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 Elements of Linear Elasticity 
 A classic textbook:  Theory of Elasticity, by S.P. Timoshenko and J.N. Goodier, McGraw-
Hill, New York. 
 
 The aim of continuum mechanics.  A rubber band elongates when you pull it.  A 
spring board bends when you stand on it.  A bridge vibrates when a truck runs over it.  These 
phenomena show that solids deform.  The aim of continuum mechanics is to predict the 
deformation of a solid in response to a load.  
 The method of continuum mechanics.  The method of continuum mechanics is to 
view a solid as a continuous distribution of material particles, and predict the deformation of 
the solid by developing algorithms to calculate the motion of all the material particles.  
 A solid is made of atoms, each atom is made of electrons, protons and neutrons, and each 
proton or neutron is made of...  This kind of description of matter is too detailed.  We will not go 
very far by thinking of a bridge as a pile of atoms.   
 Instead, we will develop a continuum theory, in which a solid is modeled by a continuous 
distribution of material particles.  Each material particle consists of many atoms.  As time 
progress, the clouds of electrons deform, and the protons jiggle at a maddeningly high 
frequency. The material particle represents the collective behavior of many atoms.   
 At a given time, the material particle occupies a place in a three-dimensional space.  The 
places in the space are labeled by using a system of coordinates.  As time progresses, the 
material particle moves from one place to another place.  We can visualize the motion of the 
material particle by attaching a marker to the particle.  Of course we should be careful that the 
marker should not alter the motion of the material particle.  The solid consists of many material 
particles.  Different particles may move in different directions and at different speeds.  We can 
visualize the motion of the entire solid by attaching many markers to the solid. 
 
 Displacement.    At a given time, the positions of all the particles together describe a 
configuration of the solid.   As time progresses, the particles move, and the solid changes its 
configuration.  Any configuration of the solid can be used as a reference configuration.  Say we 
use the configuration of the solid at time 0t  as the reference configuration.  The configuration of 
the solid at time t is called the current configuration.   
 We name a material particle by the coordinates ( )zyx ,,  of the place occupied by the 

material particle when the solid is in the reference configuration at time 0t .  When the solid is in 
the current configuration at time t, the particle moves to a new place.  The displacement of the 
particle is the vector by which the particle moves from its place in the reference configuration to 
its place in the current configuration. At time t, the particle ( )zyx ,,  has the displacement 

( )tzyxu ,,,  in the x-direction, the displacement ( )tzyxv ,,,  in the y-direction, and the 

displacement ( )tzyxw ,,,  in the z-direction.   
 A function of coordinates is known as a field.  The field of displacement is a time-
dependent field.  At a given time, the field of displacement describes the configuration of the 
solid.  Thus, the central aim of continuum mechanics is to develop methods to predict the field 
of displacement as time progresses.       
 It is sometimes convenient to write the coordinates of a material particle in the reference 
configuration as ( )321 ,, xxx , and the field of displacement as ( )txxxu ,,, 3211 , ( )txxxu ,,, 3212 , 

( )txxxu ,,, 3213 .  

 If all the particles in the solid move by the same displacement, the solid as a whole moves 
by a rigid-body translation.  By contrast, if different particles in the solid move by different 
displacement vectors, the solid deforms.  For example, in a bending beam, material particles on 
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one face of the beam move apart from one another (tension), and material particles on the other 
face of the beam move toward one another (compression).  As another example, in a vibrating 
rod, the displacement varies with the material particle, and the displacement of each material 
particle is also a function of time.   
    
 Strain.  Given a field of displacement in a solid, we can 
calculate the corresponding field of strain.  Consider two material 
particles of the solid in the reference configuration: particle A at 
( )zyx ,,  and particle B at ( )zydxx ,,+ .  In the reference 
configuration, the two particles are distance dx apart.  At a given 
time t, the two particles move to new places.  The x-component of 
the displacement of particle A is ( )tzyxu ,,, , and that of particle B is 

( )tzydxxu ,,,+ .  Consequently, the distance between the two 

particles elongates by ( ) ( )tzyxutzydxxu ,,,,,, −+ .  By definition, the 
axial strain in the x-direction is 

 
( ) ( ) ( )

x
tzyxu

dx
tzyxutzydxxu

x ∂
∂

=
−+

=
,,,,,,,,,ε . 

