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Abstract: Modeling the real contact area plays a key role in every tribological process, such as friction, adhesion, 

and wear. Contact between two solids does not necessarily occur everywhere within the apparent contact area. 

Considering the multiscale nature of roughness, Persson proposed a theory of contact mechanics for a soft and 

smooth solid in contact with a rigid rough surface. In this theory, he assumed that the vertical displacement on 

the soft surface could be approximated by the height profile of the substrate surface. Although this assumption 

gives an accurate pressure distribution at the interface for complete contact, when no gap exists between two 

surfaces, it results in an overestimation of elastic energy stored in the material for partial contact, which 

typically occurs in many practical applications. This issue was later addressed by Persson by including a 

correction factor obtained from the comparison of the theoretical results with molecular dynamics simulation. 

This paper proposes a different approach to correct the overestimation of vertical displacement in Persson’s 

contact theory for rough surfaces with self-affine fractal properties. The results are compared with the 

correction factor proposed by Persson. The main advantage of the proposed method is that it uses physical 

parameters such as the surface roughness characteristics, material properties, sliding velocity, and normal load 

to correct the model. This method is also implemented in the theory of rubber friction. The results of the 

corrected friction model are compared with experiments. The results confirm that the modified model predicts 

the friction coefficient as a function of sliding velocity more accurately than the original model. 
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1  Introduction 

Despite numerous efforts in the field of contact 

mechanics, modeling of the real area of contact between 

two solids squeezing together is an ongoing challenge. 

A summary of recent attempts to solve a contact 

mechanics problem can be found in Ref. [1]. Accurate 

modeling of the real contact area is fundamental   

to understanding and modeling of many physical 

processes such as friction, adhesion, wear, contact 

resistivity, frictional heating, etc. The study on contact 

mechanics was pioneered by Hertz [2], who modeled 

the contact between two elastic spheres with smooth 

surfaces. Following his approach, several classical 

contact theories were developed to model the contact 

between a rough surface and a flat rigid plane. One of 

the well-known models is Greenwood and Williamson 

(GW) contact theory [3], which models the rough 

surface as a plane covered with spherical-shape bumps 

with the same radius of curvature and Gaussian height 

distribution. The GW model considers a single length 

scale roughness and neglects the interactions between 

the asperities. Therefore, this contact model, in its 

original form, is unable to model the real contact area 

accurately. Since the original publication, several 

revisions to this model have been published in the  
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Nomenclature 

A   real contact area, m2  

0
A   nominal contact area, m2 

a
A   compact area, m2 

A   apparent contact area at magnification  , m2

m
A   modified contact area function, m2 

( )C q  surface roughness power spectrum, m4 

1
( )

D x
C q  one-dimensional surface roughness power 

  spectrum, m3 


2
( )

D
C q  two-dimensional surface roughness power 

  spectrum, m4 

2
( )

