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Abstract

In the continuous theory of defects in nonlinear elastic solids, it is known that a distribution of disclina-
tions leads, in general, to a non-trivial residual stress field. To study this problem we consider the particular
case of determining the residual stress field of a cylindrically-symmetric distribution of parallel wedge discli-
nations. We first use the tools of differential geometry to construct a Riemaniann material manifold in
which the body is stress-free. This manifold is metric compatible, has zero torsion, but has non-vanishing
curvature. The problem then reduces to embed this manifold in Euclidean 3-space following the procedure of
a classical nonlinear elastic problem. We show that this embedding can be elegantly accomplished by using
Cartan’s method of moving frames and compute explicitly the residual stress field for various distributions
in the case of a neo-Hookean material.

1 Introduction

Disclinations were introduced by Volterra [1907] more than a century ago. Disclinations are the rotational
counterpart of dislocations (translational defects) but are not as well studied. For classical works on disclinations
see [Anthony, 2002; de Wit, 1960, 1972, 1973; Eshelby, 1966; Kossecka and de Wit, 1977; Kröner and Anthony,
1975; Kroupa and Lejček, 2002; Kuo and Mura, 1972; Romanov and Vladimirov, 1983; Romanov, 1993] and
references therein. See also [Romanov, 2003; Romanov and Kolesnikova, 2009] for recent reviews. Here, we are
interested in the continuum mechanics of nonlinear solids with distributed disclinations and the residual stress
field generated by distributed disclinations. Most of the existing treatments are linear with the exception of the
monograph of Zubov [1997].

In §2 we briefly review some definitions and concepts from differential geometry and, in particular, Cartan’s
moving frames. In §3 we start with a single wedge disclination in an infinite body and motivated by Volterra’s
construction, we build a manifold with a singular distribution of Riemann curvature. We then look at the
problem of a parallel cylindrically-symmetric distribution of wedge disclinations in §4. Using Cartan’s structural
equations we obtain an orthonormal coframe field and hence the material metric. Having the material metric
we calculate the residual stress field. Conclusions are given in §5.

2 Cartan’s Moving Frames and Geometric Elasticity

Throughout this paper, we rely on a comprehensive formulation of anelastic problems [Yavari and Goriely, 2011]
using differential geometry. We tersely review the theory before proceeding with the application to disclinations.

Differential Geometry. We first review some facts about affine connections on manifolds and geometry of
Riemann-Cartan manifolds. For more details see Nakahara [2003]. Let π : E → B be a vector bundle over a
manifold B and let E(B) be the space of smooth sections of E. A connection in E is a map ∇ : X (B)×E(B)→
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E(B) such that ∀ f, f1, f2 ∈ C∞(B), ∀ a1, a2 ∈ R:

i) ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y, (2.1)

ii) ∇X(a1Y1 + a2Y2) = a1∇X(Y1) + a2∇X(Y2), (2.2)

iii) ∇X(fY) = f∇XY + (Xf)Y. (2.3)

A linear connection on B is a connection in TB, i.e., ∇ : X (B) × X (B) → X (B). In a local chart {XA},
∇∂A∂B = ΓCAB∂C , where ΓCAB are the Christoffel symbols of the connection and ∂A = ∂

∂xA
are natural bases

for the tangent space corresponding to a coordinate chart {xA}. A linear connection is said to be compatible
with a metric G of the manifold if

∇X 〈〈Y,Z〉〉G = 〈〈∇XY,Z〉〉G + 〈〈Y,∇XZ〉〉G , (2.4)

where 〈〈., .〉〉G is the inner product induced by the metric G. It can be shown that ∇ is G-compatible if and
only if ∇G = 0, or in components

GAB|C =
∂GAB
∂XC

− ΓSCAGSB − ΓSCBGAS = 0. (2.5)

We consider an n-dimensional manifold B with the metric G and a G-compatible connection ∇. Then (B,G,∇)
is called a Riemann-Cartan manifold [Cartan, 1924, 1955, 2001].

