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a b s t r a c t

Shape-morphing structures, which are able to change their shapes from one state to another, are
important in a wide range of engineering applications. A popular scenario is morphing from an
initial two-dimensional (2D) shape that is flat to a three-dimensional (3D) target shape. One exciting
manufacturing paradigm is transforming flat 2D sheets with prescribed cuts (i.e. kirigami) into 3D
structures. By employing the formalism of the ‘tapered elastica’ equation, we develop an inverse design
framework to predict the shape of the 2D cut pattern that would generate a desired axisymmetric 3D
shape. Our previous work has shown that tessellated 3D structures can be achieved by designing
both the width and thickness of the cut 2D sheet to have particular tapered designs. However, the
fabrication of a sample with variable thickness can be challenging and limits the materials that can be
used. Here we propose a new strategy — changing the local bending stiffness by adding small pores,
or perforations, within the structure to give it a varying porosity but maintaining a constant thickness.
We refer to this strategy as ‘perforated kirigami’ and show how the required porosity function can be
calculated from a theoretical model. The porosity distribution can easily be realized by laser cutting
and modifies the bending stiffness of the sheet to yield a desired elastic deformation upon buckling.
To verify our theoretical approach, we conduct finite element method (FEM) simulations and physical
experiments. We also examine the load-bearing capacity of morphed structures via indentation tests
in both FEM simulations and experiments. As an example, the relationship between the measured
geometric rigidity of morphed half-ellipsoids and their aspect ratio is investigated in detail.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Structures that can adapt to different environments and com-
lete various tasks by changing shape from one state to
nother are referred to as shape-morphing structures [1]. Shape-
orphing structures exist extensively as biological organisms in
ature [2]. They are also an emerging class of advanced structures
ith engineering applications, including flexible electronics [3],
icrofluidics [4], soft robotics [5–7], deployable space struc-

ures [8] and aircraft drag control systems [9,10], etc. Many
echanisms have been explored to achieve shape morphing in

ecent years, including pneumatic inflation [11], thermal expan-
ion [12,13], chemical swelling [14] and solvent diffusion [15,16],
s well as magnetic [17–20] and mechanical loading [21,22].
Among many engineering applications, morphing from a flat

wo-dimensional (2D) sheet into a three-dimensional (3D) struc-
ure with particular curvature distribution is one of the most
ommon scenarios and has attracted much attention [23,24].

∗ Corresponding author.
E-mail address: mingchao.liu@ntu.edu.sg (M. Liu).
ttps://doi.org/10.1016/j.eml.2022.101857
352-4316/© 2022 Elsevier Ltd. All rights reserved.
However, a significant challenge needs to be conquered first: to
prevent the geometrical incompatibility between curved and flat
surfaces that Gauss’ Theorema Egregium depicts, i.e. that deforma-
tions that preserve length or area (isometries) cannot change the
Gaussian curvature of a surface [25]. Creating localized stretch-
ing or expanding materials is one possible strategy. It can be
achieved by either applying multifarious external physical effects
(pressure, heat, and light) to actuate the local expansion or by
using chemical stimuli to the material with elaborate micro-
structures [11,12,14,26]. Nevertheless, since thin materials resist
changes of length significantly, these approaches all depend on
unconventional responsive materials and/or complex manufac-
turing techniques [27] to generate high stress/strain concentra-
tion in the areas that stretch locally [28].

Instead of locally stretching materials, another strategy is to
buffer the geometric incompatibility by removing materials lo-
cally, i.e. making cuts at specific positions in a material, known
as kirigami [29]. By programming the cut pattern of kirigami, 3D
shapes with different Gaussian curvatures can be generated [30,
31]. It should be noted that the curvature referred to here is
‘Apparent Gaussian Curvature’ (AGC), which means that, even

https://doi.org/10.1016/j.eml.2022.101857
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hough the 3D structure has distributed curvature at a global
evel, the local elements remain largely planar [21]. Kirigami-
ased methods have shown potential for creating 3D structures
ith the ability of shape reconfiguration [32] and functional ap-
lications [33,34]. In particular, they have been broadly adopted
or fabricating inorganic flexible electronic devices with complex
D shapes, since these methods avoid significant strain [35].
sing a design database of kirigami-based morphing structures
nd devices has become ubiquitous to achieve shape morphing
rom 2D patterns into 3D structures [36]. On the contrary, how
o design a kirigami 2D sheet that can morph into a given target
rofile had not been well-explored until analytical inverse design
trategies were proposed recently [21,37].
The inverse design framework developed by Liu et al. [21] is

