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Materials failure in 3D still poses basic challenges. We study 3D brittle crack dynamics using a
phase-field approach, where Gaussian quenched disorder in the fracture energy is incorporated. Dis-
order is characterized by a correlation length R and strength σ. We find that the mean crack velocity
v is bounded by a limiting velocity, which is smaller than the homogeneous material’s prediction and
decreases with σ. It emerges from a dynamic renormalization of the fracture energy with increas-
ing crack driving force G, resembling a critical point, due to an interplay between a 2D branching
instability and disorder. At small G, the probability of localized branching on a scale R is super-
exponentially small. With increasing G this probability quickly increases, leading to misty fracture
surfaces, yet the associated extra dissipation remains small. As G is further increased, branching-
related lengthscales become dynamic and persistently increase, leading to hackle-like structures and
to a macroscopic contribution to the fracture surface. The latter dynamically renormalizes the ac-
tual fracture energy until eventually any increase in G is balanced by extra fracture surface, with no
accompanying increase in v. Finally, branching width reaches the system’s thickness such that 2D
symmetry is statistically restored. Our findings are consistent with a broad range of experimental
observations.

Materials failure is a physical phenomenon of prime
scientific and technological importance, which continues
to pose fundamental challenges [1–5]. It is mediated by
the propagation of cracks, which are dynamic defects
that feature extreme conditions near their edges — mim-
icking a mathematical singularity — and accelerate to
relativistic velocities (relative to elastic wave-speeds) in
brittle materials [6, 7]. Moreover, crack dynamics in-
volve strongly non-equilibrium physics, long-range elas-
todynamic interactions and a wide range of spatiotem-
poral scales, which still resist a complete theoretical un-
derstanding.

Things somewhat simplify in 2D, i.e., when experi-
ments in thin samples are considered [8, 9], where a
crack is the trajectory left behind a propagating tip (a
point). Major progress in understanding rapid crack dy-
namics in 2D has been recently made [9–13]. In partic-
ular, high-velocity symmetry-breaking instabilities have
been predicted, in quantitative agreement with experi-
ments, including the 2D oscillatory instability [8] and the
2D branching instability (sometimes also termed macro-
branching/tip-splitting) [9]. These two instabilities are
linear instabilities, which are spontaneously triggered by
infinitesimal noise, once the critical conditions are met.

Our corresponding understanding of dynamic fracture
in 3D lags far behind. In 3D, the sample thickness
is no longer a negligible dimension and a crack is the
surface left behind a propagating line, i.e., here the
crack edge is a 2D front, see Fig. 1a. While available
experiments on brittle amorphous materials shed im-
portant light on the phenomenology of dynamic frac-
ture in 3D [14–28], our fundamental understanding of
the underlying physics remains limited. These experi-
ments revealed a variety of 3D out-of-plane crack struc-
tures, including micro-cracking damage [14–17], sur-
face steps [18, 19], cross-hatching patterns [20], micro-
branches [21–24] and mirror-mist-hackle patterns [25–
28], all emerging at mean crack front velocities smaller

than the 2D instability thresholds.
Here, we study 3D dynamic fracture using a flexible

computational framework in which material quenched
disorder is incorporated. It is based on a phase-field
fracture approach [9, 12, 13, 30–35], which is particu-
larly suitable for studying 3D dynamic fracture as it al-
lows cracks to self-consistently select complex 3D trajec-
tories (including topological changes) without imposing
any external path selection criteria. Moreover, it allows
to track the in silico real-time 3D spatiotemporal dynam-
ics of cracks in a way that goes well beyond current ex-
periments. This framework quantitatively predicted the
2D high-velocity oscillatory and branching instabilities
in homogeneous materials [9, 12, 13], as well as the dy-
namics of crack front waves in 3D homogeneous materials
with isolated heterogeneities [33].
Evidence regarding 3D dynamic fracture is largely

obtained in experiments on amorphous materials,
such as various glassy polymers [14–17, 21–23, 28],
silica glasses [22, 25–27] and brittle elastomers [24].
These materials are intrinsically disordered, featuring
fluctuations in material properties over various length-
scales. Material disorder and heterogeneity have been
extensively discussed mainly in the context of in-plane
fracture roughness in 3D and mostly in the quasi-static
regime (e.g., [3, 36]). Some recent studies considered
the effect of material heterogeneity on dynamic in-plane
cracks [37] and on quasi-static out-of-plane cracks [38].
Yet, the interaction of a 3D elastodynamic crack with
continuous quenched disorder has not been studied
theoretically. We show that the interplay between
quenched disorder and the 2D branching instability
controls dynamic fracture in 3D, in agreement with a
wide range of experimental observations.
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FIG. 1. (a) A sketch of a 3D tensile crack experiment in a
long bar of height Ly and thickness Lz. The long bar features
a length Lx≫Ly, Lz, and only a small section of it is shown.
The crack is located in the middle (symmetry) plane and will
subsequently propagate predominantly in the x direction in
response to a sufficiently large crack driving force G (related
to the tensile loading, applied in the y direction). We employ
periodic boundary conditions along the z direction [29]. The
coordinates are normalized by the dissipation length ξ, see
text for definition. (b) A linear crack branching instability in
2D, i.e., Lz=0, occurring at a very high propagation velocity
vB =0.95cR (cR is the Rayleigh wave-speed), once a threshold
tensile driving force GB is surpassed. See text and Fig. 2 for
additional discussion.

Results

Dimensionality, stability and disorder-induced
limiting velocity

A canonical experiment for probing failure dynamics
involves an initial planar crack located in the middle
plane of a long 3D rectangular bar, see Fig. 1a. The bar
features height Ly, thickness Lz and length Lx≫Ly, Lz,
where the (x, y, z) coordinate system is defined in Fig. 1.
It is loaded symmetrically by small tensile displacements
uy(x, y=±Ly/2, z, t)= δ/2, where u(x, y, z, t) is the 3D
displacement field and t is time. The tensile loading cor-
responds to a crack driving force G∼Eδ2/Ly (the linear
elastic energy per unit area stored far ahead of the initial

crack) [6, 7], where E is Young’s modulus. Once G sur-
passes the minimal quasi-static fracture energy Γ0, the
tensile (mode-I) crack front starts propagating predomi-
nantly in the x direction. Understanding the subsequent
spatiotemporal dynamics as a function of G>Γ0 remains
a major open challenge.