The torsion of a connection is a map T : X (B)×X (B)→ X (B) defined by

T (X,Y) = ∇XY −∇YX− [X,Y]. (2.6)

In components in a local chart {XA}, TABC = ΓABC − ΓACB . The connection ∇ is symmetric if it is torsion-
free, i.e. ∇XY −∇YX = [X,Y]. It can be shown that on any Riemannian manifold (B,G) there is a unique
linear connection ∇ that is compatible with G and is torsion-free with the following Christoffel symbols

ΓCAB =
1

2
GCD

(
∂GBD
∂XA

+
∂GAD
∂XB

− ∂GAB
∂XD

)
. (2.7)

This is called the Levi-Civita connection. In a manifold with a connection, the curvature is a map R : X (B)×
X (B)×X (B)→ X (B) defined by

R(X,Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, (2.8)

or in components

RABCD =
∂ΓACD
∂XB

− ∂ΓABD
∂XC

+ ΓABMΓMCD − ΓACMΓMBD. (2.9)

Cartan’s Moving Frames. We consider a frame field {eα}Nα=1 that forms, at every point of a manifold B,
a basis for the tangent space. We assume that this frame is orthonormal, i.e. 〈〈eα, eβ〉〉G = δαβ . This is, in
general, a non-coordinate basis for the tangent space. Given a coordinate basis {∂A} an arbitrary frame field
{eα} is obtained by an SO(N,R)-rotation of {∂A} as eα = Fα

A∂A. We know that for the coordinate frame
[∂A, ∂B ] = 0 but for the non-coordinate frame field we have

[eα, eα] = −cγαβeγ , (2.10)

where cγαβ are components of the object of anhonolomy.
Connection 1-forms are defined as

∇eα = eγ ⊗ ωγα. (2.11)

The corresponding connection coefficients are defined as ∇eβeα = 〈ωγα, eβ〉 eγ = ωγβαeγ . In other words

ωγα = ωγβαϑ
β . Similarly, we have

∇ϑα = −ωαγϑγ , (2.12)
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and, ∇eβϑ
α = −ωαβγϑγ . In the non-coordinate basis, torsion has the following components

Tαβγ = ωαβγ − ωαγβ + cαβγ . (2.13)

Similarly, the curvature tensor has the following components with respect to the frame field

Rαβλµ = ∂βω
α
λµ − ∂λωαβµ + ωαβξω

ξ
λµ − ωαλξωξβµ + ωαξµc

ξ
βλ. (2.14)

The metric tensor has the simple representation G = δαβϑ
α ⊗ ϑβ . Assuming that the connection ∇ is

G-compatible, we obtain the following metric compatibility constraints on the connection 1-forms:

δαγω
γ
β + δβγω

γ
α = 0. (2.15)

Torsion and curvature 2-forms are defined as

T α = dϑα + ωαβ ∧ ϑβ , (2.16)

Rαβ = dωαβ + ωαγ ∧ ωγβ , (2.17)

where d is the exterior derivative. These are called Cartan’s structural equations. Bianchi identities read:

DT α := dT α + ωαβ ∧ T β = Rαβ ∧ ϑβ , (2.18)

DRαβ := dRαβ + ωαγ ∧Rγβ − ωγβ ∧Rαγ = 0, (2.19)

where D is the covariant exterior derivative.

Geometric Elasticity. Next we review a few of the basic notions of geometric continuum mechanics. A
body B is identified with a Riemannian manifold B and a configuration of B is a mapping ϕ : B → S, where
S is another Riemannian manifold. The set of all configurations of B is denoted by C. A motion is a curve
c : R → C; t 7→ ϕt in C. It is assumed that the body is stress free in the material manifold1. For a fixed t,
ϕt(X) = ϕ(X, t) and for a fixed X, ϕX(t) = ϕ(X, t), where X is position of material points in the undeformed
configuration B. The material velocity is the map Vt : B → Tϕt(X)S given by

Vt(X) = V(X, t) =
∂ϕ(X, t)

∂t
=

d

dt
ϕX(t). (2.20)

Similarly, the material acceleration is defined by

At(X) = A(X, t) =
∂V(X, t)

∂t
=

d

dt
VX(t). (2.21)

In components, Aa = ∂V a

∂t + γabcV
bV c, where γabc is the Christoffel symbol of the local coordinate chart {xa}.