ased on the theory of the tapered elastica [38]. More specifically,
n axisymmetric 3D structure was considered as a target that
an be formed from a flat 2D sheet with a tailored cut pattern
y subjecting the sheet to a mechanical load. From a mechanics
oint of view, the 2D cut sheet can be viewed as multiple tapered
lastic strips connected at one end to form the central hub. Since
he tapered elastica theory can describe the deformation of each
trip, an explicit equation was derived that correlates the shape
f the 2D cut pattern (i.e. the width and thickness distributions of
ach elastic strip) and the curvature of the 3D target structure. It
lso demonstrated the feasibility of this inverse design framework
y showing several typical examples. Implementing the frame-
ork proposed in [21] to create tessellated morphing structures
equires fabricating customized flat cut sheets with tapering of
oth the width and thickness. Although additive manufacturing
echnologies, such as 3D printing, allow the manufacture of such
ustomized sheets [39], this approach is only readily adopted for
ertain materials — it is not appropriate for others, particularly
rittle, crystalline or two-dimensional materials. In addition, it is
hallenging to precisely control the thickness of preformed flat
heets [40]. Therefore, other strategies should be sought that can
ore readily be implemented for such materials.
Looking into the underlying morphing mechanism, we can

ecognize that the fundamental effect of changing the width
r thickness of the kirigami sheet is to tune the local bending
tiffness [38]. Inspired by recent investigations on the bending
ehaviour of perforated sheets [41,42], we now propose an alter-
ative strategy to tailor the local bending stiffness — introducing
istributed small pores (or perforations) into the kirigami sheet,
hich is referred to as ‘perforated kirigami’. These pores can
e easily introduced by, for example, laser cutting and micro-
abrication techniques [41] and modify the bending stiffness of
he sheet in a similar manner to thickness variations. Together
ith the geometrical constraint of tessellation [21], we present
new paradigm of inverse design of shape-morphing structures

n this work and demonstrate it with a series of examples. We
lso move beyond the simple design problem considered in [21]
o consider the structural stability of the resulting shape: while
tessellated 3D shape may resemble a standard shell, we con-
ider its load-bearing capacity. This is an important consideration
ince most shape-morphing structures will be required to with-
tand the action of external loads in applications from aircraft
ings, to automobile structures and space or ground infrastruc-
ure [9,43,44]. We therefore examine the load-bearing capacity
f the shape-morphing structures generated using this ‘perfo-
ated kirigami’ strategy under indentation tests; in particular,
y combining experiments and FEM simulations, we find that
hese structures have an unusual geometry-dependent rigidity in
omparison to continuous shells.
2

2. Theoretical model

Our previous work developed a theoretical framework based
on the tapered elastica theory for the inverse design of shape-
morphing problems [21]. The key idea is to control its local
mechanical properties (namely the bending stiffness) by varying
the geometry (i.e. width and/or thickness) of the flat sheet. Since
changing the thickness of a thin sheet is generally not easy to
achieve, in this work we modify it, achieving the same ultimate
effect through variations of the porosity (or the pore volume
fraction) combined with tailoring of the width.

To implement the inverse design strategy of shape-morphing
by making cuts in a porous sheet, the first step is to corre-
late the bending stiffness of the porous structure and its micro-
structure. The exact expression for the effective bending stiffness
of a porous sheet is complex, and depends not only on the overall
porosity but also on the spatial distribution and shape of the
pores [42]. Here, to simplify the problem, we only focus on the
local bending behaviour of the porous sheet. We define the pore
volume fraction in a local area with width, h, where pores are
located (see the zoom-in in Fig. 1(a), marked by a yellow box)
as the local porosity, ϕ(s), which varies with the arc length, s.
ollowing this definition, the local bending stiffness of a porous
trip of length L with non-uniform moment of inertia, I(s), and
istributed local porosity, ϕ(s), can be written as

(s) = E · I(s) · [1 − ϕ(s)] , (1)

here E is the Young’s modulus of the strip, which is a constant.
Here, we focus exclusively on changes to I(s) achieved by varying
he width, w(s), keeping the thickness uniform, t; we therefore
ave I (s) = w (s) · t3/12 but have left the general expression for
ompleteness.)
Note that the ‘local porosity’, ϕ(s), in (1) is different from the

lobal porosity, which we denote φ and measures the overall
olume fraction of pores. In this way, it is possible to tune the
lobal porosity by changing the width of the local area, h, whilst
aintaining the same distribution of the local porosity. This ad-
antage is important for customizing the load-bearing capacity of
he morphed structures, which will be discussed in Section 4.

