Direct Solution to Find the Eigenvectors of a Dynamic Modal Analysis

Let be the $(n \times n)$ system of equations:

$$
[K]\{U\}+[M]\{\ddot{U}\}=\{0\}
$$

And $\lambda_{i}, i=1$ to $n:$ the corresponding Eigenvalues

$$
([K]-\lambda[M])\{\Phi\}=\{0\}
$$

Such that $[A]=[K]-\lambda[M]$
And $\{\Phi\}$ the Eigenvectors
The Eigenvalues are obtained from the Characteristic equation:

$$
|[K]-\lambda[M]|=0
$$

λ_{i} are assumed to be known

The Eigenvectors are obtained from :

$$
[A]\{\Phi\}=\{0\}
$$

Such that: $\quad[K]\{\Phi\}=\lambda[M]\{\Phi\}$
Let X the $(n \times 1)$ one-dimensional Vector Storing One Eigenvector of the [Φ] Modal matrix :

$$
[A]\{\mathrm{X}\}=\{0\}
$$

Let be $X(1)=1$
One has to solve the $(n-1 \times n-1)$ system of equations for each λ_{i} with the linear solving with a direct method like the Gauss L. U :

$$
[\boldsymbol{G}]\{\mathbf{Y}\}=\{\boldsymbol{B}\}
$$

Such that:

```
\(G(i, j)=A(i+1, j+1) \quad i=1\) ton \(-1, j=1\) ton -1
\(B(i)=-A(i, i+1) \quad i=1\) to \(n-1\)
\(Y(i)=X(i+1) \quad i=1\) to \(n-1\)
```


Example :

Two Bar elements subjected to a free vibration motion have the same following properties :
$k=E * S / L:$ stiffness
$m=\rho * S * L:$ mass
E : Longitudinal elasticity modulus, S : Transversal section, L : Length, ρ : Mass per unit volume Considering the Lumped mass matrix, find the corresponding structural Eigenvectors.

Solution :

$$
\begin{aligned}
& {[A]=[K]-\lambda[M]=\left[\begin{array}{ccc}
k & -k & 0 \\
-k & (k+k) & -k \\
0 & -k & k
\end{array}\right]-\lambda\left[\begin{array}{ccc}
\frac{m}{2} & 0 & 0 \\
0 & \left(\frac{m}{2}+\frac{m}{2}\right) & 0 \\
0 & 0 & \frac{m}{2}
\end{array}\right]} \\
& \left|\begin{array}{cc}
\left(k-\lambda \frac{m}{2}\right) & -k \\
-k & (2 k-\lambda m) \\
0 & -k \\
0 & \left(k-\lambda \frac{m}{2}\right)
\end{array}\right|=0 \\
& \lambda m\left(k-\lambda \frac{m}{2}\right)\left(\lambda \frac{m}{2}-2 k\right)=0 \\
& \lambda_{1}=\mathbf{0} \\
& \lambda_{2}=\frac{\mathbf{2 k}}{\boldsymbol{m}} \\
& \lambda_{3}=\frac{\mathbf{4 k}}{\boldsymbol{m}}
\end{aligned}
$$

The corresponding natural Frequencies are :

$$
\omega_{1}=0
$$

$$
\omega_{2}=\sqrt{\frac{2 k}{m}}
$$

$$
\omega_{3}=2 \sqrt{\frac{k}{m}}
$$

The following step is searching the Eigenvectors :
$[A]=\left[\begin{array}{ccc}\left(k-\lambda \frac{m}{2}\right) & -k & 0 \\ -k & (2 k-\lambda m) & -k \\ 0 & -k & \left(k-\lambda \frac{m}{2}\right)\end{array}\right]$

1) $\omega_{1}=0$
$[A]=\left[\begin{array}{rrr}k & -k & 0 \\ -k & 2 k & -k \\ 0 & -k & k\end{array}\right]$
$[A]\{\mathrm{X}\}=\{0\} \Rightarrow\left[\begin{array}{rrr}k & -k & 0 \\ -k & 2 k & -k \\ 0 & -k & k\end{array}\right]\left\{\begin{array}{l}\varphi_{11} \\ \varphi_{12} \\ \varphi_{13}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\}$
$\varphi_{11}=1 \Rightarrow\left[\begin{array}{cc}2 k & -k \\ -k & k\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}k \\ 0\end{array}\right\}$ corresponding to $[G]\{\mathrm{Y}\}=\{B\}$
$\left[\begin{array}{cc}2 k & -k \\ 0 & \frac{k}{2}\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}k \\ \frac{k}{2}\end{array}\right\}$
$\Rightarrow\left\{\begin{array}{l}\varphi_{12} \\ \varphi_{13}\end{array}\right\}=\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}1 \\ 1\end{array}\right\}$
$\{\Phi\}=\{\mathrm{X}\}=\left\{\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\}$
2) $\omega_{2}=\sqrt{\frac{2 k}{m}}$
$[A]=\left[\begin{array}{rrr}0 & -k & 0 \\ -k & 0 & -k \\ 0 & -k & 0\end{array}\right]$
$[A]\{\mathrm{X}\}=\{0\} \Rightarrow\left[\begin{array}{rrr}0 & -k & 0 \\ -k & 0 & -k \\ 0 & -k & 0\end{array}\right]\left\{\begin{array}{l}\varphi_{21} \\ \varphi_{22} \\ \varphi_{23}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\}$
$\varphi_{21}=1 \Rightarrow\left[\begin{array}{cc}0 & -k \\ -k & 0\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}k \\ 0\end{array}\right\}$
$\left[\begin{array}{rr}-k & 0 \\ 0 & -k\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}0 \\ k\end{array}\right\}$
$\Rightarrow\left\{\begin{array}{l}\varphi_{22} \\ \varphi_{23}\end{array}\right\}=\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{r}0 \\ -1\end{array}\right\}$
$\{\Phi\}=\{X\}=\left\{\begin{array}{r}1 \\ 0 \\ -1\end{array}\right\}$
3) $\omega_{3}=2 \sqrt{\frac{k}{m}}$
$[A]=\left[\begin{array}{ccc}-k & -k & 0 \\ -k & -2 k & -k \\ 0 & -k & -k\end{array}\right]$
$[A]\{\mathrm{X}\}=\{0\} \Rightarrow\left[\begin{array}{ccc}-k & -k & 0 \\ -k & -2 k & -k \\ 0 & -k & -k\end{array}\right]\left\{\begin{array}{l}\varphi_{31} \\ \varphi_{32} \\ \varphi_{33}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\}$
$\varphi_{31}=1 \Rightarrow\left[\begin{array}{cc}-2 k & -k \\ 0 & -\frac{k}{2}\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{r}k \\ -\frac{k}{2}\end{array}\right\}$
$\Rightarrow\left\{\begin{array}{l}\varphi_{22} \\ \varphi_{23}\end{array}\right\}=\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{r}-1 \\ 1\end{array}\right\}$
$\{\Phi\}=\{\mathrm{X}\}=\left\{\begin{array}{r}1 \\ -1 \\ 1\end{array}\right\}$
The Modal matrix is then :
$[\Phi]=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1\end{array}\right]$

Conclusion :

This method allowed to find the Eigenvectors with an Efficient Direct linear method without using any iterative process or any other mathematical combination.