Note that A does not depend on the connection coefficients of the material manifold. Here it is assumed
that ϕt is invertible and regular. The spatial velocity of a regular motion ϕt is defined as vt : ϕt(B) →
Tϕt(X)S, vt = Vt ◦ ϕ−1

t , and the spatial acceleration at is defined as a = v̇ = ∂v
∂t + ∇vv. In components

aa = ∂va

∂t + ∂va

∂xb
vb + γabcv

bvc. The deformation gradient is the tangent map of ϕ and is denoted by F = Tϕ.
Thus, at each point X ∈ B, it is a linear map

F(X) : TXB → Tϕ(X)S. (2.22)

If {xa} and {XA} are local coordinate charts on S and B, respectively, the components of F are

F aA(X) =
∂ϕa

∂XA
(X). (2.23)

1A material manifold is a differentiable manifold B equipped with the appropriate geometry such that the body is stress free.
The appropriate geometry is problem dependent.
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The transpose of F is defined by FT : TxS → TXB, 〈〈FV,v〉〉g =
〈〈

V,FTv
〉〉

G
, for all V ∈ TXB, v ∈ TxS. In

components (FT(X))Aa = gab(x)F bB(X)GAB(X), where g and G are metric tensors on S and B, respectively.
F has the following local representation

F = F aA
∂

∂xa
⊗ dXA. (2.24)

The right Cauchy-Green deformation tensor is defined by

C(X) : TXB → TXB, C(X) = F(X)TF(X). (2.25)

In components, CAB = (FT)AaF
a
B . It is straightforward to show that C[ = ϕ∗(g) = F∗gF, i.e. CAB =

(gab ◦ ϕ)F aAF
b
B . The following are the governing equations of nonlinear elasticity in material coordinates

[Yavari, et al, 2006]

∂ρ0

∂t
= 0, (2.26)

Div P + ρ0B = ρ0A, (2.27)

τT = τ , (2.28)

where P is the first Piola-Kirchhoff stress and τ = Jσ is the Kirchhoff stress. σ is the Cauchy stress, J =√
det g/ det G det F is the Jacobian, and σab = 1

JP
aAF bA.

Continuum mechanics of solids with distributed disclinations. A body with distributed disclinations
has residual stresses, in general. This means that classical nonlinear elasticity based on a stress-free reference
configuration cannot be directly used. One idea would be to locally decompose the deformation gradient into
elastic and in-elastic parts. This has been the main idea behind almost all the existing treatments of solids with
distributed defects. Here, instead we try to geometrically characterize a stress-free reference configuration. In
the case of solids with distributed disclinations this stress-free state can be realized as a Riemannian manifold
with a non-trivial geometry (see Fig. 2.1). This idea in the case of solids with distributed dislocations goes
back to Kondo [Kondo, 1955] and Bilby [Bilby, et al., 1955]. See also Yavari and Goriely [2011] for more
details. A similar idea was developed in [Ozakin and Yavari, 2009] for nonlinear thermoelasticity and in [Yavari,
2010] for solids with bulk growth. Here, we use a geometric framework for solids with distributed disclinations.
We assume a fixed given distribution of wedge disclinations and calculate the residual stress field induced by
disclinations.

U
ϕt(U)

ϕt

(B,G(t)) (S,g)

X x

Figure 2.1: Kinematic description of a continuum with distributed disclinations. The material manifold has a dynamic metric
G(t).

3 A Single Wedge Disclination

We start with a single wedge disclination in an infinite elastic solid. We use Volterra’s cut-and-weld approach
to construct the material manifold. We do this more systematically in the next section using Cartan’s method
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of moving frames. This was done elsewhere for dislocations [Yavari and Goriely, 2011].

Z Z

Θ
0

B0 B
Figure 3.1: Material manifold of a single positive wedge disclination. B is constructed from B0 using Volterra’s cut-and-weld
operation.

Material manifold. Let us denote the Euclidean 3-space by B0 with the flat metric

dS2 = dR2
0 +R2

0dΦ2
0 + dZ2

0 , (3.1)

in the cylindrical coordinates (R0,Φ0, Z0). Now cut B0 along the half 2-planes Φ0 = 0 and Φ0 = Θ0 (0 < Θ0 <
2π). We remove the line R = 0 and the region 0 < Φ0 < Θ0 and then identify the two half 2-planes (see Fig.
3.1). We denote the identified manifold by B. Following Tod [1994] we define the following smooth coordinates
on B:

R = R0, Φ = β(Φ0 −Θ0), Z = Z0, (3.2)

where

β =
2π

2π −Θ0
> 1. (3.3)

Note that if instead of removing the region 0 < Φ0 < Θ0 (positive disclination) we insert it in (negative
disinclination) we would have a wedge disclination of the opposite sign and in this case

β =
2π

2π + Θ0
< 1. (3.4)

In constructing B from B0, the Z-axis is removed. In the new coordinate system the flat metric (3.1) has the
following form

dS2 = dR2 +
R2

β2
dΦ2 + dZ2. (3.5)