Experiments are limited in probing the real-time spa-
tiotemporal dynamics of cracks in 3D, mainly because
continuous imaging of extended dynamic defects that
propagate at high velocities inside a material is currently
not available. Consequently, large-scale computer simu-
lations offer a powerful complementary approach. The
phase-field approach, mentioned above, allows to numer-
ically solve the 3D problem delineated in Fig. 1a, while
accurately probing the in silico real-time 3D spatiotem-
poral dynamics of the crack. This is achieved by solving
the linear elastodynamic field equations for u(x, y, z, t)
inside the bar, coupled to an auxiliary field — the scalar
phase-field ϕ(x, y, z, t) [9, 12, 13, 29, 33]. The latter sat-
isfies its own dissipative field equation, which features a
characteristic dissipation length ξ and a dissipation time
τ [9, 12, 13, 29, 33].

In the presence of the intense, nearly singular defor-
mation fields in the vicinity of the moving crack front,
ϕ(x, y, z, t) both spontaneously generates the traction-
free surfaces that define the crack [9, 12, 13, 29, 33] —
and hence self-consistently selects the crack trajectory —
and gives rise to a rate-dependent fracture energy Γ(v)
controlled by the dissipation time τ , where v is the crack
velocity (note that Γ(v→ 0) = Γ0). Another major ad-
vantage of this computational approach, essential for the
present work, is the ability to tune material properties in
a controlled manner in ways that are difficult to obtain in
the laboratory. The phase-field fracture approach played
a central role in recent progress in understanding rapid
crack dynamics in 2D [9, 12, 13]. The latter corresponds
to taking the Lz/ξ→ 0 limit in the 3D setup of Fig. 1a,
leading to a long strip configuration [6, 7].

In Fig. 2, we plot (green circles) the imposed crack
driving force G/Γ0 against the resulting steady-state
crack velocity v (normalized by the shear wave-speed cs)
obtained in 2D phase-field calculations in a homogeneous
material [13]. It is observed that G is a monotonically
increasing function of v, where each point along the curve
corresponds to a straight crack that respects the global
tensile (mode-I) symmetry of the system. Moreover, the
curve is linear up to a velocity close to the Rayleigh wave-
speed, here c

R
= 0.93cs, which is predicted to be the

upper bound on the velocity of cracks based on Linear
Elastic Fracture Mechanics (LEFM) theory, in the ab-
sence of symmetry-breaking instabilities [6, 7]. Beyond
this regime, G strongly increases with v due to crack tip
blunting, leading to increased dissipation [9, 13].

The 2D G vs. v curve terminates at GB (horizon-
tal dashed-dotted line), at a velocity very close to —
yet slightly smaller than — c

R
, upon which a branch-

ing instability (sometimes termed macro-branching/tip-
splitting) takes place. That is, a straight tensile crack
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FIG. 2. The crack driving force G/Γ0 vs. steady-state crack
velocity v/cs for a 2D homogeneous material (green circle)
and two 3D heterogeneous materials with σ > 0 (yellow dia-
monds for σ = 0.25 and brown diamonds for σ = 0.50), ob-
tained in phase-field simulations [29]. The thick-boundary
diamonds correspond to the 5 snapshots shown in Fig. 3.
Steady-state solutions in 2D homogeneous materials do not
exist for G>GB (horizontal dashed-dotted line), upon which
a linear branching instability sets in (see Fig. 1b). In 3D
materials, the average steady-state crack velocity is bounded
by a σ-dependent limiting velocity vlim(σ) (vertical dashed
lines), where G increases in a critical-like manner. (inset)
G (normalized by the first data point G1) vs. steady-state
crack velocity v/cR measured in experiments on a glassy poly-
mer (Polymethyl Methacrylate, PMMA), data extracted from
Fig. 5 of [21]. The vertical dashed line, highlighting the simi-
larity to the simulational data in the main panel, is added as
a guide to the eye.

branches/splits into two coexisting cracks [9, 13], shown
in Fig. 1b, providing a mechanism for excess dissipa-
tion due to additional fracture surfaces [39, 40]. For
G>GB, steady-state solutions no longer exist in 2D. The
high-velocity 2D branching instability, previously demon-
strated in [9, 13], has been experimentally observed in
quasi-2D brittle materials [9, 15, 23, 28, 41–43]. Finally,
since in steady-state G is balanced by the fracture energy,
we identify the G vs. v curve as Γ

2D
(v) and hence the 2D

branching velocity v
B
corresponds to Γ

2D
(v

B
)=GB. We

note in passing that the 2D oscillatory instability, which
emerges at a velocity slightly smaller than v

B
[12], does

not emerge here [29].

Branching in 2D exists in purely homogeneous materi-
als and hence is a linear instability. We next considered
the effect of dimensionality on the stability of cracks in
homogeneous materials by studying 3D systems with a
finite thickness Lz, as in Fig. 1a, driven by G<GB. We
found that tensile cracks in our 3D homogeneous system
are remarkably stable, both linearly and nonlinearly. In
particular, for a wide variety of crack shape perturbations
(of different spatial extent and amplitudes) as well as for
a wide range of isolated heterogeneities (of different sizes,
shapes and locations), cracks transiently go out of their
initial plane, but then decay back to the tensile symme-
try plane. That is, no persistent 3D out-of-plane crack

instabilities exist in homogeneous materials for G<GB,
hence for v<v

B
(persistent in-plane crack front waves are

triggered, as discussed very recently in [33]). This is in
sharp and qualitative disagreement with a wide range of
experimental observations that show that tensile cracks
in 3D brittle amorphous materials reveal persistent out-
of-plane structures at velocities smaller than vB , as al-
ready noted above.
What is the origin of this understanding gap? What

is the crucial physical ingredient missing? In order to
gain insight into these fundamental questions, we stress
that the experimental evidence at hand was obtained for
amorphous materials, which are homogeneous at macro-
scopic scales, but feature disorder at smaller scales. The
quantitative characterization and understanding of dis-
ordered materials is still incomplete; in particular, while
it is known that various material properties (e.g., elastic
moduli [44, 45]) feature significant fluctuations over su-
permolecular lengthscales, we do not yet have robust and
quantitative knowledge of the statistics of fundamental
physical quantities such as the fracture energy. Conse-
quently, in order to test the possible importance of ma-
terial quenched disorder, our strategy would be to adopt
minimal assumptions about material quenched disorder
and explore its implications for bridging the qualitative
gap in our understanding of 3D dynamic fracture.
Specifically, we introduce quenched disorder in the

form of a Gaussian distribution in the dimensionless
quasi-static (v → 0) fracture energy Γ̄/Γ0, with unity
mean, standard deviation determined by σ and spatial
correlation length R [29]. We hereafter set R=10ξ and
study the effect of σ on 3D dynamic fracture. In Fig. 2,
we plot (diamonds) G/Γ0 against the average steady-
state crack velocity v/cs obtained in 3D phase-field cal-
culations as in Fig. 1a, for two values of σ. Recall that
in steady state, energy balance implies Γ(v) = G [6, 7],
where Γ(v) is the actual fracture energy. It is observed
that Γ(v)=G closely follows the 2D homogeneous mate-
rial curve at relatively small v, then it deviates from it at
larger v’s until it reaches a limiting (terminal) velocity
v
lim