D
C q  angular average of surface roughness  

  power spectrum, m4 

m
( )C q  modified surface roughness power  

  spectrum, m4 

c   empirical parameter  

d   separation distance, m 
d   effective separation distance, m  

E   viscoelastic modulus, MPa 
*E   effective modulus, MPa 

N
F   normal force, N 

F  frequency of loading, Hz 

H  Hurst exponent 

h   surface height profile, m 

0
h   root mean square of surface roughness, m 

A
h   amplitude of sinusoidal profile, m 

T
h   transformed height profile, m  

i  imaginary number 

L   length of height samples, m 

N   number of sample points 

n   counter variable for discretized position 

a
n   number of asperities per unit area, m-2 

m   counter variable for discretized wavenumber

 ( , )P  probability distribution of contact pressure 

  at magnification   

T
p   self-affine shift factor 

R    average radius of macro-asperities, m  

( )S q    fitting function  

q    wavevector of surface profile, m-1 

0
q    short cutoff wavenumber, m-1 

,
x y

q q  components of the wavevector, m-1 

Tg   glass transition temperature, °C 

z
u    vertical displacement, m 

Tz
u   transformed vertical displacement, m 

v   sliding velocity, m/s 

0
v   empirical velocity corresponding to the  

  maximum adhesion friction, mm/s 

SCB
W  split cosine bell window function  


x    position vector on the contact surface, m 

x,y,z  coordinates, m 

Greek letters 

   fitting parameter 

   difference 

   penetration depth 

 ( )  Dirac delta function 

   magnification  


max

 maximum magnification  


0

  short cutoff wavelength, m  

   friction coefficient 


A

  adhesive friction  


H

  hysteresis friction coefficient 

   Poisson ratio  

   contact normal stress, MPa 


0
  nominal contact pressure, MPa 

   average contact pressure at magnification  , 

  MPa 


u

  ultimate stress, MPa 

   standard deviation of the height profile 


0f
  maximum shear stress   

   angular coordinate 


min

 minim frequency of loading, rad/s 

Subscripts or superscripts 

A  adhesive  

H  hysteresis 

m  modified  

max  maximum 

T  transformed 

Acronyms and abbreviations widely used in text and list of 
references 

DFT  discrete Fourier transform  

DMA dynamic mechanical analysis 

FFT  fast Fourier transform  

GW  Greenwood and Williamson  

IGW improved Greenwood-Williamson  

IGW-CF improved Greenwood-Williamson based  

  correction factor 

LP-CF local peak correction factor  

MD  molecular dynamic 

PF-CF Persson fitted correction factor  

RMS root mean square  

SBR  Styrene-Butadiene rubber 

SCBW split cosine bell window  
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Refs. [4–8]. Alternatively, Bush et al. [9] developed a 

more detailed contact model, known as the BGT model, 

based on the Hertz contact theory. They modeled 

multiscale roughness using elliptical paraboloid 

asperities with random aspect ratio and orientation. 

However, they also neglect the interaction between 

asperities, which results in similar errors as the GW 

model. In reality, the contact areas are neither circular 

nor elliptical. Greenwood [5] argued that using the 

geometric mean of the summit curvatures in GW 

theory, the results of the BGT model can be reproduced 

more conveniently, and perhaps more accurately. In 

addition, the effect of interactions between asperities 

was later considered (approximately) in an improved 

version of the GW theory [6], and this theory remains 

popular in the contact mechanics community. A review 

of other contact theories based on similar concepts can 

be found in Ref. [10]. 

As a pioneer in the hierarchical modeling of the 

contact area, Archard [11] developed a contact model, 

in which surface roughness was described as 

hierarchical uniform spherical asperities on top of 

larger asperities. Using Hertz contact theory in his 

model, he showed that by increasing the number  

of length scales in the model, a more realistic 

representation of the real contact area versus normal 

load would be achieved. Although Archard’s model 

can represent the multiscale nature of roughness and 

its contribution to the real area of contact, it is not 

useful in practical applications, as it idealizes the 

roughness as uniformly distributed spherical asperities. 

Several decades later, Persson [12] used the idea of 

multiscale modeling of rough surfaces to introduce a 

completely different approach to model the real contact 

area. He considered the probability distribution of 

normal stress (contact pressure) at different length 

scales to develop a theory of contact mechanics. He 

implemented the surface roughness in his theory 

using its power spectrum, calculated from the surface 

height profile. He assumed that the smooth, soft solid 

could deform and penetrate in large substrate valleys; 

therefore, the displacement on its contact area could 

be approximated by the height profile of the rough 

rigid surface. This assumption leads to notable errors 

in the modeling of the real contact area under small 

normal loads and partial contacts [13–15]. Therefore,  

he later proposed a correction factor to match the 

theoretical results to the molecular dynamics (MD) 

simulations [16]. However, the physical interpretation 

of this factor is not clear as it is referred to as a fudge 

parameter by Dapp et al. [17], who systematically 

analyzed Persson’s contact mechanics theory. 

In this paper, an asperity-based approach is proposed 

to correct the displacement assumption for contact 

mechanics on self-affine fractal surfaces using an 

affine transformation. A self-affine fractal surface has 

the property that if it is scaled by different factors 

along parallel and perpendicular directions, the scaled 

surface has the same topography as the unscaled one 

[18]. Many surfaces in nature have the properties of a 

self-affine fractal topography, and fractal descriptions 

can be used to describe their roughness [19–21]. 