This is a component of strain of the material particle ( )zyx ,,  at time t. 

 The shear strain is defined as follows.  Consider two lines of material particles.  In the 
reference configuration, the two lines are perpendicular to each other.  The deformation changes 
the included angle by some amount.  This change in the angle defines the shear strain, γ . We 
now translate this definition into a strain-displacement relation.  Consider three material 
particles A, B, and C.  In the reference configuration, their coordinates are A ( )zyx ,, , 

B ( )zydxx ,,+ , and C ( )zdyyx ,, + .  In the deformed configuration, in the x-direction, particle A 

moves by ( )tzyxu ,,,  and particle C by ( )tzdyyxu ,,, + .  Consequently, the deformation rotates 
line AC about axis z by an angle 

  
( ) ( )

y
u

dy
tzyxutzdyyxu

∂
∂

=
−+ ,,,,,,

. 

Similarly, the deformation rotates line AB about axis z by an angle 

  
( ) ( )

x
v

dx
tzyxvtzydxxv

∂
∂

=
−+ ,,,,,,

. 

By definition, the shear strain in the xy plane is the net change in the included angle: 

  
x
v

y
u

xy ∂
∂

+
∂
∂

=γ . 

 For a solid in a three-dimensional space, the state of strain of a material particle is 
described by a total of six components.  The components of strain relate to the components of 
displacement as 

A B 

C 

dx 

dy 

( )tzdyyxu ,,, +

( )tzyxu ,,,
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 Another definition of the shear strain relates to the definition above by 2/xyxy γε = .  With 

this new definition, we can write the six strain-displacement relations neatly as 

  ⎟
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⎠
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 Stress.  A material particle suffers a state of stress.  To talk about stress we need to talk 
about internal forces.  We must expose the internal forces by drawing a free-body diagram. 
Represent the material particle by a small cube, with its edges parallel to the coordinate axes.  
Cut the cube out from the body to expose all the internal forces on its 6 faces.  Define a 
component of stress by a component of force per unit area.  On each face of the cube, there are 
three components of stress, one normal to the face (normal stress), and the other two 
tangential to the face (shear stresses).  Now the cube has six faces, so there are a total of 18 
components of stress. A few points below get us organized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
• Notation:  σ ij .  The first subscript signifies the direction of the component of the force.  The 

second subscript signifies the direction of the vector normal to the face.   
• Sign convention.  On a face whose normal is in the positive direction of a coordinate axis, 

the component of stress is positive when it points to the positive direction of the axis.  On a 
face whose normal is in the negative direction of a coordinate axis, the component of stress is 
positive when it points to the negative direction of the axis. 

• Equilibrium of the cube.  As the size of the cube shrinks, the forces that scale with the volume 
(gravity, inertia) are negligible.  Consequently, the forces acting on the cube faces must be in 
static equilibrium.  Normal components of stress form pairs.  Shear components of stress 
form quadruples.  Consequently, only 6 independent components of stress are needed to 
describe the state of stress of a material particle.  
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• Write the six components of stress in a 3 by 3 symmetric matrix:      

  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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131211

σσσ
σσσ
σσσ
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 In the above, we have been careless.  We have agreed to use ( )zyx ,,  to denote the 
coordinates of the place in the space occupied by a material particle when the solid is in the 
reference configuration.  But we have then used the same coordinates to denote the place of the 
material particle in the current configuration when we try to balance force and moment in the 
current configuration.  This practice might be OK when the deformation is small, but will be 
abandoned later when we do things more rigorously.  
 