(σ) < v
B
< c

R
, consistently with numerous experi-

ments (e.g., [2, 21] and the compilation of experimental
works in Table. 1 of [15]). Moreover, dΓ/dv appears to di-
verge for v→v

lim
, also consistently with experiments [21],

cf. inset of Fig. 2.
The results in Fig. 2 can be described by the steady-

state energy balance

Γ(v) = Γ2D(v) + δΓ3D(v, σ) = G , (1)

where δΓ
3D
(v, σ) corresponds to 3D disorder-induced cor-

rections to the 2D homogeneous-material Γ
2D
(v). We

note that we do not explicitly incorporate the depen-
dence of δΓ

3D
(v, σ) on the correlation length R since it

is kept constant, as stated above. For relatively small
velocities, we have δΓ

3D
(v, σ) ≪ Γ

2D
(v) ≃ Γ(v) and the

behavior essentially identifies with that of 2D homoge-
neous materials. At some σ-dependent characteristic v,
δΓ

3D
(v, σ) is no longer negligible compared to Γ

2D
(v), i.e.,



4

3D disorder-induced effects become important. Finally,
as v→v

lim
, δΓ

3D
(v, σ) becomes sizable/dominant and ap-

pears to feature a critical behavior, i.e., dΓ(v)/dv appears
to diverge. Our main challenge in the remaining of the
paper is to understand the physics behind δΓ

3D
(v, σ).

Out-of-plane crack structures and the localized
branching instability

To start addressing this challenge, we focus on out-
of-plane crack structures that correspond to the 3D re-
sults in Fig. 2 with σ = 0.25 (to be considered here-
after). Since the crack front experiences both in- and
out-of-plane fluctuations, the quantity v hereafter stands
for the averaged front velocity [29]. We take advantage
of our computational platform and consider out-of-plane
crack structures inside the bulk of the material, not just
their fractographic signature (i.e., the patterns left on the
postmortem fracture surface). In Fig. 3 (left column), we
present a sequence of out-of-plane crack structures as a
function of the crack driving force G, covering the vari-
ous regimes of interest (the data points used are marked
by thick boundaries in Fig. 2).

Figure 3a corresponds to G/Γ0 = 2, for which
δΓ

3D
(v, σ)≪Γ

2D
(v). It is observed that out-of-plane pro-

trusions are very rare and small, i.e., the crack is essen-
tially planar (mirror-like), which is consistent with the
agreement between Γ(v) and Γ

2D
(v) in this regime. Fig-

ure 3b corresponds to G/Γ0=2.5, where the deviation of
Γ(v) from Γ

2D
(v) is still small. It is observed that out-

of-plane structures, of width ∆z and length ∆x (marked
in Fig. S3 in [29]), emerge at a significantly higher prob-
ability compared to panel (a). The out-of-plane struc-
tures, leading to a misty fracture surface, are mainly lo-
calized branching events of characteristic width compa-
rable to the disorder correlation length R=10ξ, as high-
lighted in the tilted zoom-in view in Fig. 3f. The out-of-
plane profile of asymmetric localized branches (i.e., when
the up-down symmetry is broken) is consistent with ex-
periments, see Fig. S4 in [29]. In addition, each local-
ized branching event is accompanied by V-shaped tracks
(clearly observed in Fig. 3f), which are reminiscent of typ-
ical tracks left by crack front waves [33, 46–48]. Indeed,
the propagation velocity of these tracks is consistent with
that of crack front waves, see Fig. S3 in [29].

The character of the out-of-plane structures appear-
ing in Fig. 3c, corresponding to G/Γ0 = 3.75, qualita-
tively changes. The localized branching events therein
become significantly wider and longer, i.e., leading to
hackle-like structures featuring larger ∆z and ∆x, hence
larger areas. With increasing G, as in Figs. 3d-e, ∆z
and ∆x further increase. In Fig. 3e, the width ∆z be-
comes (statistically) comparable to the system thickness
Lz, which implies that 2D symmetry is statistically re-
stored. This 3D-to-2D transition is manifested in branch-
ing events that are no longer localized, i.e., can be re-
garded as macro-branches [15, 23, 34, 35, 41] since they
capture the entire system thickness and propagate siz-

able distances, as highlighted in the tilted zoom-in view
in Fig. 3g. Figures 3c-e correspond to G values for which
the crack reached the limiting velocity, v→ v

lim
, where

δΓ
3D
(v, σ) makes a sizable/dominant contribution to Γ(v)

and dΓ(v)/dv appears to diverge.
The probabilistic crossover between Fig. 3a and Fig. 3b

closely resembles the widely-observed mirror-to-mist
transition in brittle amorphous materials [25–28], see
Fig. 3h. The transition in out-of-plane crack structures
observed between Fig. 3b and Fig. 3c bears strong
similarity to the widely documented mist-to-hackle
transition, see Fig. 3i, observed in many brittle amor-
phous materials, including glassy polymers (e.g., [28])
and silica glasses (e.g., [27]). Moreover, the 3D-to-2D
transition, which is accompanied by macroscopic crack
branching and that follows the hackle regime with
increasing crack driving force G, is also well documented
in the very same materials (e.g., [15, 23, 27, 28]). The
correspondence between our findings and a wide range
of experimental observations will be further discussed
once we gain deeper understanding of the former.

