal-

ysis of line tension at the boundary of ordered - dis-

ordered domains: it is now recognized that, together
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with bending rigidities, line tension plays a major role

in maintaining non-spherical configurations observed in

experiments [3,29,34,46].

In the effort of deducing a unitary model of biomem-

branes where their elastic behavior, their possibility of
undergoing ordering-disordering phenomena and their

chemical composition are consistently taken in consid-

eration, in [20,48] the expression of the energy regu-

lating the thermo-chemo-mechanical behavior of bio-
logical membranes was derived, within the framework

of a formal asymptotic 3D-to-2D reduction, based on

thinness assumptions. This procedure can be gener-

alized by means of a dimension reduction of an elas-

tic energy accounting for the submacroscopic structure
[18]. A rigorous derivation of the two-dimensional en-

ergy of biomembranes undergoing large deformations

from their three-dimensional properties is currently in

preparation [16]. Analogous efforts in order to extract
an areal energy density from the three-dimensional en-

ergy density of a bilayer endowed with non vanishing

spontaneous curvature have been recently carried out

in [35].

The model proposed in [20,48], here summarized
in Sec.2, reveals the possibility of describing the ge-

ometrical (shape) and conformational (state of order)

behavior of the lipid bilayer on the basis of one single

ingredient: the in-plane membrane stretching elastic-
ity, regulating the material response with respect to lo-

cal surface dilatations. A rigorous analysis of coexistent

fluid-phases membranes, endowed of an energy density

obtainable from the one deduced in [20], is carried out

in [12].

In essence, the major point in [20,48] is that the

bilayer stretching elasticity is enough to describe its

order-disorder transition (together with the influence

of chemical composition), to determine the profile and

the length of the boundary layer where the membrane
thickness passes from a thicker domain (ordered phase)

to a thinner one (disordered phase), to evaluate the

corresponding line tension and finally to determine the

bending rigidities in both phases.

Here, in order to elucidate the feasibility of this

model, a prototypical planar problem has been stud-

ied. On the basis of a specific Landau expansion of the

stretching energy density – calibrated on the basis of

the experimental estimates provided by [26] – the line
tension, the thickness profile inside the boundary layer

and the area compressibility and bending moduli are

calculated, showing a satisfactory agreement with the

data known in the experimental and theoretical litera-
ture. In order to keep the analysis as simple as possible,

here we confine our attention to a planar patch of mem-

brane, although we remark that the issues discussed in

this work play a crucial role in the out-of-plane behavior

of membranes undergoing phase transition phenomena:

these issues will be further discussed in future papers.

In this work we illustrate how, by making use of the

results obtained in [20,48], it is possible to establish

a precise connection among several features of lipid bi-

layers: line tension, area compressibility modulus, bend-
ing moduli and order-disorder transition zone. Further-

more, we establish a link among these features and mea-

surable quantities, such as the transition temperature,

the latent heat and the thickness difference at the order-

disorder transition. We believe that elucidating these
connections moves a significant step forward towards

understanding the complex phenomena taking place in

biological membranes.

The approach originally proposed in [20,48] can be

easily extended in order to consider the effects of spon-

taneous curvature and the effects arising from the pres-

ence of electric charges on the inner and outer mem-
brane surfaces [40], which play a fundamental role on

the stability of thin elastic membranes [21,23,24]. Fur-

ther studies of the dynamics of moving phase bound-

aries and of the role of the line tension may be per-

formed by following the path traced in [19]. These issues
will be discussed in a series of forthcoming papers.

2 Summary of the model

In this section we briefly recall the main results ob-
tained in [20,48], together with a schematic description

of the approach followed in these works. The main result

is the derivation of a new surface energy density for the

lipid bilayer, building block of all biomembranes, which

gives the possibility of deducing bending rigidities, line
tension and thickness profile inside the boundary layer

during the order-disorder transition from simple exper-

imental data on the stretching behavior of the mem-

brane.

In [20,48] attention was restricted to initially pla-

nar membranes, i.e. spontaneous curvature has been

neglected: this issue will be discussed in a forthcoming
paper.

