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This document is to show that the dihedral term in the 2
nd

 generation Brenner bond order 

potential (REBO) has a significant contribution to the bending stiffness calculation.  

 

Based on the Eq. (20) in Ref. [1], the bending modulus is calculated as the second 

derivative with respect to curvature.  
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where Ŵ  is the effective strain energy density after interlattice relaxation η , and is 

defined by Eq. (9) in Ref. [1]. 

ˆ ( , )W F K  = ( , , ( , ))W ηF K F K  

In the Appendix B of Ref. [1], it was shown that the derivative of W with respect to η  

vanishes, thus 

 
2b

W
C

κ

∂
=

∂
 

In Ref. [1] Eq. (21), the bending modulus is calculated through bond lengths and bond 

angles.  And Ref. [1] very clearly stated that this expansion is for a potential depends 

only on bond lengths and angles (and not on dihedral angles) 

The approach taken in Eq. (21) is correct when applied to the 1
st
 generation Brenner 

potential [2].  However, the 2
nd

 generation of Brenner bond order potential (REBO) [3] 

does come with a dihedral term b
DH

.   Therefore, the contribution from the dihedral term 

has to be considered additionally.  

 

For the 2
nd

 generation potential, the bond order term is  
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Following Eq. (7) in Ref. [1],  
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where 0 1
[ ]

2

RC

ij ij ji ijb b b
σ π σ π− −= + + Π  .  The radical term RC

ijΠ  vanishes for solid state 

structures.   

Due to the way Eq. (21) was taken, only the contribution from 0

ijb  was calculated.  The 

contribution from 
DH

ijb  was ignored.   

 

Here I show how the dihedral term 
DH

ijb  makes a contribution to the bending modulus 

calculation.  

According to the REBO paper [3], 
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where Tij is a constant for solid state structures, ijklΘ  is the space angle between the bond 

ik and bond jl, and for moderate deformation, the cutoff functions can be considered as 

constant 1.  

Following the same approach taken in the Appendix B of Ref. [1], at ground state,  
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At ground state, ijklΘ  goes to zero.  Thus,  
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The dihedral angles depend on the curvature and the bond directions.  Take zigzag 

nanotube for example, bond ij can be either perpendicular, or π/6 to the circumferential 

direction.  

 

 

 

 

 

 

 

 

 

 

The dihedral angle can be calculated as a function of curvature from three dimensional 

geometry.  For the bond perpendicular to the circumferential direction, among the four 

dihedral angles, Θijk1l1 = Θijk2l2 = 0, Θijk1l2 = Θijk2l1 .   

For the bond π/6 to the circumferential direction, Θijk2l2 = 0, Θijk1l2 = Θijk2l1.  

 

Similar observation is taken for armchair nanotube.  For the bond parallel to the 

circumferential direction, among the four dihedral angles, Θijk1l1 = Θijk2l2 = 0, Θijk1l2 

= Θijk2l1.   

For the bond π/3 to the circumferential direction, Θij1k2l2 = 0, Θij1k1l2 = Θij1k2l1. 
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The analytical results of the dihedral angles are obtained, but too long to show here.  

Plots of the dihedral angles and their derivatives are shown in following figures 

For armchair nanotubes 
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The derivatives of the dihedral angles with respect to curvature 
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For zigzag nanotubes 
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Derivative of dihedral angles with respect to the curvature 
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The final results of 
ijkl

κ

∂Θ

∂
 at ground state are shown in the table 

Bond direction dΘij1k1l1/dK dΘij1k1l2/dK dΘij1k2l1/dK dΘij1k2l2/dK 
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For atom i on an armchair nanotube, among the 3 bonds surrounding it, one is parallel to 

the circumferential direction, the other two bond are π/3 to it.  
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Exactly same result is obtained for zigzag.  

Therefore, the bending stiffness including the contribution of the dihedral term is  
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Here S0 is the area of a hexagon.  2
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The first part is directly taken from Ref [1], and the second part is the contribution of the 

dihedral term. 

On Brenner’s REBO paper [3], Tij = -0.00809675.  In our atomistic simulation, for some 

reason, Tij is taken as half of this number.  In this case,    

Cb = 2.246 × 10
-19

 Nm 



 

Following is a comparison between our atomistic simulation and the above theoretical 

analysis.  They match exactly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is about twice of what Ref [1] gives  (1.1 × 10
-19

 Nm).  Ref. [4] took a different 

approach, but ignored the contribution of the dihedral term for the 2
nd

 generation Brenner 

potential too.  Their result is identical to Ref. [1]. 
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