 Traction.  Imagine a plane inside a solid.  The plane has the unit normal vector n, with 
three components 321 ,, nnn .  The force per area on the plane is called the traction.  The traction 

is a vector, with three components: 
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 Question:  There are infinite many planes through a material particle.  How do we 
determine the traction on each plane? 
 Answer:  You can calculate the traction from 
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We now see the merit of writing the components of stress as a matrix.  Also, the six components 
are indeed sufficient to characterize a state of stress of a material particle, because the six 
components allow us to calculate the traction on any plane. 
 
 Proof of the stress-traction relation.   This traction-stress relation is the 
consequence of the equilibrium of a tetrahedron formed by the particular plane and the three 
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coordinate planes.  Denote the areas of the four triangles by A, zyx AAA ,, .  Recall a relation 

from geometry: 
  zzyyxx AnAAnAAnA === ,,  

Balance of the forces in the x-direction requires that 
 zxzyxyxxxx AAAAt σσσ ++= . 

This gives the desired relation  
  zxzyxyxxxx nnnt σσσ ++= . 

This relation can be rewritten using the index notation: 
 3132121111 nnnt σσσ ++= . 

It can be further rewritten using the summation convention: 
 jjnt 11 σ= . 

 Similar relations can be obtained for the other components of the traction vector: 
  3232221212 nnnt σσσ ++=  

  3332321313 nnnt σσσ ++=  

 The three equations for the three components of the traction vector can be written 
collectively in the matrix form, as give in the beginning of this section.  Alternatively, they can be 
written as 
  jiji nt σ= . 

Here the summation is implied for the repeated index j.  The above expression represents three 
equations.  We have just described the index notation and summation convention.    
 
 Example:  stress and traction.  A material particle is in a state of stress with the 
following components: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

465
632
521

. 

(a) Compute the traction vector on a plane intersecting the axes x, y and z at 1, 2 and 3, 
respectively. 

(b) Compute the magnitude of the normal stress on the plane. 
(c) Compute the magnitude of the shear stress on the plane. 
(d) Compute the direction of the shear stress on the plane.  
 Solution.  We need to find the unit vector normal to the plane.  This is a problem in 
analytical geometry.  The equation of a plane intersecting the axes x, y and z at 1, 2 and 3 is 

  1
321
=++

zyx
  

Alternatively, a plane can be defined by a given point on the plane, x0, and a unit vector normal 
to the plane, n.  For any point x on the plane, x – x0 is a vector lying in the plane, so that 

( ) 00 =−⋅ xxn , or 

  ( ) ( ) ( ) 0000 =−+−+− zznyynxxn zyx  

A comparison of the two equations of the plane shows that the normal vector is in the direction 

⎥⎦
⎤

⎢⎣
⎡

3
1,

2
1,

1
1

.  Normalizing this vector, we obtain the unit vector normal to the plane: 
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(a) The traction vector on the plane is 
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(b) Normal stress on the plane is the traction vector projected on to the normal direction 
of the plane 

  7
7
2

7
56

7
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7
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7
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7
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=×+×+×=⋅= ntnσ  

 (c) and (d) The shear stress in the plane is a vector: 

  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=−=

42
12
20

7
1nt nστ . 

The direction of this vector is the direction of the shear stress on the plane.  The magnitude of 
the shear stress is 6.86.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A field of stress.  Imagine again the body in the three-dimensional space.  At time t, 
the material particle ( )zyx ,,  is under a state of stress ( )tzyxij ,,,σ .  Denote the distributed 

external force per unit volume by ( )tzyx ,,,b .  An example is the gravitational force, bz = −ρg .  
The stress and the displacement are time-dependent fields.  Each material particle has the 
acceleration vector 22 / tui ∂∂ .  Cut a small differential element, of edges dx, dy and dz.  Let ρ  be 

the density.  The mass of the differential element is dxdydzρ .  Apply Newton’s second law in the 
x-direction, and we obtain that 

x 

y 

z 

( )tzdyyxyx ,,, +σ

( )tdzzyxzx ,,, +σ

( )tzyxyx ,,,σ

( )tzydxxxx ,,,+σ

( )tzyxzx ,,,σ

( )tzyxxx ,,,σ

( )zyx ,,

dx 
dy 

dz 
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Divide both sides of the above equation by dxdydz, and we obtain that 
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This is the momentum balance equation in the x-direction.   
 Similarly, the momentum balance equations in the y- and z-direction are 
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When the body is in equilibrium, we drop the acceleration terms from the above equations. 
 Using the summation convention, we write the three equations of momentum balance as 

  
2

2

t

u
b

x
i

j
j

ij

∂
∂

=+
∂
∂

ρ
σ

.  