Introduce an orthonormal reference frame (e1, e2, e3)

and assume that the reference configuration of the mem-
brane is a prismatic region B0 of constant thickness h0
in direction e3 and with a flat mid-surface Ω in the

plane spanned by (e1, e2). Points of B0 are denoted by

x = x+ ze3, (1)

where x = xe1+ye2 and z ∈ (−h0/2, h0/2). Denote by

f the deformation map of B0 and by F = ∇f the de-

formation gradient. Thus, the stored Helmholtz energy
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can be expressed as

E (f ) =

∫

B0

W (F) dV =

∫

Ω

∫ h0/2

−h0/2

W (F) dz dΩ, (2)

where W is the purely elastic Hemholtz energy density.

The surface energy density is, then,

ψ(f ) =

∫ h0/2

−h0/2

W (F) dz. (3)

Biological membranes of interest for this work are char-
acterized by the so called in-plane fluidity, correspond-

ing to the impossibility of sustaining shear stresses in

planes perpendicular to e3, unless some viscosity is

present. This constitutive assumption can be used to

restrict the point wise dependence of the Helmholtz en-
ergy density W on a suitable list of three invariants of

C = Cijei ⊗ ej = FTF, (i, j = 1, 2, 3) (see [16] for the

proof),

η1(x ) = det[Cαβ(x )],

η2(x ) = C33(x ),

η3(x ) = detC(x ),

where α, β = 1, 2 and where C33 = Ce3 · e3. The kine-
matical interpretation of these three invariants shows

that
√
η1 is the areal stretch of planes perpendicular to

the direction e3,
√
η2 is the stretch in direction e3 and√

η3 is the variation of volume.

Fig. 1 Schematic representation of the deformation (4) of a
prismatic, plate-like reference configuration B0 into the cur-
rent configuration B. The gray box depicts the space occupied
by two lipid molecules, their volume being conserved during
the deformation.

In order to capture the out-of-plane deformations

of the membrane and the occurrence of inhomogeneous

thickness deformations, we restrict the membrane kine-

matics by the following ansatz (see Fig.1)

f (x ) = g(x) + zφ(x)n(x), (4)

where the map g(x) defines the position of the current

mid-surface of the membrane ω = g(Ω), where n is

the outward normal to ω and where φ(x) = h(x)/h0
is the thickness stretch, with h the current thickness.

This ansatz permits to make explicit the dependence of

the invariants ηi (i = 1, 2, 3) on the variable z so that,

after the explicit integration (3), it is finally possible
to perform the expansion of the surface energy density

ψ(f ) in powers of the reference thickness h0.

As matter of fact, this expression can be further

simplified on the basis of the substantial bulk incom-

pressibility of the lipid molecules. Indeed, let the gray

area in Fig.1 to represent the volume occupied by a

cluster of lipid molecules: the experimental evidence
[26,37] suggests that the molecular volume of biolog-

ical membranes can be considered constant in a wide

range of temperature. Consistently with the ansatz (4),

this condition can be imposed by means of a quasi -

incompressibility constraint

detC(x, 0) = η1(x, 0)η2(x, 0) = 1 for all x ∈ Ω. (5)

For a general deformation g , the constraint (5) ex-
presses a first order approximation in the variable z of

the exact incompressibility constraint η3 = 1. Neverthe-

less, if the membrane undergoes a plane deformation,

so that ω = g(Ω) is contained in the plane z = 0, the

condition (5) coincides with the exact incompressibility
constraint (see details in [20]). This is the special case

taken in consideration in this work.

These positions motivate the introduction of a re-
striction of the Helmholtz energy densityW to Ω in the

class of quasi-incompressible deformations,

w(J) =W (η1, η2, η3)
∣∣∣
z=0

=W (J2, J−2, 1), (6)

where we have set

J(x) =
√
η1(x, 0), (7)

which can be interpreted as the areal stretch of the

mid-surface Ω. With these settings, the quasi - incom-

pressibility constraint takes the form φJ = 1.

