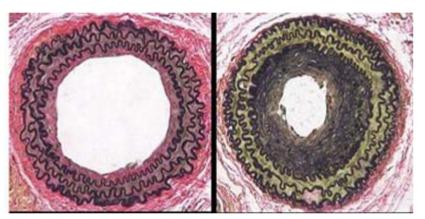


Arterial Compliance & Disease

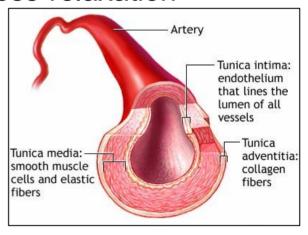
ES 240 Final Presentation Alex Epstein & Alison Forsyth

Artery Construction and Disease

- The tunica media is composed of vascular smooth muscle cells which maintain vascular tone
- Vascular smooth muscle exhibits stress-relaxation



www.temple.edu/medicine/facultya/autierim



http://www.nlm.nih.gov/medlineplus/ency/images/

Arteriosclerosis: Increasing wall thickness and stiffness in the arterial wall

Neointimal hyperplasia: Proliferation of cells which decreases lumen diameter

Hypertension is positively correlated with low compliance and wall thickening

The Problem & Approach

Explain arterial wall thickening from a mechanical perspective

Our Approach:

- Find an analytical solution using Lamé and the Zener model
- Analyze data from the literature
- Create a FEM ABAQUS model, taking material properties from the literature
- Compare the compliance for healthy and diseased arteries

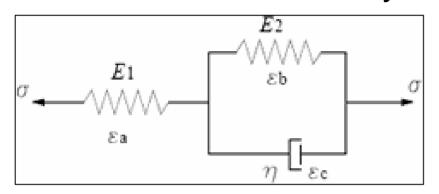
Main Assumptions:

- This is a 2D plane strain problem
- The artery is linearly elastic, isotropic, and homogeneous
- Negate arterial contraction, this is a creep problem

Arteriosclerosis will be studied mechanically

Defining Biaxial Constitutive Law

Zener model for viscoelasticity



Strain history curve fit

$$\varepsilon_t = \varepsilon_U + (\varepsilon_R - \varepsilon_U) \left(1 - e^{-\frac{t}{\tau}}\right)$$

http://www.scielo.org.co/img/revistas/

Total strain of elements in series

$$\dot{\varepsilon_t} = \dot{\varepsilon_a} + \dot{\varepsilon_c}$$
 $\dot{\varepsilon_t} = \frac{2\sigma}{\tau} \bar{\bar{A}} - \frac{1}{\tau} \varepsilon_t$ $\tau = \frac{H}{E}$

Solution to ODE - biaxial viscoelastic material law

$$\varepsilon_r = \frac{2}{E} (\sigma_r - \nu \sigma_\theta) - \frac{2}{E} (\sigma_r - \nu \sigma_\theta) e^{-\frac{t}{\tau}}$$

$$\varepsilon_\theta = \frac{2}{E} (\sigma_\theta - \nu \sigma_r) - \frac{2}{E} (\sigma_\theta - \nu \sigma_r) e^{-\frac{t}{\tau}}$$

Material law equations were solved

Analytical Solution

Combination of the strain – displacement equations

$$\varepsilon_r = \frac{\partial (r \cdot \varepsilon_\theta)}{\partial r}$$

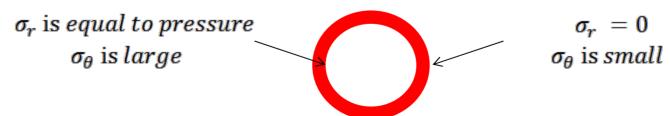
Lame's solution for viscoelastic materials

$$\sigma_r = \left(A + \frac{B}{r^2}\right) \quad \sigma_\theta = \left(A - \frac{B}{r^2}\right) \quad A = -\frac{SR_a^2}{R_b^2 - R_a^2} \quad B = \frac{SR_b^2 R_a^2}{R_b^2 - R_a^2}$$