 
 Material model. Homogeneity.  When talking about homogeneity, you should think 
about at least two length scales:  a large (macro) length scale, and a small (micro) length scale.  A 
material is said to be homogeneous if the macro-scale of interest is much larger than the scale of 
microstructures.  A fiber-reinforced material is regarded as homogeneous when used as a 
component of an airplane, but should be thought of as heterogeneous when its fracture 
mechanism is of interest.  Steel is usually thought of as a homogeneous material, but really 
contains numerous voids, particles and grains. 
 Material model. Isotropy.  A material is isotropic when response in one direction is 
the same as in any other direction.  Metals and ceramics in polycrystalline form are isotropic at 
macro-scale, even though their constituents—grains of single crystals—are anisotropic.  Woods, 
single crystals, uniaxially fiber reinforced composites are anisotropic materials. 
   
 Hooke's law.  For an isotropic, homogeneous solid, only two independent constants are 
needed to describe its elastic property: Young’s modulus E and Poisson’s ratio ν .  In addition, a 
thermal expansion coefficient α  characterizes strains due to temperature change.  When 
temperature changes by T∆ , thermal expansion causes a strain T∆α  in all three directions.  The 
combination of multi-axial stresses and a temperature change causes strains 

  

( )[ ]

( )[ ]

( )[ ] T
E

T
E

T
E

yxzz

xzyy
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1

 

 The relations for shear are 
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( ) ( ) ( )

zxzxyzyzxyxy EEE
σνγσνγσνγ +

=
+

=
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=
12

,
12

,
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. 

Recall the notation 2/xyxy γε = , and we have 

  zxzxyzyzxyxy EEE
σνεσνεσνε +

=
+

=
+

=
1

,
1

,
1

 

 
 The six stress-strain relation may be written as 

  ijkkijij EE
δσνσνε −

+
=

1
. 

The symbol ijδ  stands for 0 when ji ≠  and for 1 when ji = .  We adopt the convention that a 

repeated index implies a summation over 1, 2 and 3.  Thus, 332211 σσσσ ++=kk . 

 
 Express stress in terms of strain.  In the above, the 6 components of strain are 
expressed in terms of the 6 components of stress.  From the above relations, we can solve for the 
components of stress in terms of the components of strain.  The resulting relations are 
  ijkkijij δλεµεσ += 2 , 

where µ   and λ  are known as the Lame constants, given by 

  ( ) ( )( )νν
νλ

ν
µ

211
,
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+
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  Theory of Elasticity in a Nutshell 
 
Players:  Fields (A total of 15 functions) 

• The field of displacement is represented by 3 functions, 
( ) ( ) ( )tzyxwtzyxvtzyxu ;,,,;,,,;,, . 

• The field of strain is represented by 6 functions, ( )tzyxxx ;,,ε , ( )tzyxxy ;,,ε ,… 

• The field of stress is represented by 6 functions, ( )tzyxxx ;,,σ , ( )tzyxxy ;,,σ ,… 

 
Rules:  3 elements of solid mechanics 

• Deformation geometry 
• Momentum balance 
• Material model 

 
Complete set of equations (see next page). 
 
Boundary conditions 

• Prescribe displacement. 
• Prescribe traction. 

 
Initial conditions 

• Prescribe initial displacement field. 
• Prescribe initial velocity field. 

 
Goals 

• Solve boundary value problems.  ODE and PDE. 
• Relate boundary value problems to phenomena.    

 
Methods: 

• Analytical methods.  S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 
McGraw-Hill, New York. 