A physical picture and supporting numerics

Our first goal is to understand the emergence of the
localized branching instability in 3D, along with its sta-
tistical and dynamical properties. The 2D branching in-
stability in homogeneous materials, cf. Figs. 1a and 2, is
triggered at a critical driving force GB/Γ0 (see horizontal
dashed-dotted line in Fig. 2). What is the relevance of
this instability in 3D in the presence of disorder?
On the scale of the correlation scale R, the disordered

material can be viewed as locally 2D. Assuming that G in
this regime of the 3D dynamics is rather homogeneously
distributed along the thickness (z axis), we expect every
fluctuation Γ̄ in the quasi-static fracture energy that sat-
isfies G/Γ̄>GB/Γ0 to give rise to a localized branching
event on a scale R. Rearranging the inequality to read
Γ̄/Γ0 < G/GB and assuming localized branching events
to be independent of one another in this regime such that
the Gaussian (normal) distribution of Γ̄/Γ0 (with unity
mean and standard deviation σ) can be invoked, we ob-
tain [29]

p(G;σ) ∼ 1 + erf

(
G/GB − 1

σ
R

)
. (2)

Here p(G;σ) is the localized branching probability, erf(·)
is the error function, which varies super-exponentially
with its argument, and σ

R
∼ σ is the renormalized

strength of disorder on a scale R [29].
Equation (2) predicts an extremely small localized

branching probability at small G values and a strong in-
crease of the probability with increasing G below GB,
in qualitative agreement with the results Fig. 3a-b. To
more directly test the prediction in Eq. (2), we plot in
Fig. 4a the number of localized branches per unit planar
area, which is proportional to p(G;σ), as a function of
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FIG. 3. (left column, panels a-e) Uppermost out-of-plane crack structures — corresponding to the phase-field ϕ(x) = 1/2
iso-surface [29] — inside the bulk (top view), for the five G values indicated (corresponding to the thick-boundary diamonds in
Fig. 2), see text for extensive discussion. In each panel, the long axis is the propagation (x) direction and the perpendicular one
in the crack front direction (z axis). Both axes are expressed in units of ξ, and the basic length along z is twice that of along
x, for visual clarity. The initial crack front is marked by the bright line in the left part of each panel. (middle column, panels
f-g) Tilted zoom-in 3D view of the regions marked by the rectangles in panels (b) and (e), respectively. See text for discussion.
(right column, panels i-h) Fracture surface morphologies (fractography) measured in dynamic fracture experiments in a glassy
polymer (PMMA) involving accelerating 3D cracks (propagating from left to right), obtained through SEM imaging [28]. Panel
(h) shows the mirror-to-mist transition, where the mist region is characterized by rather isolated, small-amplitude out-of-plane
surface structures (adapted from Fig. 4b of [28]). Initially, the crack does not capture the entire sample thickness (vertical axis
in the image) and it propagates predominantly radially. Panel (h) bears qualitative similarities to panels (b) and (f). Panel (i)
shows the hackle region, appearing at larger crack propagation distances in the same experiment (adapted from Fig. 4d of [28]).
The observed wider and elongated out-of-place surface structures bear clear similarities to panels (c) and (d).

G<GB. It is observed that the simple model agrees with
the data reasonably well when G is not too close to GB.

While 2D branching is a linear instability triggered in
purely homogeneous materials (that can be realized in sil-
ico) by infinitesimal noise, the corresponding 3D localized
branching events with Γ̄/Γ0 < G/GB are finite-disorder
instabilities, and hence are non-perturbative with re-
spect to a homogenized material. Moreover, 3D localized
branching events with Γ̄/Γ0<G/GB<1 are expected to
be rather compact, roughly of linear scale R, and hence
short-lived and contributing small excess fracture surface.
The reason for this is that while localized branching can
be triggered with G/GB<1, it cannot be sustained over
scales significantly larger than R (since large local frac-
ture energy fluctuations are likely to be encountered). On
the other hand, we expect a change in the dynamics of 3D
localized branching events for G>GB, since under these
conditions the branching solution has a sizable probabil-
ity to be sustained over larger distances — i.e., to feature

significantly larger length ∆x — while co-existing with
the planar crack solution.

To test this expectation, we plot in Fig. 4b ⟨∆x⟩w/R,
the average of ∆x weighted by the branch area (normal-
ized by R), against G/GB. It is observed that ⟨∆x⟩w
indeed significantly grows with G above G/GB ≃ 1
(marked by the vertical dashed line), reaching values
much larger than R, as expected and in qualitative
agreement with Figs. 3c-e. We note that we consider
the averaged branch length weighted by its area because
while at smaller G values branching events are indepen-
dent of one another (cf. Fig. 3b), for G > GB branches
effectively “screen” the nucleation of other branches
and in fact the number of primary branches decreases
with increasing G (though secondary structures emerge
as well). Moreover, for G > GB the branch width
∆z is no longer expected to inherit its scale from R.
Indeed, the results presented in the inset of Fig. 5
indicate a quasi-linear relation between the averaged
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FIG. 4. (a) The number of branches per unit planar area as a function of G/GB≤1 (squares). The solid line corresponds to
the prediction in Eq. (2), where σR =0.233 is independently predicted [29] and the overall amplitude is set to agree with the
first data point. (b) The normalized weighted branch length ⟨∆x⟩w/R (see text for definition) vs. G/GB. The vertical dashed
line marks G=GB. (c) The same as panel (a), but vs. v. The vertical dashed line corresponds to vlim , as in Fig. 2.

branch width ⟨∆z⟩ and length ⟨∆x⟩. Fluctuations,
to be discussed below, also grow significantly with G,
eventually corresponding to the statistical 3D-to-2D
transition observed in Fig. 3g. Overall, the results
indicate that for G>GB branching lengthscales become
dynamic and a significant extra fracture surface emerges.

The emergence of a limiting velocity and dy-
namic renormalization of the fracture energy

We are now in a position to rationalize the steady-state
dynamics of 3D cracks as encapsulated in Eq. (1) and in
particular the physics underlying δΓ3D(v, σ). The physi-
cal picture discussed above and its numerical support in-
dicate that 3D out-of-plane fracture dynamics are related
to a branching instability controlled by the driving force
G and to quenched disorder, where both the branching
probability p(G;σ) and the excess fracture surface asso-
ciated with branching play a role. In particular, at small
G the evolution of p(G;σ) is dominant, while for G>GB

the extra surface of the branches dominates, with a tran-
sition in between.

To relate this picture to the emergence of a limiting ve-
locity v

lim
and to the properties of δΓ

3D
(v, σ), we replot in

Fig. 4c the number of localized branches per unit planar
area of Fig. 4a as a function of v, i.e., a quantity propor-
tional to p(v;σ) instead of p(G;σ). It is observed that
p(v;σ) appears to feature a diverging derivative as v

lim
is

approached (vertical dashed line). That is, the branching
probability p(v;σ) alone reveals a clear signature of the
emergence of a limiting velocity as G approaches GB. For
G>GB, the branching probability does not further grow
(as noted above, it actually decreases), but rather the
area of the branches increases such that any increase in
G is expected to be balanced by excess fracture surface,
without increasing v, leading to an increase in δΓ

3D
(v, σ)

at a fixed v=v
lim

.