Under the ansatz (4), under the assumptions of in-

plane fluidity and bulk quasi-incompressibility, the thick-
ness expansion of (3) up to h30 finally gives the main

result obtained in [20,48], that is the expression of the

surface energy density of a lipid bilayer undergoing in-

homogeneous thickness deformations,

ψ = ϕ(J) + κ(J)H2 + κG(J)K + α(J)||gradωĴ ||2, (8)

where H and K are, respectively, the mean and Gaus-

sian curvatures of the mid-surface ω, where

ϕ(J) = h0 w(J) (9)
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can be interpreted as the first order, stretching energy

density of the membrane and where the bending rigidi-

ties amount to

k(J) =
h20
6
ϕ′′(J), kG(J) =

h20
12J

ϕ′(J), (10)

where ′ = d/dJ . The last term in (8) is a penalty for
spatial changes of J . Here Ĵ is the spatial description

of J , defined by the composition Ĵ ◦ g = J , and gradω
is the gradient with respect to points of the current

mid-surface ω; the penalty modulus is

α(J) =
h20

24J3
ϕ′(J). (11)

Classically, the bending energy is expressed in terms

of the current surface ω rather than on the reference
surface Ω, so that it makes sense to define the bending

rigidities on the current configuration (see, e.g., [6])

κ(J) =
h20
6J
ϕ′′(J), κG(J) =

h20
12J2

ϕ′(J). (12)

Observe that, as expected from thin shells elasticity

(see, e.g., [36]), both the bending rigidities k, kG are
of order h30.

The expression (8) is consistent with several mod-
els previously introduced in the literature of biological

membranes. For a curved membrane with J fixed, it

results (up to a constant) that ψ = kH2 + kGK, which

is the well known bending Helfrich energy density for

lipid bilayer membranes [28]. For a flat membrane (H =
K = 0) with thickness inhomogeneities, the surface en-

ergy density (8) is reminiscent of the asymptotic model

deduced by Coleman and Newman (see, e.g., [14]) for

the cold drawing of thin polymeric rods and films. Also,
without the non local term α(J)||gradωĴ ||2 and with-

out the explicit knowledge of the bending rigidities, it

coincides with the energy determined in [5].

The analysis carried out in this work is based on sev-

eral simplifying assumptions, both regarding the mem-

brane kinematics and its constitutive behavior. For ex-
ample, we observe that a finer description of the lipid

kinematics requires the possibility of describing the so

called tilt deformations, corresponding to deviations from

the normality preserving condition [3,27]. Here we ne-

glect this type of deformations, which would require a
richer kinematics than the one represented by (4), possi-

bly by making use of Structured Deformations (see, e.g.,

[17,19]). Nevertheless, we point out that the approach

followed in [20,48] can be easily generalized in order to
account for more general constitutive assumptions, for

chemical composition, temperature dependence and for

the presence of spontaneous curvature.

3 Stretching energy

The main ingredient of the two-dimensional membrane

model derived in (8) is the surface Helmholtz energy

ϕ(J), which regulates the in-plane stretching behavior

of the membrane and can describe the phase transition

phenomena taking place in lipid bilayers.
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Fig. 2 The stretching energy ϕ(J) adapted from [26], for a
temperature T ∼ 30◦. The areal stretch Jo = 1 corresponds
to the unstressed, reference configuration B0.

The lipid bilayer is formed by two facing monolayers

of lipid molecules, each of which is characterized by a

hydrophilic head and a hydrophobic tail. Depending on

temperature and on the surrounding conditions, each
lipid molecule of the bilayer admits an ordered state

(Lo), where the hydrophobic tail appears straightened

and taller, and a disordered state (Ld), where the tail

appears curly and shortened.
By raising temperature, the hydrocarbon tails of the

phospholipid molecules undergo a significant thickness

reduction from the liquid ordered phase Lo to the liquid

disordered phase Ld: this justifies the choice of the bi-

layer current thickness h as a good coarse-grained order
parameter for the description of the Lo−Ld transition.

Furthermore, due to the quasi - incompressibility con-

dition (5), also the areal stretch J can be used as order

parameter. Both choices have been widely adopted in
literature (see, e.g., [26,37,43]).