As shown in Fig. 1(a), we consider an elastic porous strip
ubject to horizontal and vertical forces, H0 and V0, at its two
nds, respectively. Recalling the tapered elastica equation [21,45],
e write the intrinsic equation for the shape, θ (s), as

d
ds

[
B(s) ·

dθ (s)
ds

]
= w0 [H0 sin θ (s) + V0 cos θ (s)] , (2)

where w0 = w(0) is the width at the end of the strip (i.e. s = 0).
This equation is to be solved together with appropriate boundary
conditions at both edges, e.g. the clamped condition

θ (0) = θ (L) = 0, (3)

and the geometric constraints arising from the inextensibility,
i.e. as shown in Fig. 1(a), the beam accommodates a fixed amount
of compression, ∆L, which corresponds to∫ L

0
cos θ (s) ds = L − ∆L = L(1 − ∆̃), (4)

where ∆̃ = ∆L/L.
The complete shape of the buckled elastica, [x̂(s), ẑ(s)], may

be determined from the intrinsic equation θ (s) by solving the
geometrical relationships

dx̂
ds

= cos θ,
dẑ
ds

= sin θ. (5)

Following the methodology proposed in [21], we
non-dimensionalize the problem by letting (ξ, x, z) = (s, x̂, ẑ)/L
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d

Fig. 1. Porous elastic strips with distributed local porosity and their deformation subject to external load. (a) Schematic of a porous strip with distributed local
porosity ϕ(s) subject to a horizontal compressive load, H0 . The buckled shape is described by the intrinsic equation θ (s). (b) Representation of three strips with
ifferent local porosity distributions (ϕ(s)) but uniform width (w0) and thickness (t); the local porosity ratio between the edge and centre varies in each case as

follows: (i) ϕ0/ϕ1 = 10, (ii) ϕ0/ϕ1 = 1, (iii) ϕ0/ϕ1 = 0.1. (c) The deformed shapes obtained from FEA simulations of those three porous strips displayed in (b).
(d) The deformed shapes obtained from FEA simulations of three porous strips with the same distributions of the local porosity corresponding to (c) but replacing
a row of small pores with a single narrow, rectangular slot. (e) Dimensionless buckled shapes of the three porous strips subject to relative end–end compression
∆L/L = 0.64 and clamped boundary conditions, where theoretical predictions from Eq. (6) are shown by the solid curves, together with FEM results for strips shown
in (c) (circles, left-hand side) and the strips shown in (d) (squares, right-hand side).
and ω(ξ ) = w(s)/w0; using Eqs. (1) and (5), the tapered elastica
Eq. (2) becomes

d
dξ

{
ω(ξ ) · [1 − ϕ(ξ )] ·

dθ
dξ

}
= −H̃

dz
dξ

− Ṽ
dx
dξ

, (6)

where H̃ =
[
(w0L2)/(EI0)

]
· H0 and Ṽ =

[
(w0L2)/(EI0)

]
· V0 are

the dimensionless forces and I0 = w0t3/12. In addition, both
the boundary condition (3) and the geometric constraint (4) are
non-dimensionalized correspondingly.

Eq. (6) may be referred to as the porous tapered elastica
equation but it is worth noting that the main difference between
this Eq. (6) and Eq. (8) of [21] is simply the replacement of T (ξ )3
by [1 − ϕ(ξ )]: variations in thickness are replaced by variations
of the local solid volume fraction. Before moving to present the
inverse design framework, we first validate this variant of the
tapered elastica equation.

According to Eq. (6), we might expect to observe deformed
shapes with different curvatures simply by controlling the distri-
bution of the local porosity of strips. As a validation, we perform
3

finite element method (FEM) simulations to examine the de-
formation of three elastic strips with different local porosity
distributions but the same thickness and width, as shown in
Fig. 1(b) (from (i) to (iii) corresponding to ϕ0/ϕ1 = 10, 1 and 0.1),
with clamped boundary conditions at both ends. The deformed
shapes of three strips obtained from FEM simulations are shown
in Fig. 1(c). Given the difficulties of cutting small pores in a
narrow strip, we also check the cases with the same local porosity
distribution but replacing a row of small pores by a single narrow
rectangular slot (with the same pore volume fraction in the local
area as marked by a yellow box in Fig. 1(a)). The corresponding
deformed shapes obtained from FEM simulations are given in
Fig. 1(d). The quantitative comparison of the deformed profiles
between FEM simulations and theoretical predictions is presented
in Fig. 1(e), where the symbols on the left- and right-hand sides
correspond to the shapes in Figs. 1(c) and (d), respectively.

