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Abstract 

 When a layer of a semicrystalline polymer is subject to a tensile force in its plane 

and a voltage through its thickness, the deformation of the layer is initially homogeneous, 

but then localizes.   The electromechanical instability sets in when the force and the voltage 

reach critical conditions.  The critical conditions are determined in this paper, and are 

related to two special cases:  the Considère condition for the necking instability, and the 

Stark-Garton condition for the pull-in instability.  The general critical conditions show that 

a tensile force can markedly reduce the critical voltage.   
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 Semicrystalline polymers are widely used as dielectrics in cables, capacitors and 

actuators. 1-4  Such applications require that dielectrics sustain high voltages.  A major 

mode of failure caused by the high voltages is the pull-in instability.5-9  Subject to a voltage, 

a layer of a polymer thins down, and the electric field increases. The positive feedback may 

lead to the pull-in instability upon reaching a critical voltage.  In various applications, the 

layer is often subject to a combination of a voltage and a tensile force.  Experiments have 

shown that the tensile force can substantially reduce the critical voltage. 10-16  

 This paper calculates the critical conditions for the electromechanical instability in a 

semicrystalline polymer subject to combined electric voltage and mechanical force.  The 

general critical conditions recover the Stark-Garton condition for the pull-in instability5, and 

the Considère condition for the necking instability.5,17  Furthermore, the general critical 

conditions show that a tensile force can indeed reduce the critical voltage.     

 To focus on essential ideas, consider a model illustrated in Fig 1. A layer of a polymer, 

thickness H  and sides LL×  in the undeformed state, is sandwiched between two 

compliant electrodes.  The polymer is then subject to a voltage Φ  through the thickness 

and a biaxial force P in the plane.  The electromechanical instability typically sets in at a 

large deformation, where the polymer changes its shape more substantially than changes its 

volume.  Following a common practice, we assume that the polymer is incompressible.  

Consequently, when the thickness reduces to Hλ , the two sides stretch to λ/L .   

 As illustrated in Fig. 2, the biaxial force P causes a biaxial stress of magnitude 

   
λ

σ
HL

P
= . (1)   

Because the polymer is taken to be incompressible, superimposing a state of hydrostatic 
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compression to the polymer does not change the state of deformation in the polymer.  

Consequently, the state of deformation in the polymer subject to the biaxial tension in the 

plane is the same as the state deformation in the polymer subject to a uniaxial compression 

through the thickness.    

 The voltage causes an electric field: 

   
λH

E
Φ

= . (2)   

This electric field also causes the polymer to deform (Fig. 2).  When the deformation is large, 

the polymer chains change configuration, but the electric polarization may be negligibly 

affected by the large deformation.  As a commonly adopted idealization, the dielectric 

behavior of the polymer is taken to be liquid-like, such that the permittivity ε  is a constant 

unaffected by the deformation. 18  For an incompressible dielectric with a constant 

permittivity, the effect of the electric field on deformation can be described by a compressive 

Maxwell stress, 2Eε . 19 

 When the polymer is subject to a combination of biaxial force P and voltage Φ , the 

state of deformation in the polymer is the same as that in the polymer subject to a uniaxial 

compressive stress of magnitude 2Eεσ + .  The natural strain in the thickness direction is 

λln .  We will describe the mechanical behavior of the polymer by using a power-law model, 

where the uniaxial stress is taken to scale with the natural strain to some power. 9,17  

Consequently, under the combined voltage and force, the effective stress relates to the 

stretch as 

  ( )NKE λεσ ln2 −=+ , (3) 

where N and K are parameters used to fit experimentally recorded stress-strain relation.  
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The parameter N measures how steeply the polymer strain-hardens.  Stark and Garton 

assumed the linear elastic behavior, N = 1. 5 However, the stress-strain relations for 

semicrystalline polymers significantly deviate from the linear elastic behavior, with more 

realistic values being N = 0.1-0.6.  The parameter K measures the yield strength of the 

polymer, and is much smaller than the elastic modulus of the polymer. Consequently, the 

Stark-Garton model in its original form significantly overestimates the critical voltage.  The 

modified model using the power-law adequately describes the experimentally measured 

critical voltage. 9       

 In an analysis of stability, it is essential to specify the variables independently 

controlled in experiments.  In this paper, we assume that experiments independently vary 

the force P and the voltage Φ .  In terms of the independent variables, (3) becomes  

  ( )NK
HHL

P λ
λ

ε
λ

ln
2

−=⎟
⎠
⎞

⎜
⎝
⎛ Φ

+ . (4) 

The equation embodies two competing trends as the polymer deforms: material hardening 

and geometric softening.  Material hardening results from the monotonically increasing 

stress-strain curve, and is described by the power-law model ( )NK λln− .  Geometric 

softening results from the thinning of the layer, and is described by the stretch appearing in 

the denominators of the two terms on the left-hand side of (4). 