The experimental evidence clearly shows that for a

given chemical composition there may exist a tempera-

ture range where the Lo and Ld phases coexist, organiz-

ing themselves in domains called rafts. In closed mem-
branes, these domains are typically detectable by cur-

vature inhomogeneities, reflecting the occurrence of dif-

ferent bending rigidities [6]. The expressions (12) for the

bending rigidities shows how the order-disorder transi-
tion, described by the stretching energy ϕ(J), is con-

nected with bending behavior of the membrane. Fur-

thermore, as we will prove, the stretching energy den-
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sity ϕ(J) also determines the line tension occurring at

the phase boundary.

A classical method to determine ϕ(J) in the frame-

work of the Lo−Ld transition is the construction of an

appropriate phenomenological Landau expansion of the
stretching free energy in powers of the current thickness

h, or in powers of the areal stretch J (see, e.g., [26,33,

37]). The advantage of the Landau expansion is that its

phenomenological parameters can be related to measur-

able quantities, such as the transition temperature, the
latent heat and the order parameter jump (see [26] and

the treatise [43] for a detailed discussion).

By assuming that for a fixed temperature the mem-

brane natural configuration B0 coincides with the flat,
ordered Lo phase, in which J = Jo = 1, the stretching

energy is chosen in the form

ϕ(J) = a0 + a1J + a2J
2 + a3J

3 + a4J
4, (13)

where the phenomenological parameters ai (i = 0, ..., 4)
depend in general on temperature and chemical com-

position. In the lack of specific experimental data and

in order to show the numerical feasibility of the model,

we calibrate these parameters on the basis of the exper-
imental estimates provided by [26]. These experimental

data have been also used in [33] to describe the temper-

ature driven order-disorder transition in lipid bilayers.

For a temperature T ∼ 30◦, we find

a0 = 2.03, a1 = −7.1, a2 = 9.23,

a3 = −5.3, a4 = 1.13,
(14)

dimensionally expressed in [J ][m]−2. It is worth point-

ing out that this specific choice is merely indicative and

is meant to show the numerical feasibility of the cur-

rent approach. Clearly, in order to get a finer descrip-
tion of the membrane behavior, specific data on the the

bilayer chemical composition and the temperature are

required; these measurable data can be incorporated in

our approach (see [20] for details) although we neglect

them in the subsequent analysis.

4 Order-disorder transition in a planar

membrane

The study of the equilibrium problem for a planar lipid
membrane described by the energy (13) with the phe-

nomenological parameters given by (14) permits to elu-

cidate the occurrence of thickness inhomogeneities in

the membrane and allows one to calculate the corre-
sponding bending rigidities, the shape of the boundary

layer between the ordered and disordered phases and to

determine the corresponding line tension.

Fig. 3 A scheme of the problem here considered, represent-
ing the smooth transition from the thicker Lo domain to the
thinner Ld domain under a traction Σ in the e1 direction.

The analysis carried out in this work should be in-
tended as a first step of a more general problem, where

the order-disorder phenomena take place on a closed,

curved biological membrane in aqueous solution. Aside

analytical difficulties arising from the geometry, in that

case there are further sources of complication arising
from the nature of boundary conditions, which may be

represented by the external control of the osmotic pres-

sure or of the enclosed volume or mass (see, e.g., [22]).

Following [14], we consider a membrane that in the

reference configuration B0 has the form of a thin plate

of homogeneous thickness h0 (direction e3), width B

(direction e2) and length L (direction e1) – see Fig.3.

The reference mid-surface Ω of the membrane corre-
sponds to z = 0 and its lateral edges are defined by

x = ±L/2 and y = ±B/2.
The three-dimensional membrane deformation is fur-

ther restricted with respect to (4), according to

f (x ) = g(x)e1 + ye2 + zφ(x)e3 (15)

so that the width B is kept constant. Calculating the

deformation gradient of f we get

F = ∇f =



gx 0 0

0 1 0

zφx 0 φ


 , (16)

where the subscript x denotes differentiation with re-

spect to x. The displacement component along e1 is
u(x) = g(x)− x. After setting

λ(x) = gx(x) (17)

for the stretch in direction e1, we have detF = λφ
and J = λ. The incompressibility condition then im-

plies φ = λ−1, so that the membrane deformation is

completely determined by λ.
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Denoting by λ̂ the spatial description of λ, so that

the composition λ̂ = λ ◦ g−1 holds, observe that the

gradient terms occurring in (8)

||gradωĴ ||2 = ||gradωλ̂||2 = λ2xλ
−2, (18)

so that the energy per reference area (8) reduces to

ψ(λ, λx) = ϕ(λ) +
h20
24
λ−5ϕ′(λ)λ2x (19)

where, since here J = λ, we denote ′ = d/dλ. Following
[14], we introduce the functions