As expected, controlling the distribution of the local porosity
of 2D strips with uniform thickness and width leads to different
deformed shapes upon buckling. More specifically, compare the
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hape of the uniform strip (either without pores, see Fig. 1(c)-
ii), or with uniform local porosity, see Fig. 1(d)-(v), with profile
epresented in (e) by green curve), with a strip of larger local
orosity at two edges, which exhibits a fatter deformed shape,
ee Figs. 1(c)-(i) and (d)-(iv) and the red curve in (e); while the
arger local porosity in the centre of the strip leads to a more
urved, deformed shape, see Figs. 1(c)-(iii) and (d)-(vi) and the
lue curve in (e). According to Eq. (1), it is natural to understand
hat the large local porosity induces sharp curvature because
he local bending stiffness is weakened when more material is
emoved locally. Now, we move on to consider how a desired
D tessellated shape can be inversely designed by choosing an
ppropriate bending stiffness of each strip within the framework
f perforated kirigami, which in turn can be chosen by tapering
he width of the strip and making pores to match the desired
istribution of the local porosity.

. Inverse design of tessellated 3D structures

.1. Theoretical formulation

The primary goal of this work is to achieve the inverse design
f tessellated 3D structures with desired shapes. As demonstrated
n our previous work [21], we can form an axisymmetric mor-
hable 3D structure by connecting several tapered elastic strips
hrough a central hub. In this case, two tapering parameters
ithin each strip should play the role simultaneously to satisfy
oth the geometric constraint provided by the tessellation con-
ition and the local bending stiffness chosen to give the desired
urvature distribution.
Following the procedure developed in [21], we determine the

elationship between the geometric parameters of the 2D tapered
orous sheet (i.e. the perforated kirigami) and the curvature of
he 3D desired shape by integrating (6) once,

(ξ ) · [1 − ϕ(ξ )] =
H̃(z∗ − z) + Ṽ (x∗ − x)

dθ/dξ
. (7)

It is clearly seen that there are two variables that can be
tailored: the width profile, ω(ξ ), and the local porosity, ϕ(ξ ).
Following [21], we determine the width tapering to satisfy the
geometric constraint of tessellation: edges of neighbouring strips
touch each other throughout. This means the width profile, ω(ξ ),
ust be compatible with the deformation in that ω(ξ ) = (2L/w0)·
(ξ ) · tan(π/N), where N is the number of strips we use to make
he morphing structure, and x(ξ ) = 1 + ε − ∆̃ −

∫ ξ

0 cos θ (ξ ′) dξ ′

s the x-coordinate of a particular element in the deformed con-
iguration, where ε is the radius of the central hub (marked in
ig. 2(a)). We can therefore determine ω(ξ ), which implicitly
ontains the local inclination angle, θ (ξ ), as

ω
[
ξ ; θ (ξ )

]
=

2 tan(π/N) · L
w0

[ε + X(ξ )] , (8)

where X(ξ ) = 1 − ∆̃ −
∫ ξ

0 cos θ (ξ ′) dξ ′. Note that this is deter-
mined independently of the local porosity; substituting Eq. (8)
into Eq. (6) with ϕ(ξ ) = 0 and applying particular boundary
conditions would give tessellated 3D axisymmetric shapes, but
not those desired. To match the desired profile, whilst maintain-
ing the tessellation, we tune the distribution of local porosity.
Rearranging Eq. (7), we relate the local porosity, ϕ(ξ ), to the
curvature of the desired shape, θ (ξ ), as

ϕ(ξ ) = 1 −
H̃(z∗ − z) + Ṽ (x∗ − x)

ω(ξ ) · θξ

. (9)

For a given desired 3D target structure, once we extracted
its curvature distribution, θ (ξ ), as the input information, we
4

can solve Eqs. (8) and (9), together with appropriate boundary
conditions, to obtain the cut pattern of the 2D flat sheet (both the
width, ω(ξ ), and the local porosity distribution, ϕ(ξ )) required to
ive a particular tessellated structure.
Here it should be noted that, Eq. (8) can be directly solved

nce we have the curvature information from the target shape.
owever, to solve Eq. (9), we need to determine the unknown
arameters, H0 and z∗ (with horizontal load only) or V0 and x∗

with vertical load only), or all of them together (with both hori-
ontal and vertical loads simultaneously). We take the simplified
ituation in which the structure is subject only to a horizontal
oad as an example; then Eq. (9) can be reduced to

(ξ ) = 1 −
H̃(z∗ − z)
ω(ξ ) · θξ

. (10)

According to [21], we can classify two types of situations
epending on whether the desired 3D shape has an inflection
oint, i.e. whether there is any intermediate ξ∗ ∈ [0, 1] satisfying

θξ (ξ∗) = 0 — the two cases are denoted: (a) no inflection point,
nd (b) one inflection point. We can summarize the solution of
he two unknown parameters (H0 and z∗) corresponding to the
particular boundary conditions, for situation (a) choose