 Figure 3 (a) represents (4) by plotting the normalized force as a function of the 

stretch at several fixed values of the voltage.  The overall shape of the curves reflects the 

competition between material hardening and geometric softening.  When deformation is 

small, 1≈λ , material hardening prevails, and the force must increase to cause further 

deformation.  When deformation is large, 1<<λ , geometric softening prevails, and the 
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force decreases to cause further deformation.  For a fixed value of the voltage, as the 

polymer deforms, the force attains a maximum, corresponding to the critical condition for 

the instability to set in.  For the special case that the polymer is subject to a biaxial tensile 

force P in the absence of voltage, 0=Φ , Eq. (4) reduces to ( ) 2/1ln λλ NKHLP −= . 

Maximizing the function ( )λP , we obtain the critical stretch ( )NC 2exp −=λ  and the critical 

stress ( )NC NK 2=σ .  This special case recovers the Considère condition for the necking 

instability. 17  

 Alternatively, Fig. 3(b) represents (4) by plotting the normalized voltage as a function 

of the stretch at several fixed values of the force.  The overall shape of the curves also 

reflects the competition between material hardening and geometric softening.  For the 

special case that the polymer is subject to the voltage Φ  in the absence of the force, 0=P , 

Eq. (4) reduces to ( ) 22/ln/ λλε NKH −=Φ . Maximizing the function ( )λΦ , we obtain the 

critical stretch ( )2/exp NC −=λ  and the critical electric field ( ) 2/2// N
C NKE ε= .  This 

special case recovers the modified Stark-Garton condition for the pull-in instability. 9  

 Observe that the necking instability sets in at the critical stretch ( )NC 2exp −=λ , and 

the pull-in instability sets in at the critical stretch ( )2/exp NC −=λ .  That is, the necking 

instability requires more deformation than the pull-in instability.  This difference is 

understood by inspecting the two terms on the left-hand side of (4).  The reduction in the 

thickness of the layer from H to Hλ  causes geometric softening, but λ  enters the two 

terms by different powers:  the geometric softening impacts more on the voltage than on 

the force.    

 In general, when P is fixed at any value, the voltage is a function ( )λΦ  as 
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determined by (4).  Setting ( ) 0/ =Φ λλ dd  at a fixed value of P, we obtain that  

  ( ) 1
2

ln24 −−=⎟
⎠
⎞

⎜
⎝
⎛ Φ

+ NNK
HHL

P λ
λ

ε
λ

. (5) 

This equation is also obtained by regarding (4) as a function ( )λP  when Φ  is fixed at any 

value, and then setting ( ) 0/ =λλ ddP .   

 Eqs. (4) and (5) together determine the critical conditions for the electromechanical 

instability in a power-law dielectric subject to combined tensile force and voltage.  Under 

the critical conditions, once any one of the three parameters, λ , P andΦ , are prescribed, the 

other two can be determined by simultaneously solving (4) and (5).  Fig. 4 plots the critical 

conditions for the electromechancial instability on the plane with the force and the voltage as 

coordinates.  The critical voltage is small when the tensile force is large.  This trend agrees 

with experimental observations. 10-16 

 Recall that the stress and the electric field are related to the force and the voltage, (1) 

and (2).  From (4) and (5) we can solve the stress and the electric field in terms of λ , 

namely, 

  ( ) ( ) 1ln
3

2
ln

3
4 −−−−= NN N

K
λλσ

, (6) 

  ( ) ( ) 1
2

ln
3

2
ln

3
1 −−+−−= NN N

K
E λλε

. (7) 

In terms of the parameters λσ ,, E , these two equations express the critical conditions under 

which the electromechancial instability sets in.  The critical conditions (6) and (7) 

generalize both the Considère condition and the Stark-Garton condition.  These equations 

are plotted in Fig. 5.  The electromechanical instability precedes electrical breakdown when 

the critical electric field determined in Fig. 5 is lower than the electric breakdown strength of 
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the polymer. 

 We have calculated the critical conditions for the electromechanical instability of a 

semicrystalline polymer subject to a combination of mechanical force and electric voltage.  

To focus on essential ideas, we have restricted to the biaxial force and power-law material 

model.  The method, however, can be extended to other loading conditions20 and other 

material models21.  While the model predicts the same trend as reported in the 

experimental literature, 10-16  we hope that more complete experimental data will become 

available to ascertain the model.        

 

 This work is supported by the National Science Foundation through a grant on Soft 

Active Materials. 
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FIG. 1. (a) A layer of a semicrystalline polymer in the undeformed state. (b) The polymer 

deforms under a voltage and a biaxial force P . 
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FIG. 2.  For an incompressible dielectric, the state of strain caused by a biaxial force and a 

voltage is the same as that caused by a uniaxial compressive stress of magnitude 2Eεσ + .
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Fig. 3.  (a) The force as a function of the stretch for several fixed values of the voltage.  (b) 

The voltage as a function of the stretch for several fixed values of the force. 
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Fig. 4. On the plane with the force and the voltage as coordinates, the critical conditions for 

the electromechanical instability are plotted for several values of the hardening exponent. 
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Fig. 5.  (a) The critical stress as a function of the critical stretch for several values of the 

hardening exponent.  (b) The critical electric field as a function of the critical stretch for 

several values of the hardening exponent.   
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