To test this expectation, we define the apparent areal
ratio as the total area of the uppermost out-of-plane
crack structures inside the bulk (as seen in the top view
in the left column of Fig. 3) divided by the nominal (pla-
nar) area. The true areal ratio is likely to be larger as
secondary structures can develop beneath the uppermost
out-of-plane crack structures. The apparent areal ratio is
plotted (diamonds, left y-axis) in Fig. 5 vs. v and is ob-
served to be indistinguishable from unity until v

lim
is ap-

proached. At v=v
lim

, the apparent areal ratio increases
in a critical-like manner, as expected. It thus supports
the idea that the 3D disorder-induced excess dissipation
δΓ

3D
(v, σ) balances any increase in G at v= v

lim
by cre-

ating extra fracture surface. That is, the fracture energy
Γ(v) is dynamically renormalized by the out-of-plane spa-
tiotemporal dynamics of the 3D crack.

FIG. 5. The apparent area ratio (see text for definition)
vs. v/cs (green diamonds, left y-axis). Out-of-plane fluctu-
ations (see text for definition) in units of ξ vs. v/cs (brown
circles, right y-axis, and note the logarithmic scale). The
vertical dashed line marks vlim . (inset) The averaged branch
length ⟨∆x⟩/R vs. width ⟨∆z⟩/R.
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Finally, we expect fluctuations in out-of-plane crack
structures to significantly increase as v→ v

lim
. To test

this expectation, we extracted for each (x, y=0, z) point
along the original symmetry plane the y difference (in
units of ξ) between the uppermost out-of-plane crack
location (shown on the left column of Fig. 3) and its
lowermost counterpart. We then averaged over all
(x, y = 0, z) points and plotted the results in Fig. 5
(circles, right y-axis) vs. v on a log-linear scale. It is
observed that the out-of-plane fluctuations are very
small for small v (note the logarithmic right y-axis),
consistently with the branching probability p(v;σ) being
small in this regime. Around v/cs=0.7, the fluctuations
start to grow, yet they still make a negligible contri-
bution to the extra fracture area (see diamonds and
left y-axis). As v→ v

lim
, out-of-plane fluctuations grow

significantly, featuring the same critical-like behavior as
the apparent areal ratio, as expected from the emerging
physical picture.

Discussion

Our results indicate that 3D dynamic fracture in brittle
amorphous materials is controlled by two physical ingre-
dients. The first is a 2D linear instability that is charac-
terized by a crack driving force threshold GB, providing a
mechanism for generating extra fracture surface, i.e., for
increasing the effective fracture energy. The 2D homoge-
neous material instability involves a topological change,
going beyond a single crack, in the form of crack branch-
ing. The second ingredient is finite-strength quenched
disorder that features a spatial correlation length R.

In the presence of finite disorder, the 2D branching
instability is transiently excited in 3D at crack driving
forces G well below GB. It features localization over a
scale R that breaks translational invariance along the
crack front. Upon increasing G in 3D, the localized
branching instability becomes longer-lived and features
larger lengthscales for G≃GB. The extra fracture sur-
face associated with these increasingly larger branches
dynamically renormalizes the effective fracture energy,
giving rise to a disorder-dependent limiting velocity v

lim

that the crack cannot surpass. The emergence of v
lim

is accompanied by a critical-like behavior in which the
fracture energy features a divergent variation with the
crack velocity. In this regime, for sufficiently large G,
branches become so wide that the system statistically re-
covers translational invariance along the crack front, and
branching becomes macroscopic.

This physical picture and its manifestations are con-
sistent with a broad range of experimental observations
that were not fully understood previously. At the macro-
scopic scale, it is widely observed (e.g., in [2, 15, 21]) that
cracks in brittle materials attain limiting velocities well
below c

R
, the ideal theoretical limit [6, 7]. Moreover, the

experiments on steady-state cracks in a glassy polymer
— reproduced in the inset of Fig. 2 — are consistent
with a critical-like behavior of the fracture energy upon

approaching v
lim

. At smaller scales, localized instabilities
in 3D, mainly in the form of micro-cracking damage [14–
17] and micro-branching [21–24] that involve a topolog-
ical change and the generation of extra fracture surface,
are widely observed.

The localized branching instability extensively dis-
cussed above bears close similarity to the micro-
branching instability [21–24]. The latter features char-
acteristic lengthscales at initiation, most notably mini-
mal micro-branch width and length [21–24], consistently
with our findings in which the latter are related to the
disorder correlation length R. Our results show that lo-
calized branching is a probabilistic phenomenon, yet it
appears to be rather sharp due to the super-exponential
increase of the branching probability at small G, which
depends on the finite-strength disorder. The probabilis-
tic nature of the micro-branching instability and its de-
pendence on finite disorder are indeed experimentally
demonstrated [24, 49], in agreement with our findings.

With increasing driving force, micro-branches have
been shown to significantly increase in size, to lead to
increased effective fracture energy associated with extra
fracture surface, to be accompanied by increased out-of-
plane fluctuations, to feature a 3D-to-2D transition [21]
and eventually to transform into macro-branches [23], all
in agreement with our results. The approximate lin-
ear scaling ⟨∆x⟩ ∼ ⟨∆z⟩, cf. inset of Fig. 5, is also in
agreement with experimental micro-branching observa-
tions [46]. Finally, the out-of-plane profiles of asymmetric
localized branches agree with those of experimentally ob-
served micro-branches, as demonstrated in Fig. S4 in [29].

At intermediate scales, commonly probed by fractog-
raphy in experiments, our findings are consistent with,
and offer novel understanding of, the widely-observed se-
quence of mirror-mist-hackle-macro-branching morpho-
logical transitions [25–28]. This sequence of transitions
is commonly observed as a function of crack propaga-
tion distance in experiments that involve accelerating
cracks. We take advantage of our computational frame-
work, which allows to simulate very long systems [29], to
study this sequence of transitions in a controlled man-
ner at the steady-state level, as a function of G. Not
only our observations, cf. Fig. 3, unprecedentedly repro-
duce this sequence of transitions as G is varied, but we
also provided a theoretical understanding of the physics
underlying each transition.