• Numerical methods.  Finite Element Methods.  ABAQUS. 
• Handbooks.  R.E. Peterson, Stress Concentration Factors, John Wiley, New York, 

1974.  2nd edition by W.D. Pilkey, 1997. 
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 Linear Elasticity:  Collected Equations 
 
Deformation geometry:  strain-displacement relation 
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Stress-traction relation 
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Momentum balance 
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Hooke's Law 
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 3D Elasticity:  Equations in other coordinates 
 
Cylindrical Coordinates (r, θ , z) 
u, v, w are the displacement components in the radial, circumferential and axial directions, 
respectively.  Inertia terms are neglected. 
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Spherical Coordinates ( )φθ ,,r  

θ  is measured from the positive z-axis to a radius; φ  is measured round the z-axis in a right-

handed sense. u, v, w are the displacements components in the r, θ , φ  directions, respectively. 
Inertia terms are neglected. 
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  Example:  a rubber layer pressed between two steel plates.  A very thin elastic 
layer, of Young's modulus E and Poisson's ratio ν , is well bonded between two perfectly rigid 
plates. A thin rubber layer between two thick steel plates is a good approximation of the 
situation.  The thin layer is compressed between the plates by a known normal stress zσ .  
Calculate all the components of stress and strain in the thin layer. 
 Solution.  The stress at the edges of the elastic layer is complicated.  We will neglect this 
edge effect, and focus on the field away from the edges, where the layer is in a state of 
homogenous deformation.  This emphasis makes sense if we are interested in, for example, 
the displacement of one plate relative to the other.  Of course, this emphasis is misplaced if we 
wish to study the debonding between the layer and the plates, as debonding may initiate from 
the edges. 
 To calculate the state of homogeneous deformation, we do not need to work with the 
differential equations, because they are automatically satisfied.   We will use the algebraic 
equations that relate the stress and strain. 
 The shear stresses vanish, but all the three axial stresses, zyx σσσ ,, , are nonzero.  By 

symmetry, we note that 
  yx σσ = . 

Because the elastic layer is bonded to the rigid plate, the two components of strain vanish: 
  0== yx εε . 

That is, the elastic layer is in a state of uniaxial strain:  0≠zε .  Using Hooke’s law, we obtain that 

  ( )zyxx E
νσνσσε −−==

1
0 , 

or 

  zx σ
ν

νσ
−

=
1

. 

Using Hooke’s law again, we obtain that 

   ( ) ( )( )
( ) zxyzz EE

σ
ν

νννσνσσε
−

−+
=−−=

1

2111
. 

This equation gives the desired result:  the strain of the elastic layer is expressed in terms of the 
applied stress.  When the elastic layer is incompressible, 5.0=ν , the layer cannot be strained in 
just one direction, and will be in a state of hydrostatic stress:  zyx σσσ == . 
 

 Example: Lamé problem.  A small spherical cavity is in an elastic solid.  Remote from 

the cavity, the solid is in a state of hydrostatic tension.  Determine the field of stress in the solid. 

 The symmetry of the problem makes spherical coordinate system convenient.   

 List nonzero quantities.   
• the radial displacement u ,  
• the radial stress σr , two equal hoop stresses φθ σσ = ,  

• the radial strain εr , two equal hoop strains φθ εε = . 

• A total of 5 functions of r. 
 List equations.  Use the basic equation sheet.  Simplify to the special symmetry. 

Deformation geometry: 
r
u

dr
du

r == θεε , . 
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Equilibrium equation: 02 =
−

+
rdr

d rr θσσσ
. 

Material model (elasticity, Hooke’s law): 

  ( ) ( )[ ]rrr EE
νσσνενσσε θθθ −−=−= 1

1
,2

1
. 

 Reduce to a single ODE.  The above are a set of 5 equations for 5 functions of r.  You can 
use a number of approaches to solve them.  I’ll follow an approach that obtain a single equation 
for the radial stress, σr .  From the equilibrium equation, I express σθ  in terms of σr : 

   
dr

dr r
r

σσσθ 2
+= . 