H̃ =
ω(0)θξ (0) − ω(1)θξ (1)

y(1)
, z∗ =

ω(0)θξ (0)

H̃
, (11)

and, for situation (b) choose

z∗ =

∫ ξ∗

0
sin θ dξ, H̃ =

θξ (0)
z∗

. (12)

Substituting Eq. (11) or (12) into Eq. (10), together with Eq. (8),
the inverse design problem is fully solved. Similar results can be
obtained for the situation of a vertical load only. It should also
be noted that the local porosity must satisfy ϕ(ξ ) ∈ [0, 1]; to
ensure this, we scale the local porosity calculated from Eq. (10)
as ϕ̄(ξ ) = 1 − [1 − ϕ(ξ )] /max [1 − ϕ(ξ )].

3.2. Demonstration of inverse design strategy

As a first demonstration of the inverse design framework
proposed in Section 3.1, we choose a hemisphere as the target
3D structure. This structure can be morphed by applying hor-
izontal loads to a 2D cut sheet with distributed local porosity
(i.e. the perforated kirigami). From an expression for the profile of
the target structure, most readily the intrinsic equation θ (s) but
equivalently [x(s), y(s)], we design the 2D cut pattern as follows:
he distribution of both width, w(s), is calculated numerically
rom Eq. (8) and the expression for X(ξ ) that follows (8), while
he local porosity ϕ(s) is calculated from Eqs. (10) and (11) (since
his target shape is without inflection point). To simplify the
abrication, we consider a narrow rectangular slot with width, h,
o represent a row of small pores, similar to the cases shown in
ig. 1(d). Note that, for a given distribution of local porosity, the
idth h is proportional to the global porosity of the cut sheet,
. Here we choose to use eight strips (N = 8) to make up
he structure. The designed 2D cut pattern is fabricated by laser
utting a uniform square flat sheet with dimensions Γ × Γ × t
with Γ = 189 mm and t = 0.3 mm the width and thickness of
he flat sheet, respectively), and the slot width is set as h/Γ =

.0096, see Appendix A.1 for more details. The cut pattern of the
lat sheet is shown in Fig. 2(a).

To ensure the cut sheet is subject to precise boundary condi-
ions at the distal edge of each strip, we also 3D printed a base
ith eight grooves that match the width and thickness of the
istal edge of each strip (see Appendix A.1 for more details). The
osition and inclination angle of each groove correspond to the
oundary conditions of displacement and rotation angle required
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Fig. 2. Inverse design demonstration of a morphing to a hemisphere in FEM simulations and experiment. (a) The cut patterns of the 2D flat sheet predicted by
theory to generate the 3D hemisphere. (b) A morphed hemisphere with dimensionless slot width h/Γ = 0.0096 obtained in physical experiment. (The scale bar
epresents 1 cm.) (c–e) The 3D morphed hemispheres obtained in FEM simulations with slot width: (c) h/Γ = 0.0048, (d) h/Γ = 0.0096 and (e) h/Γ = 0.0144. (f)
omparison of the profiles of the 3D morphed hemispheres obtained from the theory (solid line), experiment (red symbols) and FEM simulations (blue symbols).
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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or the final shape. Inserting each strip into the groove tightly,
e obtain the 3D morphed structure shown in Fig. 2(b). We also
erform FEM simulations to validate this example of morphing
the morphed shape obtained from FEM is shown in Fig. 2(d).

he details of FEM simulation are given in Appendix B. From
oth experiments and simulations, we see clearly that the desired
xisymmetric tessellated 3D structure is obtained.
We also simulate two cases of morphing of the cut sheets

ith different slot widths in FEM simulations, comparing to those
ases with h/Γ = 0.0096 shown in Figs. 2(b) and (d), namely
maller slot, h/Γ = 0.0048, and larger slot, h/Γ = 0.0144; the
btained morphed shapes are shown in Figs. 2(c) and (e), respec-
ively. All these cases show a good match with the target shape;
ndicating that the value of slot width h (or correspondingly, the
lobal porosity, φ) does not affect the shape of the morphed

structure. The colour map of Figs. 2(c–e) shows the distribution
of strain within the morphed structure; the corresponding maxi-
mum values of the strain for (c–e) are ϵmax < 0.5%. The extremely
mall strain confirms that the bending-induced deformation is
lmost isometric and indicate that this kind of design strategy can
e easily implemented within a broad range of materials without
nducing material failure.