Following Yavari and Goriely [2011], we define the following orthonormal coframe field

ϑ1 = dR, ϑ2 =
R

β
dΦ, ϑ3 = dZ. (3.6)

Note that dϑ1 = dϑ3 = 0 but dϑ2 = 1
βdR ∧ dΦ = 1

Rϑ
1 ∧ ϑ2. Note also that B has the following given singular

curvature 2-form:

RRΦ = −Θ0δ(R)dR ∧ dΦ = −βΘ0

R
ϑ1 ∧ ϑ2, (3.7)

where δ2(R) is the 2-dimensional Dirac delta distribution. In the next section we show how to use Cartan’s
moving frames to systematically construct the material manifold without any need for Volterra’s cut-and-weld
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process. The material metric for the disclinated body has the following representation

G =

 1 0 0

0 R2

β2 0

0 0 1

 . (3.8)

Residual stresses. In the absence of external forces we embed the body in the ambient space (S,g), which
is the flat Euclidean 3-space. We look for solutions of the form (r, φ, z) = (r(R),Φ, Z). Note that putting the
disclinated body in the appropriate material manifold the anelasticity problem is transformed to an elasticity
problem from a material manifold with a non-trivial geometry to the Euclidean ambient space. The deformation
gradient is F = diag(r′(R), 1, 1) and hence the incompressibility condition reads

J =

√
det g

det G
det F =

r′(R)r(R)

R/β
= 1. (3.9)

Assuming that r(0) = 0 to fix the translation invariance, this tells us that r = 1√
β
R so that

F =

 1√
β

0 0

0 1 0
0 0 1

 . (3.10)

For a neo-Hookean material we have [Marsden and Hughes, 1983]

P aA = µF aBG
AB − p

(
F−1

)
b
Agab, (3.11)

where p = p(R) is the unknown pressure field. The non-zero stress components read

P rR =
µ√
β
−
√
β p(R), PφΦ =

µβ2

R2
− β

R2
p(R), P zZ = µ− p(R). (3.12)

The corresponding Cauchy stresses are

σrr =
µ

β
− p(R), σφφ =

µβ2

R2
− β

R2
p(R), σzZ = µ− p(R). (3.13)

The only no-trivial equilibrium equation is P rA|A = 0, which reads (note that ΓRΦΦ = −R/β2, ΓΦ
RΦ = 1/R)

∂P rR

∂R
+

1

R
P rR − R√

β
PφΦ = 0. (3.14)

Thus
dp(R)

dR
= µ

(
1

β
− β

)
1

R
. (3.15)

If we consider a finite cylinder with outer radius Ro and zero traction at R = Ro, we have

p(R) =
µ

β
− µ

(
β − 1

β

)
ln

R

Ro
. (3.16)

The nonzero first Piola-Kirchhoff stress components read

P rR = µ
√
β

(
β − 1

β

)
ln

R

Ro
, PφΦ =

µ(β2 − 1)

R2

(
1 + ln

R

Ro

)
, P zZ = µ

(
1− 1

β

)
+ µ

(
β − 1

β

)
ln

R

Ro
. (3.17)
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Similarly, the Cauchy stresses (expressed as functions of R) read

σrr = µ

(
β − 1

β

)
ln

R

Ro
, σφφ =

µ(β2 − 1)

R2

(
1 + ln

R

Ro

)
, σzz = µ

(
1− 1

β

)
+ µ

(
β − 1

β

)
ln

R

Ro
. (3.18)

Remark 3.1. Note that in curvilinear coordinates, the components of a tensor may not have the same physical
dimensions. The stress components shown above are not the so-called physical components of Cauchy stress.
The following relation holds between the Cauchy stress components (unbarred) and its physical components
(barred) [Truesdell, 1953]

σ̄ab = σab
√
gaagbb no summation on a or b. (3.19)

Note that the spatial metric in cylindrical coordinates has the form diag(1, r2, 1). This means that for the
nonzero Cauchy stress components we have

σ̄rr = σrr, σ̄φφ = r2σφφ =
R2

β
σφφ = µ

(
β − 1

β

)(
ln

R

Ro
+ 1

)
, σ̄zz = σzz. (3.20)

Remark 3.2. When Θ0 � 1, we have

σ̄rr =
µΘ0

π
ln

R

Ro
, σ̄φφ =

µΘ0

π

(
ln

R

Ro
+ 1

)
, σ̄zz =

µΘ0

π

(
ln

R

Ro
+

1

2

)
. (3.21)

These are identical to the classical solutions using linearized elasticity [Eshelby, 1966; de Wit, 1972] when ν = 1
2 .