Then I use the material model to express both strains in terms of σr : 

  

( )

( ) ( ) ⎥⎦

⎤
⎢⎣

⎡ −+−=

⎥⎦
⎤

⎢⎣
⎡ −−=

dr

dr

E

dr

d
r

E

r
r

r
rr

σνσνε

σνσνε

θ 2
121

1

21
1

   

I can eliminate u from the two equations of deformation geometry, and the resulting equation is 
in terms of the two strains, 
   ( ) drrdr /θεε = .   
Express this equation in terms of the radial stress, and I have 

  0
4

2

2

=+
dr

d
rdr

d rr σσ
. 

 Solve the ODE.  This is an equidimensional equation.  The solution is of form σr = rm .  

Substitute σr = rm  into the ODE, and we find two roots:  m = 0 and m = -3.  Consequently, the 
full solution is 

  
3r

B
Ar +=σ , 

where A and B are constants to be determined by the boundary conditions.  The hoop stress is 
given by 
 

  
32r

B
A −=θσ . 

 Apply boundary conditions 
• Prescribed remote stress:   ∞== rSr    asσ . 

• Traction-free at the surface of  the cavity: arr ==    as0σ  
Upon determining the two constants A and B, we obtain the stress distribution 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
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⎜
⎝
⎛+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

33

2
1

1,1
r
a

S
r
a

Sr θσσ . 

• Plot each component of stress as a function of r. 
• Verify the boundary conditions. 
• At a distance several times the radius of the cavity, the state of stress nearly recovers the 

applied hydrostatic tension. 
• Near the surface of the cavity, the hoop stress is higher than the applied stress. 

 
 Stress concentration factor.  Note that the hoop stress is nonzero near the cavity 
surface, where the hoop stress reaches the maximum.  The stress concentration factor is the ratio 
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of the maximum stress over the applied stress.  In this case, the stress concentration factor is 
3/2.   
 Stress concentration factors are used in practice to predict failure, and they are listed in 
handbooks for bodies of many shapes and subject to many types of loads. 
 
  Elastic energy.  Consider a rod, initial length 0L  and cross-sectional area 0A .  When a 
machine applies a force f  to the rod, the length of the rod becomes L and the cross-sectional area 
becomes A.  The experimental record gives us the function ( )Lf , which need not be linear. 
When the length of the rod changes from L to dLL + , the machine does work fdL  to the rod. 
 We model an elastic solid with an elastic energy, ( )LF .  This function obeys the 

following rule.  When the length of the rod increases by dL, the increase in the elastic energy of 
the rod equals the work done by the machine: 
  fdLdF = . 
 Define the stress and strain as  

  
0A

f
=σ ,      

0

0

L
LL −

=ε . 

Define the elastic-energy density, w, as the elastic energy per unit volume, namely 

  
00LA

F
w = . 

Here we have used the initial area and initial length to define the stress, the strain, and the 
elastic-energy density.     
 With these definitions, we can rewrite fdLdF =  as 
  εσddw = . 
The free energy density is a function of the strain: 

   ( )εww = .   
Once we know this function, we can obtain the stress-strain relation by taking the 
differentiation: 

  
( )
ε
εσ

∂
∂

=
w

. 

 We next restrict ourselves to small strains, so that we can expand the function ( )εw  into 
a Taylor series in the strain: 

  ( ) 2

2
1 εε Ew = . 

We will only go up to the quadratic term in strain. 
 The stress is obtained by taking partial differentiation: 
  εσ E= . 
   
 Elastic energy density of a block under shear.  Consider a block, height 0H  and 

cross-sectional area 0A .  When a machine applies a shear force f to the block, the block deforms 

by an angle θ .  When the angle changes from θ  to θ + dθ , the machine does work θdfH0  to 

the block.   
 The elastic energy of the block is a function ( )θF .  In equilibrium, the change in the 
elastic energy of the block equals the work done by the machine: 
  θdfHdF 0=    
 
Define the shear stress and the shear strain as 
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  θγτ == ,
0A

f
. 