γ(λ) = −h
2
0

12
λ−5ϕ′(λ), β(λ) =

1

2
γ′(λ), (20)

so that the surface energy density can be recast as

ψ(λ, λx) = ϕ(λ) − 1

2
γ(λ)λ2x. (21)

With γ a negative constant rather than a function of λ,
the energy functional (21) falls within the framework

of Cahn-Hilliard models of phase transitions in fluids.

This model has received extensive attention in litera-

ture (see, e.g., [4]) and it is based on the fundamental
assumption that γ < 0, which is required in order to

penalize the spatial inhomogeneities of λ.

With γ a function of λ, the form of (21) is consistent

with the energy density deduced in [14] for the draw-

ing of polymeric films. As well as in the Cahn-Hilliard
model, the condition γ(λ) < 0 is necessary in order to

guarantee a physically meaningful behavior. This con-

dition is actually satisfied by the energy density (13).

We assume that the membrane is under the action
of opposite tractions of intensity Σ (force per refer-

ence length) on the edges x = ±L/2, although the case

for which the end displacements are controlled may be

treated in an analogous way (see, e.g., [47]). Due to

the presence of nonlocal terms λx in the constitutive
response of the bar, it is in general necessary to in-

troduce hyper-tractions Γ which perform work corre-

sponding to changes of the displacement gradient ux
[39]. With these positions, the mechanical work on the
bar can be written as

W (u, ux) = B [Σu]
+L/2
−L/2 +B [Γux]

+L/2
−L/2 . (22)

The total potential energy corresponding to a deforma-

tion g is then

E (g) = B

∫ L/2

−L/2

ψ(λ, λx) dx− W (u, ux). (23)

We now impose the stationarity of (23) in order to find
the Euler-Lagrange equations and boundary conditions.

To this end, introduce a perturbation η(x) and let

gε(x) := g(x) + εη(x). (24)

By standard calculations based on the arbitrariness of

η, the vanishing of the first variation δE = dE(gε)/dε|ε=0

of (23) gives the following Euler-Lagrange equation,

Σ = ϕ′(λ) + β(λ)λ2x + γ(λ)λxx = const., (25)

which must be satisfied for all x in (−L/2, L/2), and
the boundary conditions

[Γ + γ(λ)λx]−L/2 = [Γ + γ(λ)λx]+L/2 = 0. (26)

Here we are interested in describing the localization of

deformations leading to the possible coexistence of a
thicker region (the ordered, Lo phase) and a thinner

region (the disordered, Ld phase), connected by a tran-

sition boundary layer.

Effects arising from finite boundaries will not be
considered in this analysis so that, consistently with

[14], we take L unbounded, with −∞ < x < ∞. Fur-

thermore, we assume Γ = 0 at the bar ends, so that

(26) imposes that λx must tend to zero as x tends to

±∞.
Each nontrivial bounded solution of (25) obeys the

equation

x− x̄ =

∫ λ(x)

λ(x̄)

(
−2

γ(λ)

∫ λ

λa

[ϕ′(ζ)−Σ] dζ

)−
1

2

dλ, (27)

where x̄ is arbitrary and where λa is the value of λ at
a place or limit where λx = 0. The derivation of (27) is

classical and can be found in [14].

For γ(λ) < 0 and depending on the values of the

applied traction Σ > 0, the nontrivial, bounded solu-

tions of (25) have been completely characterized in [14].
According to the number of points where λx = 0, these

must fall in one of the following classes:

1. λ is strictly monotone, if λx 6= 0 for any finite point;

2. λ exhibits a bulge or a neck, if there exists precisely

one value of x where λx = 0 in which λ(x) attains
a minimum or a maximum, respectively;

3. λ is periodic, if there is more than one finite value

of x at which λx = 0.