Creep compliance can be easily solved

$$\varepsilon(t) = D(t)\sigma$$

Qualitative Description



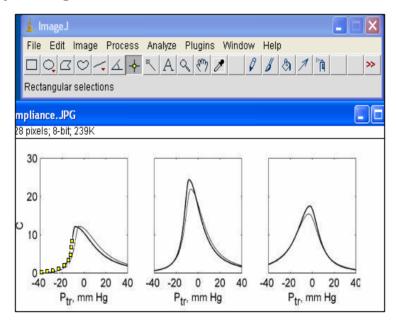
Determining Compliance & Strain vs. Time

$$\varepsilon(t) = \int_{-\infty}^{t} D(t - u) \frac{d\sigma}{du} du$$

 $\sigma(t) = 12.5 + 3.3\sin(2\pi^*t)$

Strain history integral

Internal hydrostatic pressure applied



Talts et al. 2006

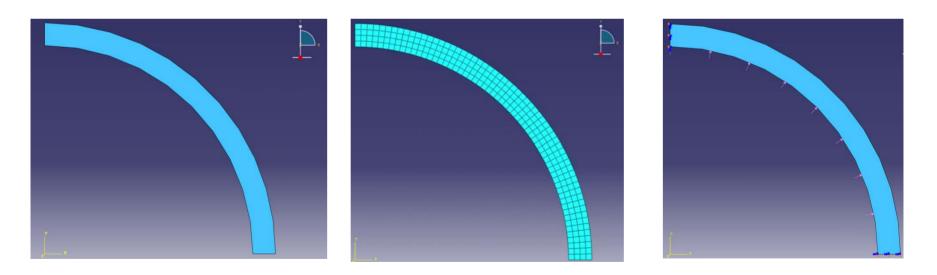
ImageJ compliance determination

Experimental compliance data was used for the model and analytical solutions

Method of Analysis

Main Assumptions for FEM ABAQUS model:

- 2D plane strain problem → shell planar element
- Material is linearly elastic, isotropic, and homogeneous
- Constant stress → creep problem
- Quarter-ring is sufficient and computationally efficient
- Cyclic vascular pressure modeled by periodic sine function



An axisymmetric 2D plane strain element was developed January 13, 2008

Defining Viscoelastic Parameters

Parameters determined from the clinical literature

Nagai: carotid m/w E=94.4+/- 33.5 kPa

Nagai: carotid resting diameter 0.55 +/-0.06 cm

Nagai: carotid stressed 0.58+/- 0.06cm

Nagai: BP 120/70 mmHg

Riley: Carotid intimal thickness men/women 0.06cm

Armantano: up BP, down compliance, down distensibility

Sarma: poisson ratio=0.375, density = 1.06g/ml

Lichtenstein: volumetric compliance 0.016mm^3/mmHg/mm vessel

Lichtenstein: hypertensive volumetric compliance 0.009mm^3/mmHg/mm vessel

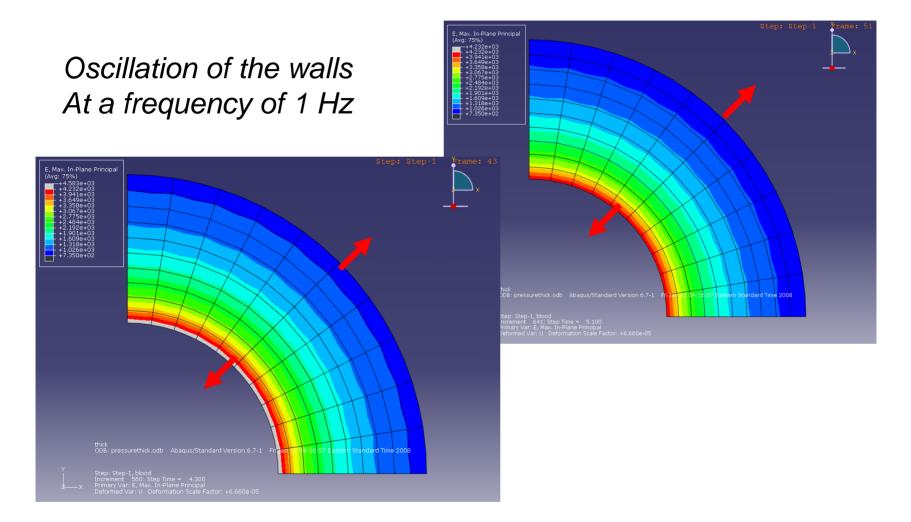
Lichtenstein: kR = 128114.5173 Pa

FEM Results--Healthy

. Max. In-Plane Principal Oscillation of the walls At a frequency of 1 Hz

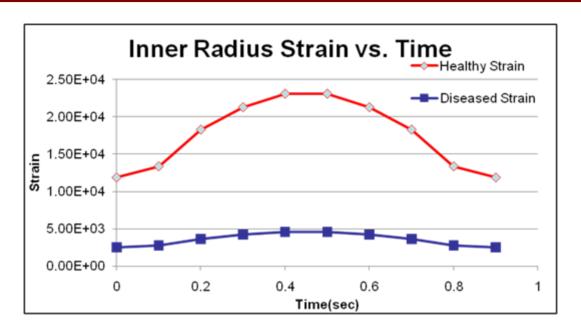
Healthy arterial cross section has 0.06 cm walls. Model incorporates cyclic blood pressure $Y(t) = 95 + 25\sin(2*pi*t)$

