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Artery Construction and Disease

Arteriosclerosis: Increasing wall thickness and stiffness in the 
arterial wall 
Neointimal hyperplasia: Proliferation of cells which decreases 
lumen diameter

www.temple.edu/medicine/facultya/autierim http://www.nlm.nih.gov/medlineplus/ency/images/

• The tunica media is composed of vascular smooth muscle cells 
which maintain vascular tone 
• Vascular smooth muscle exhibits stress-relaxation

Medical Physiology, Guyton 2005 & Introduction to Vascular Biology

Hypertension is positively correlated with low compliance and wall thickening 
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The Problem & Approach

Arteriosclerosis will be studied mechanically

Our Approach:
• Find an analytical solution using Lamé and the Zener model
• Analyze data from the literature
• Create a FEM ABAQUS model, taking material properties from the 
literature
• Compare the compliance for healthy and diseased arteries

Explain arterial wall thickening from a mechanical perspective

Main Assumptions:
• This is a 2D plane strain problem
• The artery is linearly elastic, isotropic, and homogeneous
• Negate arterial contraction, this is a creep problem
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Defining Biaxial Constiutive Law
Zener model for viscoelasticity

http://www.scielo.org.co/img/revistas/

Strain history curve fit

Ellyin et al, 2005

Solution to ODE - biaxial viscoelastic material law

Material law equations were solved

Total strain of elements in series
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Analytical Solution

Lame’s solution for a viscoelastic finite ring in plane stress was determined 

Combination of the strain – displacement equations

Lame’s solution for viscoelastic materials

Creep compliance can be easily solved

Qualitative Description  
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Determining Compliance & Strain vs. Time

Strain history integral

ImageJ compliance determination

Experimental compliance data was used for the model and analytical solutions

σ(t)= 12.5 + 3.3sin(2π*t)

Internal hydrostatic pressure applied

Talts et al. 2006
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Method of Analysis

An axisymmetric 2D plane strain element was developed.

Main Assumptions for FEM ABAQUS model:
• 2D plane strain problem shell planar element
• Material is linearly elastic, isotropic, and homogeneous
• Constant stress creep problem
• Quarter-ring is sufficient and computationally efficient
• Cyclic vascular pressure modeled by periodic sine function
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Defining Viscoelastic Parameters

We gleaned and cleaned the literature for our model’s parameters.

Parameters determined from the clinical literature

Nagai: carotid m/w E=94.4+/- 33.5 kPa
Nagai: carotid resting diameter 0.55 +/-0.06 cm
Nagai: carotid stressed 0.58+/- 0.06cm
Nagai: BP 120/70 mmHg
Riley: Carotid intimal thickness men/women 0.06cm
Armantano: up BP, down compliance, down distensibility
Sarma: poisson ratio=0.375, density = 1.06g/ml
Lichtenstein: volumetric compliance 0.016mm^3/mmHg/mm vessel
Lichtenstein: hypertensive volumetric compliance 0.009mm^3/mmHg/mm vessel
Lichtenstein: kR = 128114.5173 Pa
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FEM Results--Healthy

Healthy arterial cross section has 0.06 cm walls.  Model 
incorporates cyclic blood pressure Y(t)= 95 + 25sin(2*pi*t) 

Oscillation of the walls
At a frequency of 1 Hz
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FEM Results--Diseased

We modeled 6-fold inward wall growth for the diseased condition.

Oscillation of the walls
At a frequency of 1 Hz
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Healthy vs. Disease Compliance

Strain vs. time was calculated

• The FEM analysis indicates that the max principal strain on the inner 
surface of the diseased artery is an order of magnitude lower than on the 
healthy one.  
• The compliance of the diseased artery wall is lower.  It is, therefore, more 
brittle and less able to distend.  This is consistent with arteriosclerosis 
conditions.
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Healthy vs. Disease Compliance

• Maximum radial strain values in healthy individals were 0.073 (Nagai, 1999)
• Curves exhibit typical viscoelastic hysteresis
• Compliance was decreased in the diseased artery 

Strain vs. time was calculated
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Analytical vs. FEM Model Solutions

Challenges encountered in both methods

Analytical: Acquiring D(t) data, data was primarily 
dependent on unrelaxed compliance (elastic behaviour)

FEM: magnitude of output values, precise nodal history 
outputs.  However, allowed for cyclic viscoelastic strain 
visualization.

Both approaches verified that compliance is reduced in the diseased artery
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Conclusions & Significance

1.  Blood pressure increases due to hypertension 
2.  To reduce stress the cells proliferate, thickening the wall
3. Radial compliance decreases, stiffening the artery
4. The artery becomes susceptible to plaque/emboli formation

The 4 Mechanical Steps to Arterial Disease

Inner Radius Outer radius
Stress θ ‐0.199 ‐0.875
Stress r ‐0.631 ‐0.268
Strain θ ‐0.201 ‐0.875
Strain r 0.200 ‐0.875

Compliance θ 0.000 0.000
Compliance r 0.091 ‐1

Final change in stress, strain, and compliance when the intima is increased by 50% (inward)
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