Furthermore, the coordinates of the mid-line profile of the
xisymmetric morphed 3D structures (along the yellow line as
arked in Fig. 2(a)) are extracted from both experiment (the
hape in Fig. 2(b)) and FEM simulations (Figs. 2(c–e)). They are
uantitatively compared with the profile predicted by the theo-
etical model (which is the same as the target shape, by construc-
ion) and shown in Fig. 2(f). The excellent agreement between
heory, experiment and simulations indicates that the inverse
esign method is effective. It is worth noting that our main
oal here is to provide a design strategy to create 3D structures
ith different apparent shapes. The porosity introduced here is

ncidental — its role is simply to modify the bending stiffness of
he cut sheet locally. The resulting porous structures may be used
irectly (for example, as a building facade or packaging) but could
lso be used as the frame or reinforcement of 3D structures with
ifferent shapes by adding thin, continuous membranes. We shall
xplore these implications in future work. Now, therefore, we
ove on to explore the mechanical performance of the morphed
D structures.
5

4. Rigidity of morphed 3D structures

To create functional and resilient 3D structures via this kind
of inverse design strategy, understanding the mechanical char-
acteristics of the morphed structure is essential. Considering the
created hemi-spherical morphing structure has the potential for
application in various engineering structures, such as infrastruc-
tures, we examine its rigidity in indentation as a proxy of its
overall load-bearing capacity: how does geometry influence the
structural rigidity within the linear elastic regime?

Previous studies indicated that the stiffness of a continuous
ellipsoidal shell is strongly dependent on its geometry [46,47], in
which the aspect ratio a/b is an important geometric parameter.
As an extension to the hemisphere (with a/b = 1.0), we also
create several half-ellipsoidal morphing structures with aspect
ratio a/b in the range 0.5 ≤ a/b ≤ 2.0. The experimental and
numerical realization of three half-ellipsoids with a/b = 0.5, 1.0
nd 2.0 are shown in Figs. 3(a)–(i–iii) and (b)-(iv-vi), respectively.
ote that these structures are cut from square sheets with the
ame width, Γ = 189 mm, and the slot widths also keep the
ame, i.e. h/Γ = 0.0096.
We quantify the structural rigidity of these morphed 3D struc-

ures via indentation tests. The test setup is displayed in Fig. 3(a)–
iii): The top central hub of the morphed structure is indented by
probe (the ‘indenter’) with a flat tip, to a depth of D = 10 mm
see Appendix A.2 for details). The relationships between the
pplied indentation depth, D, and the measured reaction force,
, are presented in Fig. 3(c). The initial stiffness of each morphed
tructure is measured from the F − D curves within the linear
lastic regime (D ≲ t , as suggested in [47]); this defines the (lin-
ar) rigidity of the morphed structure. The measured value of K is
lotted as a function of a/b in Fig. 3(d) by blue circles. We also im-
lement the indentation test in FEM simulations for samples with
/b = 0.5, 0.75, 1.0, 1.5, and 2.0, and the numerically measured
igidity are plotted in Fig. 3(d) as blue diamonds; experiments
nd FEM simulations show consistent results here. Interestingly,
he relationship between K and a/b is non-monotonic. This non-
onotonic relationship is resulting from the complex interplay of
eometric and structural factors but can be roughly correlated to
he global porosity, φ, which determines the weakening effect on
he bending stiffness of strips by removing material. We measure
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Fig. 3. Experimental and numerical realization of morphed half-ellipsoids with different aspect ratio and their rigidity measured in indentation tests. (a) The morphed
half-ellipsoids obtained in physical experiments with (i) a/b = 0.5, (ii) a/b = 1.0 and (iii) a/b = 2.0. (The scale bars represent 1 cm.) (b) The morphed half-ellipsoids
btained in FEM simulations, the shapes in (iv–vi) correspond to the physical models in (i–iii). (c) The force–displacement relationship of half-ellipsoids in indentation
ests. (d) The rigidity of half-ellipsoids measured from both experiments (blue circles) and FEM simulations (blue diamonds) and the corresponding solid volume
ractions (red squares) of those half-ellipsoids as a function of aspect ratio. The slot widths are fixed as h/Γ = 0.0096, where h and Γ are defined in Fig. 2(a).
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for morphed structures with different a/b and plot 1 − φ (the
olume fraction of solid) as a function of a/b in Fig. 3(d) by
ed squares. It is clearly seen that there is a positive correlation
etween K and 1 − φ.
As already discussed (Section 3.2), the same morphed shape

an be realized by using cut patterns with the same distribution
f local porosity and changing only the width of each rectangular
lot (defined in the top right sub-plot of Fig. 2(a), which is
lso proportional to the global porosity). We therefore perform
EM simulations to investigate the rigidity of these variants on
single morphed structure to quantify the role of slot width