Strictly monotone solutions are of specific interest of

this work. These are characterized by

limx→−∞ λ = λ∗, limx→+∞ λ = λ∗

limx→±∞ λx = 0, limx→±∞ λxx = 0.

(28)

The analysis in [14] shows that these can be attained

provided that the applied traction equals the Maxwell

stress ΣM , which is determined by the equal area rule

∫ λ∗

λ∗

[ϕ′(λ)−ΣM ] dλ = 0, (29)
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with ΣM = ϕ′(λ∗) = ϕ′(λ∗) – see Fig.4. These solu-

tions are uniquely determined to within a reflection or

translation. The monotonicity of λ(x) permits to deter-

mine x as a function of λ from (27), with λa ≡ λ∗ and

x̄ arbitrary, such that λ∗ < λ(x̄) < λ∗.

For the specific energy (13), it results (see Fig.4)

ΣM = 5.92mNm−1, λ∗ = 1.025, λ∗ = 1.308. (30)

Assuming h0 = 45.5 Å for the reference thickness of the
ordered phase (adapted from [26]) and by making use

of (13,20), the numerical integration of (27) gives the

function λ(x) within the range (λ∗, λ
∗).
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Fig. 4 The function ϕ′(J) and the value of the Maxwell
stress ΣM = 5.92mN m−1, resulting from the equal area
rule (gray regions).
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Fig. 5 The function λ(x) (up) and the thickness profile h(x)
(down) in correspondence of Σ = ΣM . Lengths expressed in

Å.

The solution and the thickness profile inside the

boundary layer are depicted in Fig.5. As λ(x) is strictly

monotone, the limit values (λ∗, λ
∗) are attained at in-

finity, but the obtained solution shows a strong localiza-

tion of deformation inside a boundary layer of length
≃ 15 Å, where the transition from λ∗ to λ∗ is almost

completely concentrated. As it was expected, the length

of the boundary layer and the membrane thickness have

the same order of magnitude. This estimate of the length
of the boundary layer is in good agreement with other

theoretical estimates, in particular we recall [3].

Outside of the boundary layer the stretch is practi-

cally constant, with the thickness amounting to 44.4 Å ≃
h∗ = h0/λ∗ and to 34.8 Å ≃ h∗ = h0/λ

∗.

The two domains where the stretch is practically

equal to λ∗ and λ∗ are the Lo and Ld phases, respec-

tively. From (25), the Piola stress (per reference length)

in both phases is ΣM , whereas the Cauchy stress (per
current length) in the two domains amounts to

tLo = t∗ = ΣMλ∗ = 6.07mNm−1

tLd = t∗ = ΣMλ
∗ = 7.74mNm−1.

(31)

These values of surface tension are merely indica-

tive, since these are based on the special form of ϕ(J)

assumed in (13); nevertheless, these values are coher-

ent with the experimental estimates of surface stress
in ordered and disordered domains (see, e.g., [44]), ac-

cording to which the stress in the disordered phase is

sensibly higher than in the ordered phase. Also observe

that the calculated values of surface stress are compati-

ble with the range of physiologically accepted values of
membrane tension (0− 15mNm−1).

Furthermore, our estimates are consistent with the
analysis performed in [42], where the role played by

surface tension in changes of the lipid conformational

order has been investigated.

5 Energy minimization and line tension

In this section we show that the thickness profile deter-

mined in (27) is a global minimizer of the total potential

energy E in the class of smooth solutions which fulfill

the boundary conditions (28). Furthermore, we show

that this specific profile can be used in order deduce an
optimal value of the line tension between the ordered

and disordered phases.

The analysis of phase coexistence in fluid systems

classically follows two different theories: the gradient

theory and the sharp interface theory.