Define the elastic-energy density, w, as the elastic energy per unit volume, namely 

  
00HA

F
w = . 

From the above, we have 
  γτddw = . 

The energy per unit volume is a function of the shear strain, ( )γw .  Once we know this function, 
we can obtain the stress-strain relation by taking the differentiation: 

  
( )
γ
γτ

∂
∂

=
w

. 

 When the block is made of a linearly elastic solid, under shear load, the stress-strain 
relation is γτ G= .  Consequently, the energy density function is  

  ( ) 2

2
1 γγ Gw =  

This result holds only for linear elastic solid in pure shear condition. 
 
 When a material particle is in a state of multiaxial stress, the elastic-energy 
density is a quadratic form of all components of strain.  The advantage of using the 
elastic-energy function becomes clear when the body is in a state of multiaxial stress.  We model 
the elastic solid by stating that the elastic-energy density is a function of all components of 
strain: 
  ( ),..., 1211 εεww = . 
The components of stress are differential coefficients: 
  pqpqddw εσ= . 

That is 

  
( )

pq
pq

w
ε
εεσ

∂
∂

=
,..., 1211   

 In linear elasticity, we assume that the components of stress are linear in the components 
of strain.  Thus, the energy density is a quadratic form of the components of stain, written as 

  klijijklCw εε
2
1

= . 

Here ijklC  are the components of a fourth-rank tensor called the stiffness tensor.  Without losing 

any generality, we can assume the following symmetries: 
  klijijlkjiklijkl CCCC === . 

If we count carefully, we should have 21 independent components for a generally anisotropic 
elastic solid.  
 The components of stress are linear in the components of strain: 
 
  ijpqijpq C εσ = . 

We can also invert this relation to express the strain in terms of the stress: 
   ijpqijpq S σε =  
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Here pqijS  are the components of a fourth-rank tensor called the compliance tensor.  They have 

the same symmetry properties.   
    Stress-strain relation in a matrix form.  We can also write the above equations in 
another form.  The state of strain is specified by the six components: 
  xyzxyzzyx γγγεεε ,,,,,  

In this order we will label them as  
  654321 ,,,,, εεεεεε .   

The six components of strain can vary independently.  The elastic energy per unit volume is a 
function of all the six components, ( )654321 ,,,,, εεεεεεw .  This is the energy density function.  

When each strain component changes by a small amount, idε , the energy density changes by 

  665544332211 εσεσεσεσεσεσ dddddddw +++++= . 

Here we use the engineering strains for the shear, rather than the tensor components.  We do so 
to avoid the factor 2 in the above expression.  Each stress component is the differential 
coefficient of the energy density function: 

  
( )

i
i

w

ε
εεεεεε

σ
∂

∂
= 654321 ,,,,,

. 

If the function ( )654321 ,,,,, εεεεεεw  is known, we can determine the six stress-strain relations by 

the differentiations.  Consequently, by introducing the elastic-energy function, we only need to 
specify one function, rather than six functions, to determine the stress-strain relations. 
 The above considerations apply to solids with linear or nonlinear stress-strain relations.  
We now examine linear elastic solids.  For the stress components to be linear in the strain 
components, the energy density function must be a quadratic form of the strain components:  

  ( )...
2
1

2
1

122121121111
,

εεεεεεεε ccccw
ji

jiij ++== ∑ . 

Here cij  are 36 constants.  The cross terms come in pairs, e.g., ( ) 212112 εεcc + .  Only the 

combination c12 + c21  will enter into the stress-strain relation, not c12  and c21  individually.  We 
can call c12 + c21  by a different name.  A convenient way to say that there is only one independent 
constant is to just let c12 = c21 .  We can do the same for other pairs, namely, 
  jiij cc = . 

The matrix cij  is symmetric, with 21 independent elements.  Consequently, 21 constants are 

needed to specify the elasticity of a linear anisotropic elastic solid.  Because the elastic energy is 
positive for any nonzero strain state, the matrix cij  is positive-definite. 

 Recall that each stress component is the differential coefficient of the energy density 
function, ii w εσ ∂∂= / .  The stress relation becomes 

  ∑=
j

jiji c εσ . 

