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Supplementary Figure 1: Dislocation density effect on the strength versus size power-law

exponent.

Power-law exponent as a function of dislocation density for (a) Ni single crystals; and (b) Ni

polycrystals. Solid lines are the analytical predictions for different ranges of crystal size, while the

symbols are predictions from DDD simulations and experiments 1–4.
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Supplementary Figure 2: Effect of range of studied grain sizes on the strength versus size

power-law exponent.

Power law exponent for polycrystals versus range of grain sizes studied as predicted from equa-

tion (1) and from four different experimental studies 5–8. The initial dislocation density in the

calculations was assumed to follow ρ0 = 1012 (1 + 10× 10−6/D) µm.
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Supplementary Figure 3: Comparison between existing models and the generalized size-

dependent Taylor-strengthening law.

Dimensionless resolved shear strength multiplied by the square root of the crystal diameter versus

the initial dislocation density multiplied by the crystal diameter for Ni microcrystal 1–4 and Cu

macrocrystal experiments 9–12. Solid curve is Equation (1). In (a) the dashed lines are the “Three

Segment Node Model” 13 and the dash-dot lines are the “Single-Ended Source Model” 14; and in

(b) the dash-dot-dot lines are the statistical model 15.
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Supplementary Note 1: Physical Interpretation of the Generalized Size-Dependent Taylor-

Strengthening Law

Equation (1) in the manuscript was expressed as follows:

τ

µ
=

β

D
√
ρ
+ αb

√
ρ (1)

The second term is clearly the traditional forest-strengthening term which states that the dis-

location mean free path is inversely proportional to the square root of the dislocation density.

This term is naturally obtained from the slope of the data in Figure 3 in the manuscript when

αb
√
ρ >> β/D

√
ρ. On the other hand, when αb

√
ρ << β/D

√
ρ, the forest hardening term be-

comes negligible and the strength is mainly governed by the resolved shear strength required to

activate the weakest dislocation-sources in the crystal.

The dislocation source strength is proportional to the inverse of the effective (or mean) source

length, λ, which in turn must be bounded by the physical size of the crystal. Thus, equation (1)

may be rewritten in the more familiar form of:

τ

µ
=

kb

λ
(2)

where k is a strength coefficient that is typically assumed to be between 0 and 1. By comparing

equations (1) and (2), we find that the effective dislocation source length when αb
√
ρ << β/D

√
ρ
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should be given by:

λ =
bD

√
ρ

β
(3)

while when αb
√
ρ >> β/D

√
ρ it would be given by

λ = α/
√
ρ (4)

where k was set to unity. These two equations give a relationship for the effective source length as a

function of the crystal size and dislocation density. Equation (3) states that the effective dislocation

source length increases proportionally with the crystal external dimensions, D, normalized by the

mean free path (1/
√
ρ).

Supplementary Note 2: Effect of Dislocation Density and Range of Studied Crystal Sizes on

the Power-Law Exponent

The effect of extrinsic and intrinsic size on the strength of single crystal and polycrystalline mate-

rials is typically expressed by the following experimentally determined power-law relationship:

σ = σ0 + kD−n (5)
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where σ is the strength of the crystal, σ0 is the friction stress, D is the extrinsic size for single

crystals or grain size for polycrystals, k is a fitting constant, and n is the fitted power-law exponent

(between 0 and 1 for single crystals or 0 and 0.5 for polycrystals). Recently, the effect of pre-

straining on the power-law exponent for single crystals has received some attention. However,

questions regarding the effect of the range of studied crystal sizes, experimental scatter, and initial

dislocation density are not fully addressed in many Hall-Petch related studies.

To address these questions, the power-law exponent, n, in equation (5), as computed for

Ni based on equation (1) for different ranges of intrinsic and extrinsic crystal sizes, is shown in

Supplementary Figure 1. The exponent computed from the current DDD simulations and from

different experimental studies are also shown for comparison. For single crystals, the agreement

between the analytical predictions, DDD simulation, and experiments is excellent. The slight

deviations for some of the experimentally computed exponents at high dislocation densities can be

attributed to the fact that the initial dislocation densities in the experiments are only approximations

of the bulk crystal they were fabricated into. It is also clear that the predicted exponent depends

on the range of crystal sizes investigated. For example, at a density of 1012 m−2 the exponent

varies from 0.4 for crystals in the range 0.25 ≤ D ≤ 4000 µm to 0.8 for crystals in the range

0.25 ≤ D ≤ 2.5 µm.

In addition, for Ni polycrystals the analytically predicted exponents are shown in Supplemen-

tary Figure 1(b). The effect of the range of studied grain sizes is clear. Moreover, the maximum

predicted exponent is n = 0.5, however, a few experimental studies suggest that the exponent can
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be as large as n = 1. Such large exponent values have been suggested to be mainly associated

with grain boundary strengthening 16. Supplementary Figure 2 shows the power law exponent

as a function of range of grain sizes studied as predicted from equation (1), and from four dif-

ferent experimental studies. The initial dislocation density in the calculations was assumed to be

ρ0 = 1012 (1 + 10× 10−6/D) µm. The agreement between the simulations and experiments is

excellent with the only major deviation being the data from Meyers et al (2006) 8, which may be

due to uncertainties in the initial dislocation density in the experiments.

Supplementary Note 3: Comparison Between Dislocation-Based Strengthening Models in the

Literature and Experiments

Supplementary Figure 3 shows a comparison between the three-segment node model 13, the single-

ended source model 14, the statistical model 15, the generalized size-dependent dislocation-based

model shown in equation (1), and Ni microscale experiments on a τ
√
D/µ versus ρD plot. One

modification has been made to the statistical model proposed by Phani et al. (2013). In their model,

they assumed a constant bulk strength independent of dislocation density. Instead, here the bulk

stress is replaced by the traditional Taylor-strengthening law, σb = αµb
√
ρ, where α = 0.4. The

material properties used for all analytical predictions are those of Ni. It is clear that previously

proposed analytical models do not agree well with the experimental results. Experimental data and

DDD simulations indicate that the results will fall on a single curve, which is captured correctly by

our generalized size-dependent dislocation-based model (equation (1)). However, other analytical

models show different curves for different crystal sizes and the magnitude of the stress at a certain
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density deviate from experiments, especially for crystal sizes greater than 1 µm.
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