According to the gradient theory the order parame-

ter J is not allowed to undergo discontinuities and the
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analysis is based on the minimization of the total po-

tential energy

E =

∫

Ω

[
ϕ(J) + α(J)||gradωĴ ||2

]
dΩ − W . (32)

According to the sharp interface theory, the order pa-

rameter J is allowed to undergo discontinuities and the
total potential energy takes the form

F =

∫

Ω

ϕ(J) dΩ + σ ℓ(JJK) − W , (33)

where σ is the line tension (dimensionally, a force) be-
tween the two phases and where ℓ is the length of the

interface (a jump set, properly) across which J may

experience discontinuities.

A rigorous analysis shows that these two approaches

are intimately connected, since it can be proved that
minimizers of E converge (in a suitable sense) to min-

imizers of F (see, e.g., [4] for a detailed discussion of

this topic). Here, we deduce an optimal value of the line

tension by evaluating the global minima of the poten-

tial energy E in the class of solutions which fulfill the
boundary conditions (28).

As first thing, observe that by the identity ux(x) =

λ(x) − 1 the work term can be recast as follows

W = B

∫ L/2

−L/2

ΣMλdx −BΣML. (34)

Observe that ϕ(λ∗) − ΣMλ∗ = ϕ(λ∗) − ΣMλ
∗, so it

makes sense to introduce the function ϕ̃(λ) = ϕ(λ)+ c,

where

c = ΣMλ∗ − ϕ(λ∗) = ΣMλ
∗ − ϕ(λ∗), (35)

so that

ϕ̃(λ∗)−ΣMλ∗ = ϕ̃(λ∗)−ΣMλ
∗ = 0. (36)

Also observe that for λ 6= λ∗ and λ 6= λ∗, it results

ϕ̃(λ) −ΣMλ ≥ 0. (37)

First, make reference to the gradient approach. Follow-

ing the discussion in Sec.4, assume that the bar is sub-

ject to a traction ΣM , that λ(x) is monotone in the

interval (−L/2, L/2) and that λ → λ∗ as x → −L/2
and that λ→ λ∗ as x→ L/2.

Since L is unbounded, we take in consideration the
total potential energy per length unit E /L. By making

use of (34,36), for any profile which satisfies the bound-

ary conditions (28) it results

E

L
=
B

L

∫ L/2

−L/2

[
(ϕ̃(λ)−ΣMλ) −

γ(λ)

2
λ2x

]
dx+ d, (38)

where d = B(ΣM − c) is a constant.

We now prove that the profile determined in (27) by

the stationarity condition is a minimizer of E /L. The

argument of the minimization procedure is inspired by

the approach followed in [4]. By ϕ̃(λ) − ΣMλ ≥ 0, by

−γ(λ)λ2x ≥ 0, by the monotonicity of λ and by the
inequality a2 + b2 ≥ 2ab, it results that the following

inequality holds:

E

L
≥ B

L

∫ λ∗

λ∗

√
−2γ(λ) (ϕ̃(λ) −ΣMλ) dλ+ d, (39)

equality holding if and only if a = b, that is

ϕ̃(λ)−ΣMλ = −γ(λ)
2

λ2x. (40)

At this point consider that by (36)

ϕ̃(λ)−ΣMλ =

∫ λ

λ∗

(ϕ′(ζ) −ΣM ) dζ (41)

so that by integration of (40), we obtain exactly the

profile determined in (27). Thus, we have proved that
in the class of profiles which satisfy the limit bound-

ary conditions (28) the following minimum of the total

potential energy is attained

min

(
E

L

)
=

=
B

L

∫ λ∗

λ∗

√
−2γ(λ) (ϕ̃(λ) −ΣMλ) dλ+ d, (42)

provided λ(x) is given by (27).

Make now reference to the sharp interface approach.

More in detail, consider a configuration characterized

by λ = λ∗ for x < x0 and λ = λ∗ for x > x0, so
that in x = x0 there is a sharp transition. Here x0 is

an arbitrary finite point and also in this case the bar

is subjected to a traction ΣM . In this configuration, a

short calculation reveals that the total potential energy
(33) per length unit is

F

L
=
B

L
σ + d. (43)

Finally, the comparison of (38),(42) and (43) permits

to identify the line tension of the sharp interface model

with

σ :=

∫ λ∗

λ∗

√
−2γ(λ) (ϕ̃(λ)−ΣMλ) dλ. (44)

With reference to the numerical data (14), integration

of (44) gives

σ = 3.88 · 10−13N (45)
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which is consistent with the value 9 ± 0.3 · 10−13N

measured in experiments with specific reference to the

order-disorder transition (see, e.g., [6,44]).