FEM Results--Diseased



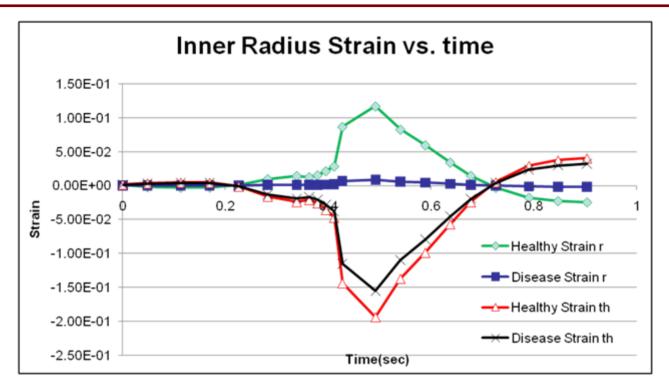
We modeled 6-fold inward wall growth for the diseased condition.

Healthy vs. Disease Compliance



- The FEM analysis indicates that the max principal strain on the inner surface of the diseased artery is an order of magnitude lower than on the healthy one.
- The compliance of the diseased artery wall is lower. It is, therefore, more brittle and less able to distend. This is consistent with arteriosclerosis conditions.

Healthy vs. Disease Compliance



- Maximum radial strain values in healthy individals were 0.073 (Nagai, 1999)
- Curves exhibit typical viscoelastic hysteresis
- Compliance was decreased in the diseased artery

$$\varepsilon_r = \frac{2}{E} (\sigma_r - \nu \sigma_\theta) - \frac{2}{E} (\sigma_r - \nu \sigma_\theta) e^{-\frac{t}{\tau}}$$

Analytical vs. FEM Model Solutions

Challenges encountered in both methods

Analytical: Acquiring D(t) data, data was primarily dependent on unrelaxed compliance (elastic behaviour)

FEM: magnitude of output values, precise nodal history outputs. However, allowed for cyclic viscoelastic strain visualization.

Both approaches verified that compliance is reduced in the diseased artery

Conclusions & Significance

	Inner Radius	Outer radius
Stress θ	-0.199	-0.875
Stress r	-0.631	-0.268
Strain θ	-0.201	-0.875
Strain r	0.200	-0.875
Compliance θ	0.000	0.000
Compliance r	0.091	-1

Final change in stress, strain, and compliance when the intima is increased by 50% (inward)

The 4 Mechanical Steps to Arterial Disease

- 1. Blood pressure increases due to hypertension
- 2. To reduce stress the cells proliferate, thickening the wall
- 3. Radial compliance decreases, stiffening the artery
- 4. The artery becomes susceptible to plaque/emboli formation

References

- 1. Guyton A. Textbook of Medical Physiology. 11th ed; 2005.
- 2. Hunt B. Introduction to Vascular Biology. 2nd ed; 2002.
- 3. Lichtenstein O, Safar ME, Poitevin P, Levy BI. Biaxial mechanical properties of carotid arteries from normotensive and hypertensive rats. *Hypertension*. 1995;26(1):15-19.
- 4. Nagai Y, Fleg JL, Kemper MK, Rywik TM, Earley CJ, Metter EJ. Carotid arterial stiffness as a surrogate for aortic stiffness: relationship between carotid artery pressure-strain elastic modulus and aortic pulse wave velocity. *Ultrasound in medicine & biology.* 1999;25(2):181-188.
- 5. Riley WA, Evans GW, Sharrett AR, Burke GL, Barnes RW. Variation of common carotid artery elasticity with intimal-medial thickness: the ARIC Study. Atherosclerosis Risk in Communities. *Ultrasound in medicine & biology.* 1997;23(2):157-164.
- 6. Sarma PA, Pidaparti RM, Meiss RA. Anisotropic properties of tracheal smooth muscle tissue. *Journal of biomedical materials research.* 2003;65(1):1-8.