The mirror-mist transition is a probabilistic crossover,
which is rather sharp due to the super-exponential vari-
ation of the localized branching probability for G<GB.
Transiently-excited localized branching events in this
regime are spatially uncorrelated and small, featuring a
scale comparable to the disorder correlation length R, re-
sponsible for the misty appearance of the fracture surface.
The mist-hackle transition occurs at G≃GB, upon which
localized branching events become longer-lived and fea-
ture dynamic lengthscales that increase with increasing
G. The wider and longer branching events are responsi-
ble for the hackle-like appearance of the fracture surface.
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Finally, at sufficiently large G, branches can capture the
entire system thickness Lz, statistically recovering trans-
lational symmetry in the thickness direction. This 3D-
to-2D transition results in macro-branching.

Our findings also raise some pressing questions for fu-
ture investigation. A central element in the emerging
physical picture is finite-amplitude quenched disorder. In
the absence of well-established data about spatial disor-
der in the fracture energy of amorphous materials, we
invoked in our calculations a minimal assumption in the
form of a Gaussian disorder characterized by a dimen-
sionless strength σ and correlation length R. It would be
most desirable to quantitatively characterize the statis-
tical properties of various important physical quantities
in amorphous materials, including the amplitude of fluc-
tuations and their spatial correlation length. A possible
indirect way to address this point might be to study sur-
face roughness at low propagation velocities [3, 36].

Furthermore, we have shown that various quantities,
e.g., the onset of localized branching velocity and the
limiting velocity, are disorder dependent. Consequently,
extracting the properties of the disorder may lead to
a quantitative comparison with experiments. Finally,
while our large-scale calculations have been carried
out using cutting-edge GPU-based computational plat-
forms [29], we cannot yet rule some finite-size effects in
our results, especially with respect to Ly, but possibly
also to Lz. Future research, potentially employing
enhanced computational power, should shed light on
this issue as well.
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Supplemental materials

The goal of this document is to provide some technical
details regarding the results presented in the manuscript
and to offer some additional supporting data.

S-I. The 3D phase-field framework

The 3D phase-field framework we employed has been
very recently presented in great detail in the Supplemen-
tary Materials file of [33]. Here, for completeness, we
very briefly repeat the main elements of the formulation
and highlight specific features of its application in this
work. A general material is described in this framework
by the following potential energy U , kinetic energy T and
dissipation function D [9, 12, 13]

U =

∫ [
1

2
κ (∇ϕ)2 + g(ϕ) e(u) + w(ϕ) ec

]
dV , (S1)

T =

∫
1

2
f(ϕ) ρ (∂tu)

2
dV , (S2)

D =
1

2χ

∫
(∂tϕ)

2
dV , (S3)

in terms of a 3D time-dependent vectorial displace-
ment field u(x, y, z, t) and a 3D time-dependent auxil-
iary scalar phase-field 0≤ϕ(x, y, z, t)≤ 1. Here, dV is a
volume differential and the integration extends over the
entire system. The evolution of ϕ(x, t) and u(x, t) fol-
lows Lagrange’s equations

∂

∂t

[
δL

δ (∂ψ/∂t)

]
− δL

δψ
+

δD

δ (∂ψ/∂t)
= 0 , (S4)

where L=T−U is the Lagrangian and ψ=(ϕ, ux, uy, uz),
i.e. u= (ux, uy, uz) are the components of the displace-
ment vector field.

An intact/unbroken material state corresponds to ϕ=
1, for which g(ϕ) = f(1) = 1−w(1) = 1. It describes
a non-dissipative, elastodynamic material response char-
acterized by an energy density e(u). For the latter, we
use the linear elastic energy density

e(u) =
1

2
λ tr2(ε) + µ tr(ε) , (S5)

where ε= 1
2 [∇u+(∇u)T] is the infinitesimal (linearized)

strain tensor, and λ and µ (shear modulus) are the Lamé
coefficients. We set λ=2µ in all of our calculations.

Dissipation, loss of load-bearing capacity and eventu-
ally fracture accompanied by the generation of traction-
free surfaces are associated with a strain energy density
threshold ec. When the latter is surpassed, ϕ decreases
from unity and the degradation functions g(ϕ), f(ϕ) and
1−w(ϕ) also decrease from unity towards zero, upon
which complete fracture takes place. We adopt the so-
called KKL choice of the degradation functions [13, 30],
corresponding to f(ϕ) = g(ϕ) and w(ϕ) = 1 − g(ϕ), with

g(ϕ) = 4ϕ3 − 3ϕ4. This choice, together with the lin-
ear elastic strain energy density in Eq. (S5) (that im-
plies a vanishing nonlinear elastic zone near the crack
front [9, 12, 13]), suppress the 2D oscillatory instabil-
ity [13].
The resulting set of nonlinear partial differential field

equations feature a dissipation lengthscale ξ =
√
κ/2ec

near crack fronts and an associated dissipation timescale
τ=(2χec)

−1. Upon expressing length in units of ξ, time
in units of ξ/cs, energy density in units of µ and the mass

density ρ in units of µ/c2s (cs=
√
µ/ρ is the shear wave-

speed), the dimensionless set of equations depends on just
two dimensionless parameters: ec/µ and β=τ cs/ξ. The
latter controls the v-dependence of the fracture energy,
Γ(v) [9, 12, 13]. In our calculations, we set ec/µ= 0.01
and β=2.76. We also set Ly=256ξ and Lz=179ξ, where
Lx is essentially indefinitely large due to an employed
treadmill procedure [13]. The boundary conditions are
specified in the manuscript and the details of the numer-
ical implementation are provided in [33]. Each calcula-
tion is perform on a single GPU (NVIDIA RTX A6000
or NVIDIA A40), either own by the Bouchbinder group
or available on one of the computer clusters at Weizmenn
Institute of Science. A typical simulation time (e.g., one
of those shown on the leftmost column of Fig. 3a in the
manuscript) is ∼5 days.

S-II. Continuous quenched disorder

In [33], we considered only isolated/discrete material
heterogeneities (asperities). In the present work, we in-
corporated continuous quenched disorder into the phase-
field framework, which was shown in the manuscript to
play essential roles in 3D dynamic fracture. Continuous
quenched disorder is introduced in two steps. First, as
in [33], we define a dimensionless auxiliary quenched dis-
order field ζ(x), which can be coupled to any physical
parameter in the problem. This coupling is achieved by
transforming an originally spatially uniform parameter
α0 into a field of the form α(x)=α0[1 + α

ζ
ζ(x)], where

0≤α
ζ
≤1 is a dimensionless coupling coefficient.