Our results regarding the thickness profile and the

line tension are also consistent with other theoretical
analysis for lipid mono- and bi-layers, which are based

on the competition of stretching and tilt elasticity –

which is due to the fact that lipid molecules can de-

viate from the mid-surface normal (see, e.g., [3,27]).

According to our model characterized by a restricted
kinematics (4) which does not allow tilt deformations,

the role of tilt elasticity is here played by the nonlocal

modulus α(J).

6 Elastic moduli

In this section we deduce the numerical values of the
elastic moduli in a phase separated planar membrane in

which a liquid ordered phase Lo (λ = λ∗) and a liquid

disordered phase Ld (λ = λ∗) coexist under a traction

ΣM .

Area compressibility modulus. With reference to the stress
Σ = ϕ′(λ), which is expressed as a force per unit length

in the reference configuration, we can define the tangent

area compressibility modulus as

KA(λ) := ϕ′′(λ). (46)

Obviously, since ϕ(λ) is not quadratic, the value of KA

is not constant. For the specific choice of ϕ in (13),
the tangent value of KA in the ordered and disordered

phases is

KA(λ∗) = KA(λ
∗) = 181mNm−1. (47)

When this modulus is calculated in the origin (J = 1),

we obtain

KA(1) = 288mNm−1, (48)

showing a softening behavior. These values are consis-

tent with the existing experimental measurements. Also
observe that in the elastic range of the Lo phase, the

maximum areal stretch is δA/A0 = λ∗ − 1 = 0.025,

which is consistent with the critical rupture stretch of

lipid bilayers [43].

Bending rigidity. Regarding the bending rigidity, the
expression (12)1 is in good agreement with the theoret-

ical and experimental estimates available in literature

(see, e.g., [8,25,36,38,41]). For the numerical values in

the ordered and disordered phases at equilibrium, we

obtain

κLo = κ(λ∗) = 6.10 · 10−19J, (49)

κLd = κ(λ∗) = 4.78 · 10−19J, (50)

which are consistent with experimentally measured val-

ues. More in detail, the ratio of these rigidities is

κLo

κLd

= 1.27 (51)

which is in perfect agreement with the experimental

measurements (see, e.g., [6,13,44]) according to which
the ordered phase has an higher bending rigidity.

Gaussian rigidity. The calculation of this rigidity is

crucially based on the spontaneous curvature of each
monolayer [30,45], whereas the model proposed in [20,

48] does not take in consideration this effect. Our nu-

merical estimates, based on the assumption that each

monolayer has zero spontaneous curvature, give values

of κG of order 10−21J , which is two orders of magnitude
lower than the current theoretical and experimental es-

timates (see, e.g., [36,44]). In order to overcome this

limit of our model and in order to enlighten the role of

spontaneous curvature within the framework of asymp-
totic theories for thin membranes, a refinement of the

model presented in [20,48] is currently in preparation.

Notwithstanding, even under the limiting assump-

tion of neglecting spontaneous curvature, we observe
that from (10)2 and (11) it results

α(J) =
kG(J)

2J2
, (52)

which discloses a possible connection between varia-

tions of the Gaussian rigidity and the order-disorder

transition. Indeed, it is well known that, by making use
of the Gauss-Bonnet Theorem, the role of the Gaussian

rigidity kG emerges in correspondence of the boundaries

of the regions in which J is constant, that is the phase

boundaries between the Lo and the Ld phases; on the

other side, the role of the function α(J) emerges in de-
termining the line tension inside the boundary layer, as

it was discussed in Sec.5. Both these issues are consis-

tent with the relation established in Eq.(52).

This issue will be further explored in a forthcoming
work where the role of spontaneous curvature has been

taken in consideration.
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