We list the six components of stress as a column, and list the six components of strain as another 
column, so that the six stress-strain relations take the form 
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The physical significance of the constants cij  is now evident.  For example, when the solid is 

under a uniaxial strain state, ε1 ≠ 0, ε2 =ε3 =ε4 = ε5 = ε6 = 0 , the six stress components on the 
solid are σ1 = c11ε1,σ 2 =c21ε1,...   The matrix cij  is known as the stiffness matrix.  

 Inverting the matrix, we express the strain components in terms of the stress 
components: 
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The matrix sij  is known as the compliance matrix.  The compliance matrix is also symmetric 

and positive definite. 
 The components of the stiffness tensor relate to the corresponding components of the 
stiffness matrix as 
  232344112314111111 ,, CcCcCc === . 

However, the corresponding relations for compliance are 
  232344112314111111 4,2, SsSsSs === . 

 An isotropic, linear elastic solid is characterized by two constants (e.g., Young’s modulus 
and Poisson’s ratio) to fully specify the stress-strain relation.  Some solids are anisotropic, e.g., 
fiber reinforced composites, single crystals.  Each stress component is a function of all six strain 
components.  Consequently, 21 constants are needed to specify the elasticity of a linear 
anisotropic elastic solid. 
 
 A crystal of cubic symmetry.  For a crystal of cubic symmetry, such as silicon and 
germanium, when the coordinates are along the cube edges, the stress-strain relations are 
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The three constants 11c , 12c  and 44c  are independent for a cubic crystal.  Isotropic solid is a 

special case, in which the three constants are related, ( ) 2/121144 ccc −= . 
 A fiber-reinforced composite.  For a fiber reinforced composite, with fibers in the x3  

direction, the material is isotropic in the 1x  and 2x  directions.  The material is said to be 
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transversely isotropic.  Five independent elastic constants are needed.  The stress-strain 
relations are  
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 Example:  stress in an epitaxial film.  Both silicon (Si) and germanium (Ge) are 
crystals of cubic unit cell.  The edge length of the unit cell of Si is Å428.5Si =a , and that of Ge is 

aGe = 5.658Å .  A Ge film 10 nm thick is grown epitaxially (i.e. with matching atomic positions) 
on the [100] surface of a 100 mµ  thick Si substrate.  Calculate the stress and strain components 
in the Ge film.  The respective elastic constants are (in GPa) 
 Si:  c11 = 165.8,   c12 = 63.9,   c44 = 79.6. 
 Ge:  c11 = 128.5,   c12 = 48.2,   c44 = 66.7. 
 Solution.  Because the Si substrate is much thicker than the Ge film, the strains in the 
substrate are much smaller than those in the film.  We will neglect these small strains, and 
assume that the substrate is undeformed.  Let axis 3 be normal to the film surface, and axes 1 
and 2 be in the plane of the film, parallel to the cube edges of the crystal cell.  To register one 
atom on another, Ge must be compressed in directions 1 and 2 to conform to the undeformed 
atomic unit cell size of Si.  The two in-plane strains in the Ge film are 

  %4
Ge

GeSi
2211 −=

−
==

a

aaεε  . 

 There will be an elongation normal to the film, 033 >ε .  All shear strains vanish.  

According to the generalized Hooke’s law, the stress normal to the film surface relates to the 
strains as 
  22121112331133 εεεσ ccc ++= . 

Physically it is evident that there is no stress normal to the surface of the film, 033 =σ .  Inserting 

into the above expression, we obtain that 

  %3
2

11

11

12
33 +=−= εε

c
c

. 

 The two in-plane stress components are equal, given by 
  3312221211112211 εεεσσ ccc ++== , 

or 

  11

11

2
12

12112211

2 εσσ ⎥
⎦

⎤
⎢
⎣

⎡
−+==

c

c
cc . 

Inserting the numerical values, we obtain that GPa6.52211 −==σσ .  This is a huge stress, it may 
generate dislocations in the film. 