In the manuscript, −1≤ζ(x) is taken to follow a Gaus-
sian distribution of width σ and zero mean, i.e., ζ at each
spatial point x (in practice, at each numerical grid point)
is extracted from a normal distribution with standard
deviation σ and zero mean, with no spatial correlations.
That is, ζ at a given spatial location is independent of its
value at other locations. The value of σ is used to quan-
tify the strength of disorder throughout the manuscript.
Note that the choice −1 ≤ ζ(x) ensures that α(x) ≥ 0
for any 0≤α

ζ
≤ 1, and hence the procedure can be nat-

urally applied to positive physical quantities (e.g., the
fracture energy and/or the shear modulus). The Gaus-
sian probability associated with −∞<ζ(x)<−1 is small
in our calculations, and the way it is taken into account
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is further discussed below.

In the second step, spatial correlations in the quenched
disorder are introduced. To this aim, we define a spa-
tial kernel K(x) of compact support R, of the form
K(x)=1−(|x|/R)5 for |x|≤R and zero otherwise. Then
the actual value of the physical parameter of interest at
a point x, say ᾱ(x), is obtained through a convolution of
α(x) with the kernelK(x), i.e., ᾱ(x)=K(x)∗α(x). Con-
sequently, ᾱ(x) features a spatial correlation length R.
In the manuscript, we set α

ζ
=0.9 (that renormalizes the

disorder strength) and R=10ξ. The above procedure for
introducing quenched disorder in any physical parameter
is applied in the manuscript for the quasi-static (v→ 0)
fracture energy Γ0.

It is known that Γ0∼ecξ∼
√
κec [9, 12, 13] and recall

that β= τcs/ξ∼ (χecξ)
−1 (i.e., with τ ∼ (χec)

−1). Con-
sequently, we can simultaneously couple κ, ec and χ to
the very same realization of the quenched disorder field
ζ(x) (with the same α

ζ
) such that the quasi-static frac-

ture energy features quenched disorder, while ξ∼
√
κ/ec

and β∼ (χecξ)
−1 are kept fixed (i.e., independent of x).

This way, the dimensionless quasi-static fracture energy
— denoted by Γ̄/Γ0 — follows a Gaussian distribution
with unity mean, standard deviation α

ζ
σ and spatial cor-

relation length R, as stated in the manuscript, while its
rate dependence (variation with v, which is controlled by
β) is spatially uniform. A 2D cut of a single realization
of the Γ(x) disorder field is presented in Fig. S1.

FIG. S1. A 2D x−y cut of a single realization of the Γ(x) dis-
order field generated with σ=0.25 and R=10ξ. The spatial
correlation length R of the quenched disorder is evident.

S-III. The average crack velocity and the
quantification of out-of-plane fracture structures

A. The average crack velocity
A central quantity in the manuscript is the average

crack front velocity v. In the presence of quenched dis-
order, the crack front does not generally remain a con-
tinuous line propagating in a 3D space. As shown in
the manuscript, not only it can be seriously distorted
and meander out of the symmetry plane, but it actu-
ally undergoes various topological changes as the crack
develops localized branches, hierarchial facets, segmen-
tation and more. In view of these complex structures,
the average crack front velocity v is operationally de-
fined as follows: at each point in time t, the crack is
defined through the phase-field ϕ(x, t)=1/2 iso-surface.
Then, we find the intersection of this iso-surface with
the x−y plane associated with every z value. The in-
tersection point with the largest x coordinate (the crack
propagates in the positive x direction) corresponds to the
front position f(z, t)=(fx(z, t), fy(z, t)). Finally, the av-
erage crack front velocity v(t) is obtained as the z-average
of ∂tfx(z, t), i.e., v(t) = ⟨∂tfx(z, t)⟩z. When the crack
reaches a statistical steady state, v(t) features a plateau
that defines the steady-state velocity v (for each G), ac-
companied by temporal fluctuations, as demonstrated in
Fig. S2.

FIG. S2. The average crack front velocity v(t)/cs, as defined
in the text, plotted against cst/ξ for G/Γ0 = 2.25 (with our
generic quenched disorder parameters σ=0.25 and R=10ξ).
It is observed that after an initial acceleration phase, the crack
settles into a statistical steady state (defining the mean ve-
locity v per G, accompanied by temporal fluctuations), where
our analysis is performed.

B. The quantification of out-of-plane fracture structures
The uppermost out-of-plane crack structures shown in

Fig. 3 in the manuscript are obtained as follows: the
ϕ(x)=1/2 iso-surface at the end of each phase-field sim-
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ulation is considered. Then, at each (x, z) point we con-
struct a vertical line along y and find the uppermost y
intersection with the ϕ(x)=1/2 iso-surface. The result-
ing surface is plotted in Fig. 3 for different G values. The
apparent areal ratio, plotted in Fig. 5 in the manuscript
(left y-axis), is obtained as the total area of the upper-
most out-of-plane surface divided by the corresponding
nominal (planar) area, as noted in the manuscript. The
true areal ratio is in fact larger as secondary structures
develop beneath the uppermost out-of-plane crack sur-
face at large G, as noted in the manuscript.

Finally, calculating the out-of-plane fluctuations —
that are plotted in Fig. 5 in the manuscript (right y-
axis) — involves also the lowermost out-of-plane surface,
which is obtained similarly to the uppermost one, just
for the lowermost y intersection of vertical lines with
the ϕ(x)=1/2 iso-surface (note that the uppermost and
lowermost surfaces are not symmetric, i.e., the up-down
symmetry is broken, as is further discussed below). The
average over (x, z) of the difference between the upper-
most and lowermost surfaces (in units of ξ) provides a
measure of out-of-plane fluctuations.