4 A Parallel Cylindrically-Symmetric Distribution of Wedge Discli-
nations

Given a torsion 2-form one can integrate it over an infinitesimal 2-manifold. Given a dislocation distribution
with a known dislocation density tensor we know the torsion tensor. Therefore, we can compute the torsion 2-
form. Knowing that the material connection is flat and metric compatible we can find the connection coefficients
[Yavari and Goriely, 2011]. In the case of disclinations the material connection is torsion-free but has a non-
vanishing curvature. Again, knowing that the material connection is metric compatible one can calculate the
connection 1-forms given a distributed disclination. We show this in the following example.

Motivated by the first example, let us consider a cylindrically-symmetric distribution of wedge disclinations
parallel to the Z-axis in the cylindrical coordinate system (R,Φ, Z).2 We use the following ansatz for the
coframe field

ϑ1 = dR, ϑ2 = f(R)dΦ, ϑ3 = dZ, (4.1)

for some unknown function f to be determined. Assuming metric compatibility the unknown connection 1-forms
are: ω1

2, ω
2
3, ω

3
1, i.e. the matrix of connection 1-forms has the following form

ω = [ωαβ ] =

 0 ω1
2 −ω3

1

−ω1
2 0 ω2

3

ω3
1 −ω2

3 0

 . (4.2)

For our disclinated body the material manifold is torsion-free and hence

T 1 = T 2 = T 3 = 0. (4.3)

Note that

dϑ1 = 0, dϑ2 = f ′(R)dR ∧ dΦ =
f ′(R)

f(R)
ϑ1 ∧ ϑ2, dϑ3 = 0. (4.4)

2A similar problem was considered in [Derezin and Zubov, 2011] but in 2D.
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By using Cartan’s first structural equations: T α = dϑα + ωαβ ∧ ϑβ , for α = 1, 2, 3 we obtain

ω1
12 = ω3

11 = 0, ω3
21 + ω1

32 = 0, (4.5)

ω1
22 = −f

′(R)

f(R)
, ω2

231 = 0, ω1
32 + ω2

13 = 0, (4.6)

ω3
31 = ω2

33 = 0, ω3
21 + ω2

13 = 0. (4.7)

Therefore, the only nonzero connection coefficient is ω1
22. Hence, the connection 1-forms read

ω1
2 = −f

′(R)

f(R)
ϑ2, ω2

3 = ω3
1 = 0. (4.8)

In turn, this implies

dω1
2 = −f

′′(R)

f(R)
ϑ1 ∧ ϑ2, dω2

3 = dω3
1 = 0. (4.9)

We know that for the cylindrically symmetric disclination distribution the curvature 2-forms have the fol-
lowing forms:

R1
2 =

w(R)

2π
dR ∧RdΦ =

Rw(R)

2πf(R)
ϑ1 ∧ ϑ2, R2

3 = R3
1 = 0, (4.10)

where w(R) is the radial density of the wedge disclinations. The second Cartan’s structural equations: Rαβ =
dωαβ + ωαγ ∧ ωγβ give

R2
3 = dω2

3 + ω1
2 ∧ ω3

1 = 0, (4.11)

R3
1 = dω3

1 + ω2
3 ∧ ω1

2 = 0, (4.12)

R1
2 = dω1

2 + ω3
1 ∧ ω2

3 = −f
′′(R)

f(R)
ϑ1 ∧ ϑ2. (4.13)

Comparing (4.10)1 and (4.13) we see that

f ′′(R) = − R

2π
w(R). (4.14)

Calculation of residual stresses. The material metric has the following form:

G =

 1 0 0
0 f2(R) 0
0 0 1

 . (4.15)

Note that det G = 1. From the material manifold, we obtain the residual stress field by embedding it into the
ambient space, which is assumed to be the Euclidean 3-space. We look for solutions of the form (r, φ, z) =
(r(R),Φ, Z), and hence det F = r′(R). Assuming an incompressible neo-Hookean material, incompressibility
dictates

J =

√
det g

det G
det F =

r

f(R)
r′(R) = 1. (4.16)

Assuming that r(0) = 0, we have

r(R) =

(
2

∫ R

0

f(ξ)dξ

) 1
2

, (4.17)

with the condition
∫ R

0
f(ξ)dξ > 0.