or, correspondingly, the global porosity). More specifically, we
valuate the rigidity of structures with a/b = 0.5, 1 and 2 for both
arrower and wider slots. All the numerically measured values
f the rigidity are plotted in Fig. 4(a). Comparing to the cases
ith h/Γ = 0.0096 (see diamonds), and the same value of a/b,
he narrower slot cases (h/Γ = 0.0048, see lower triangles)
re stiffer while the wider slot cases (h/Γ = 0.0144, see upper
riangles) are softer. These findings are in line with expectations:
n general, a morphed structure should be stiffer when we remove
ess material from the sheet (i.e. corresponding to smaller global
orosity) with a given cut pattern. However, this also provides a
ew opportunity to tune the rigidity of a given target structure.
rom Fig. 4(a) we also notice that, for the cases with given slot
idth (or global porosity), the non-monotonic trends between K
nd a/b always hold.
6

To quantitatively explore the relationship between the rigidity
and the global porosity φ, we plot K as a function of 1 − φ for
ifferent value of a/b in the inset of Fig. 4(b). It is clearly seen the
inear correlation between K and 1−φ; that is, for given a/b, the
orphed structure with smaller global porosity φ corresponds to

arger rigidity K . From Fig. 4(a) we have seen that the rigidity K
epends on the slot width h, equivalently the global porosity φ.
owever, as shown in Fig. 4(b), the scaling with porosity can be
nderstood by rescaling K with the global solid fraction 1 − φ:
ince the bending stiffness is proportional to the solid volume
raction, this rescaling removes the porosity-dependence, with
nly the aspect-ratio dependence remaining.
The rigidity of continuous ellipsoidal shells is known to de-

end on the aspect ratio a/b [46,47]. One natural question is how
tiff the morphed shell (which is referred to as the tessellated
hell) is compared to the continuous shell of the same gross
hape. The results in [48] showed that the rigidity of a continuous
hell with aspect ratio a/b can be calculated as Kcont = 8B/l2b ,
here lb = (BR2/Et)1/4 is the bending length scale calculated
ith the radius of curvature local to the indentation point, R =
2/b. We can therefore readily calculate the rigidity of continuous
hells with different values of a/b when the perimeter is fixed
s a constant (which is constrained by the dimension of the flat
heet, Γ ). The ratios between the rigidity of tessellated shells
with different slot widths h) and continuous shells, Ktess/Kcont ,
re plotted as a function of a/b in Fig. 4(c). It is clearly seen
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Fig. 4. The relationship between the rigidity and the aspect ratio of half-ellipsoids. (a) FEM results for the rigidity of half-ellipsoids with three dimensionless slot
widths: h/Γ = 0.0048 (lower triangles), 0.0096 (diamonds) and 0.0144 (upper triangles), where h and Γ are defined in Fig. 2(a). (b) The rigidity of half-ellipsoids is
ormalized by their corresponding solid volume fraction. Inset: The relationship between rigidity and solid volume fraction for different aspect ratios. (c) The rigidity
atio between the morphed structures (referred to as tessellated shells) and continuous shells with the same aspect ratio. (d) The rigidity of both tessellated shells
blue symbols) and continuous shells (magenta symbols) normalized by the results for the corresponding hemispheres (with a/b = 1.0). (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
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hat the ratio increases with the increase of a/b. As might be
xpected, the rigidity of tessellated shells are much smaller than
he corresponding continuous shells in general; we find that
tess/Kcont < 0.05: since the tessellated shell is comprised of eight
eparated strips, which are free to separate upon indentation, and
herefore the constraint that is an integral part of the geometric
igidity of the continuous shell is easily relaxed. In addition, to
atch the curvature distribution of the target structure, we in-

roduced porosity into the cut sheet to tailor its bending stiffness
and hence shape), thereby further weakening the stiffness of the
orphed structures.
To further explore the difference between the tessellated shell

nd the continuous shell, we normalize all the results for the
igidity obtained from FEM simulations (and calculations) by their
alue for the hemisphere (a/b = 1.0), i.e. K̄ = K/Ks where
s = K (a/b = 1.0), and show how the normalized rigidity K̄
aries with the aspect ratio a/b for both tessellated and contin-
ous shells in Fig. 4(d). There are two main important findings:
irst, the rigidity of tessellated shells with different slot width h
ollapse to a single curve, which indicates that the relationship
etween K and a/b only depends on the distribution of the local
orosity; Second, different from the tessellated shells having a
on-monotonic relationship between K̄ and a/b with minimal
igidity at a/b = 1.0, the continuous shells have monotonic
ecreasing K̄ as a function of a/b. This difference of the de-
endence of K̄ on a/b can be naturally ascribed to the release

f the geometric constraint due to the separation of the strips r

7

hich form the tessellated shells; we leave a detailed analysis of
he deformation mechanism of the tessellated shells for a future
tudy.