S-IV. A simple probabilistic model of localized
branching in 3D

As explained above, the auxiliary quenched disor-
der field ζ(x) is initially extracted from a Gaussian
distribution of zero mean and standard deviation σ,

1√
2πσ

exp(− 1
2ζ

2/σ̄2), independently for each spatial loca-

tion x. This Gaussian probability distribution function
is normalized over the domain −∞< ζ <∞. However,
we defined for a physical parameter α the following dis-
ordered field α(x)/α0 = 1 + α

ζ
ζ(x), with 0 ≤ α

ζ
≤ 1,

which can become negative for sufficiently negative val-
ues of ζ. As in our case α corresponds to the quasi-static
fracture energy, which is a positive quantity, to ensure
its positivity for any α

ζ
we restrict the Gaussian distri-

bution to be valid for −1<ζ <∞. To conform with the
conservation of probability, we attribute the probability∫ −1

−∞
1√
2πσ

exp(− 1
2ζ

2/σ̄2) dζ to ζ =−1. This probability

(corresponding to a probability density proportional to
a delta-function, δ(ζ + 1)) constitutes a small addition
to the Gaussian distribution over −1< ζ <∞ for the σ
values we considered in the manuscript. Finally, as ex-
plained above, the disordered field is convolved with a
compact support kernel, endowing it with a spatial cor-
relation length R.
This quenched disorder generation procedure is ap-

plied in the manuscript to the quasi-static fracture en-
ergy, i.e., α/α0 is identified with Γ̄/Γ0. When the prob-
ability distribution p(Γ̄/Γ0) in 3D is considered together
with the 2D homogeneous-material branching instabil-
ity, which occurs when the dimensionless crack driving
force G/Γ0 surpasses a threshold GB/Γ0, a simple prob-
abilistic model of localized branching in 3D can be con-
structed. The model consists of three ingredients: (i)

Over a characteristic lengthscale comparable to the cor-
relation length R, the 3D material effectively corresponds
to a 2D homogeneous material. (ii) Following (i), frac-
ture energy fluctuations of characteristic scale R can lead
to 3D localized branching G/Γ̄>GB/Γ0 at a given crack
driving force G. (iii) Localized branching events in 3D
are largely independent of each other for G<GB.
The probability distribution of Γ̄/Γ0 over the correla-

tion length R remains Gaussian, yet with a renormalized
standard deviation σ̄(σ,R)<σ, which one can calculate.
Rearranging the inequality in (ii) to read Γ̄/Γ0<G/GB

and invoking (iii), we can use p(Γ̄/Γ0) over the correlation
length R to estimate the localized branching instability
in 3D, p(G;σ), as

p(G;σ) ≃

G/GB−1

α
ζ∫

−1

e−
1
2 ζ

2/σ̄2

√
2πσ̄

dζ +

−1∫
−∞

e−
1
2 ζ

2/σ̄2

√
2πσ̄

dζ (S6)

=

G/GB−1

α
ζ
σ̄∫

−∞

e−
1
2η

2

√
2π

dη =
1

2

[
1 + erf

(
G/GB − 1

σR

)]
,

with σ
R
=
√
2α

ζ
σ̄(σ,R), as in Eq. (2) in the manuscript.

For α
ζ
=0.9, σ=0.25 and R=10ξ used in the manuscript,

we have σ
R
=0.233, employed in Fig. 3a therein.

S-V. Additional supporting results

In this section, we present additional results that fur-
ther support those presented in the manuscript.

A. A fractographic signature of crack front waves
Crack front waves (FWs) are spatiotemporal objects

that propagate along moving crack fronts in 3D, featur-
ing coupled in- and out-of-plane components [24, 33, 46,
47, 50]. One process by which a pair of FWs is spon-
taneously generated is micro-branching events [24, 47],
where the out-of-plane component of each FW leaves a
fractographic signature on the fracture surface. It takes
the form of two linear (straight) tracks emanating from
the micro-branch and forming an opening angle 2γ be-
tween them, resulting in V-shaped tracks [24, 47]. The
FW velocity (in the laboratory frame of reference) cFW

is related to the crack propagation velocity v according
to cFW = v/cos(γ), where cFW was found to be close to
the Rayleigh wave-speed cR , very weakly dependent on
v [33, 48, 51, 52].
In Fig. 3b in the manuscript, it was observed that iso-

lated localized branching events in our simulations are
accompanied by V-shaped tracks on the fracture surface.
Our goal here is to test whether these tracks are consis-
tent with experimental observations regarding FWs. To
that aim, we present in Fig. S3 a zoom in on a few lo-
calized branching events originally shown in Fig. 3b and
Fig. 3f in the manuscript, where the V-shaped tracks with
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an opening angle 2γ are clearly observed. We find that
γ≃21.75◦, which is essentially the same for all localized
branching events analyzed (see Fig. S3). The instanta-
neous (not the mean) crack propagation velocity at this
point in the dynamics was v=0.835± 0.015cs, such that
we find c

FW
= v/cos(γ) = 0.9cs ≃ 0.97c

R
, which is indeed

consistent with the experimentally observed velocity of
FWs.

FIG. S3. A zoom in on a few localized branching events orig-
inally presented in Fig. 3b and Fig. 3f in the manuscript (top
view). For three localized branching events, the V-shaped
tracks (see text for details) are marked and their opening an-
gle 2γ is indicated. The latter, corresponding to γ ≃ 21.75◦,
is essentially the same for the three events. The localized
branch width ∆z and length ∆x are illustrated for the lo-
calized branching event in the bottom-right corner. Results
involving ∆z and ∆x are presented in Fig. 4b and the inset
of Fig. 5 in the manuscript, and discussed therein.

B. Asymmetric localized branch profiles

Some experimental evidence indicates that micro-

branches are asymmetric (with respect to the main crack
plane), at least at not too high crack propagation veloci-
ties, e.g., see the middle panel (center) in Fig. 4c in [21].
That is, micro-branches in this regime do not appear to
be formed in pairs that propagate predominantly sym-
metrically, but rather single micro-branches tend to form
and either propagate upwards or downwards relative to
the main crack plane. It has been experimentally shown
that the micro-branches approximately follow a y∼x0.7

profile out of the crack plane (y=0, where x is the prop-
agation direction).
Many of the localized branching events in our simula-

tions, especially in the not too high velocities regime, are
indeed asymmetric. That is, even if a pair of localized
branches initially form, the quenched disorder and/or the
interaction with other out-of-plane structures break the
up-down symmetry, resulting in a single dominant local-
ized branch. In these situations, we expect the approxi-
mate y∼x0.7 profile — that emerges from the elastody-
namic interaction of the localized branch with the main
crack — to be observed in our case as well. This is indeed
demonstrated in Fig. S4

FIG. S4. Three examples of the x−y profile of asymmetric
localized branches (in the z direction) randomly selected from
our simulations (and shifted such that they all overlap at their
early stages of development). The dashed lines are guides to
eye corresponding to y∼ x0.7, as found experimentally (e.g.,
see Fig. 12 in [21] and Fig. 2 in [22]), each with a different
amplitude.
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