For a neo-Hookean material we have P aA = µF aBG
AB − p

(
F−1

)
b
Agab, where p = p(R) is the pressure



4 A Parallel Cylindrically-Symmetric Distribution of Wedge Disclinations 9

field. The first Piola-Kirchhoff stress tensor reads

P =

 µr′(R)− p(R)
r′(R) 0 0

0 µ
f2(R) −

p(R)
r(R)2 0

0 0 µ− p


=

 µ f(R)
r(R) − p(R) r(R)

f(R) 0 0

0 µ
f2(R) −

p(R)
r(R)2 0

0 0 µ− p

 . (4.18)

Similarly, the Cauchy stress reads

σ =

 µ f
2(R)
r2(R) − p(R) 0 0

0 µ
f2(R) −

p(R)
r2(R) 0

0 0 µ− p

 . (4.19)

The only non-trivial equilibrium equation is σra|a = σrr,r + 1
rσ

rr − rσφφ = 0. This gives us the following
differential equation for p(R):

p′(R) = µ

(
2r′r′′ +

r′3

r
− rr′

f2

)
. (4.20)

Knowing that r′ = f/r, this differential equation is simplified to read

p′(R) = µ

f(R)f ′(R)∫ R
0
f(ξ)dξ

− f3(R)

4
(∫ R

0
f(ξ)dξ

)2 −
1

f(R)

 . (4.21)

We know that traction vanishes on the outer boundary (R = Ro), and hence

po = µ
f2(Ro)

r2(Ro)
. (4.22)

Therefore

p(R) = µ
f2(Ro)

r2(Ro)
− µ

∫ Ro

R

[
f(η)f ′(η)∫ η
0
f(ξ)dξ

− f3(η)

4
(∫ η

0
f(ξ)dξ

)2 − 1

f(η)

]
dη. (4.23)

Example 4.1. Let us look at a single wedge disclination for which ω(R) = 2πΘ0δ
2(R). Thus, f ′′(R) =

−Θ0

2π δ(R). Hence

f(R) = −Θ0

2π
RH(R) + C1R+ C2. (4.24)

We know that when Θ0 = 0, f(R) = R and thus C1 = 1, C2 = 0. Therefore, because R > 0, we have

f(R) = R

(
1− Θ0

2π

)
R =

R

β
. (4.25)

This is exactly what we obtained earlier using Volterra’s cut-and-weld construction. See Eq. (3.6). Fig. 4.1
shows σrr distribution for both positive and negative single wedge disclinations.

Example 4.2. Uniform disclination distribution ω(R) = ω0. In this case

f(R) = R− ω0

12π
R3. (4.26)

Thus

r(R) = R

√
1− ω0

24π
R2, (4.27)
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Figure 4.1: σrr distributions for positive and negative single wedge disclinations.
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Figure 4.2: σrr distributions for different values of ω0 (uniform disclination distribution).

provided that ω0 < 24π/R2
0. Fig. 4.2 shows σrr distribution for different values of ω0.

Example 4.3. In this example ω(R) = ω0R0

πR sin πR
R0

(ω0 > 0). Therefore

f(R) = R+
ω0R

3
0

2π4
sin

πR

R0
. (4.28)

Thus

r(R) = R

[
1 +

2ω0

π5

R4
0

R2
sin2

(
πR

2R0

)] 1
2

. (4.29)

Fig. 4.3 shows σrr distribution for different values of ω0.
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Figure 4.3: σrr distributions for the disclination distribution ω(R) = ω0R0
πR

sin πR
R0

for different values of ω0.

5 Concluding Remarks

The material manifold of a distributed disclination – where the body is stress free – is a Riemannian manifold
whose curvature tensor is identified with the disclination density tensor. We started with a single wedge
disclination in an infinite body and using Volterra’s cut-and-weld process we constructed its material manifold.
From the material manifold, calculating the stress field of the disclination amounts to a classical nonlinear
elasticity problem; one simply needs to find an embedding into the Euclidean 3-space. We calculated the
stress field of the single wedge disclination in an incompressible neo-Hookean solid. For small wedge angles our
solution is reduced to the classical linear elasticity solution (when ν = 1

2 ). We then considered a distribution of
cylindrically symmetric parallel wedge disclinations. Using Cartan’s methods of moving frames we constructed
its material manifold. For an incompressible neo-Hookean material we calculated the corresponding residual
stress field.
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