. Discussion and conclusion

In conclusion, this work introduced a general strategy for the
nverse design of shape-morphing structures based on kirigami
heets with distributed porosity. The tessellation pattern and
he distribution of local porosity can be explicitly predicted by
ur theoretical model based on a modification of the tapered
lastica equation. We validate this theoretical framework through
detailed demonstration of the inverse design of a hemispherical
tructure combined with physical experiments and FEM simula-
ions. Note that the design framework is general, regardless of
he geometric shape and size of the target structure. We also pre-
ented three additional examples to demonstrate the generality
f this method, as shown in Fig. 5, in which, both the 2D cut
heets (i.e. perforated kirigami, see the second column) designed
y the theoretical model and the corresponding morphed 3D
tructures (third column) are shown together with the target
tructures (first column). We can expect that this strategy would
e applicable for the design of different kinds of structures, such
s shape-adaptive robotics, large-span infrastructures and macro-
cale spacecraft structures, with potential applications in a wide

ange of engineering scenarios.
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Fig. 5. Additional examples of the shape-morphing structures with different shapes based on the inverse design framework. (a) An apple shape structure as a possible
gripper or fitted packaging for a real apple. (b) A roof structure with respect to the cupola of the Bodleian Library at the University of Oxford. (c) A cone structure as
a possible rocket nose cone (https://www.nasa.gov/). The first column shows the target 3D structures with different shapes followed by the 2D cut sheets (perforated
kirigami) designed by the theoretical model (second column) and the corresponding morphed 3D structures (third column).
We also evaluated the load-bearing capacity of morphed half-
llipsoidal structures with different aspect ratios via indentation
ests; this revealed an interesting non-monotonic trend of the
eometric rigidity with respect to the aspect ratio that has been
onfirmed by both simulations and experiments. We argued that
his non-monotonic trend could be attributed to the interplay of
eometric and structural factors and phenomenologically corre-
ated to the global porosity. We hope this preliminary investiga-
ion of the mechanical responses of shape-morphing structures
ill provide guidance for the design of functional and resilient 3D
tructures via a morphing strategy, and furthermore, to motivate
ore in-depth studies in this area.
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Table A.1
Parameters are used for laser cutting.
Parameters Power (%) Speed (%) PPI (pulses per inch) Z-axis (mm)

Value 56.1 100 500 0.3
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Appendix A. Experimental details

A.1. Fabrication

The 2D sheet with designed pattern is cut from a Mylar film
with dimensions of 189 mm × 189 mm × 0.30 mm using a 60
Walt Denford VLS 4.60 laser cutter with the power and speed
settings listed in Table A.1.

The cut sample is clamped to a solid base designed to impose
the given boundary conditions, i.e. the displacement ∆ and the

https://www.nasa.gov/
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i
p

nclined angle at the distal edge. The base is 3D printed in hard
lastic, namely polylactic acid (PLA, with Young’s modulus ≈ 2

GPa). Clamping of each strip is achieved by printing a groove
within the base into which additional material at the end of each
strip could be inserted, guaranteeing a particular edge inclination
angle is achieved.

A.2. Indentation test

We perform the indentation tests by using an cylindrical in-
denter made by aluminium alloy with a flat tip. The aluminium
indenter (E ≈ 69 GPa) has one magnitude higher stiffness than
the Mylar (E ≈ 1.9 GPa) sheet. The diameter of the indenter tip
is 20 mm, which covers the entire central hub of the morphed
structures. The indentation depth of D = 10 mm is applied at
a rate of 1 mm/min (ensuring that the test is performed qua-
sistatically). The applied force is recorded by an INSTRON testing
machine with a 100 N load cell.

Appendix B. FEM simulations

Computational analyses are performed by using the commer-
cial finite element analysis software (ABAQUS 6.19) to simulate
both the shape morphing process and the indentation test. 4-
node shell elements (S4R) were used in every model. The material
properties of Mylar are used in all the simulations (i.e. Young’s
modulus E = 1.9 GPa and Poisson’ s ratio v = 0.3). There are
two steps set in the FEM simulation: the first step, applying the
appropriate boundary conditions (both the displacement and the
inclined angle at the distal edge) to achieve the morphed state,
and the coordinates of the profile of the morphed structures are
measured; the second step, applying the vertical displacement
to the central hub of the 3D morphed structure, and record the
displacement and reaction force simultaneously.
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