Several studies [22–27] have shown that sandpaper 

and asphalt have approximately self-affine fractal 

surfaces over several orders of magnitude in spatial 

scale. Therefore, this approach can be applied in   

the modeling of contact and friction of a tire tread 

compound on sandpaper and asphalt surfaces. Two 

different methods are considered to find the affine 

transformation parameter. The first method is based 

on the local peak distribution of the surface profile 

for nonsymmetric height distribution, such as abraded 

sandpaper. The second method is based on an improved 

Greenwood-Williamson (IGW) contact theory for 

normal height distribution. 

This paper is organized as follows: Section 2 presents 

a brief review of Persson’s multiscale contact theory 

and its main assumptions. In Section 3, the asperity- 

based approach to correct the displacement assumption 

in the Persson theory is presented, and two methods 

to find the correction factor are explained. Section 4 

summarizes the rubber friction theory modified 

using the correction method introduced in this paper. 

Then, Section 5 presents the input parameters of the 

theoretical models. In Section 6, the numerical results 

of the modified theory are presented and discussed, 

and the asperity-based factors are compared with 

Persson’s correction factor. In addition, the results of 

the original and modified friction models are compared 

with some experimental results. Finally, Section 7 

presents the summary and conclusions of this work.  
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2 Summary of Persson’s multiscale contact 

theory  

Attempting to model rubber friction on a rough rigid 

surface, Persson [12] developed a multiscale contact 

theory for an isotropic, linear viscoelastic (and elastic), 

semi-infinite half-body based on a novel approach. 

He used the surface roughness power spectrum to 

model the contact area of a multiscale rough surface 

with a small-slope height profile. He started from the 

assumption of a complete contact between two solids, 

and then he introduced the partial contact by imposing 

a detachment boundary condition. In the original 

theory, the detachment occurs when the normal 

pressure becomes zero, assuming the adhesive force 

between two surfaces is negligible. Later, he also 

considered the effect of adhesion in the detachment 

boundary condition [28, 29] with application to 

smooth contact surfaces and very soft materials such 

as gelatin.  

Persson introduced a pressure probability distribution 

on the contact area as a function of magnification 

(length scale), at which the contact area is studied. At 

the lowest magnification (the largest length scale), it 

appears that there is complete contact between two 

surfaces, and the apparent contact area is the same  

as the nominal contact area. Similarly, the pressure 

distribution at the lowest magnification is equal to 

the nominal pressure distribution. However, partial 

contact between two surfaces can be observed by 

studying the contact area at higher magnifications, 

e.g., under an optical microscope. Complete contact 

regions can be detected on the top of the asperities, 

while surface separations and gaps exist in the valleys 

between asperities. Therefore, the apparent contact 

area under an optical microscope, which is the sum 

of all the contact patches, is smaller than the nominal 

contact area. If each contact patch at the macroscale is 

studied further at much higher magnifications, e.g., 

under an electronic microscope, smaller asperities, 

and accordingly smaller contact patches can be 

detected on each macro-asperity as shown in Fig. 1. 

Therefore, the apparent contact area decreases and 

approaches the real contact area as the magnification 

increases. 

If A0 and σ0 denote the nominal contact area and  

 

Fig. 1 Schematic of multiscale contact area and pressure 
distribution. 

the pressure measured at the lowest magnification, 

respectively, then the apparent contact area and the 

average pressure at magnification   must satisfy the 

following equation: 

    
0 0
A A                (1) 

where    and A  denote the average pressure and 

the apparent contact area at magnification  . 

Using the stress probability distribution, the average 

contact pressure as a function of magnification can be 

calculated using: 



   


  




   


0

0

( , )d

( , )d

P

P
            (2) 

where  ( , )P  represents the pressure probability 

distribution. Therefore, the ratio of the apparent contact 

area at magnification   to the nominal contact area 

can be calculated using: 


   

   




 


0 0

0
0

( , )d

( , )d

PA

A P
           (3) 
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As the apparent contact area decreases with the 

increase of magnification, the contact pressure 

distribution becomes broader [30] as shown in 

Fig. 1, and it can be described by a diffusion type 

equation as: 

    
  

   
  

   

2 2

2

( , ) ( , )

2

P P
         (4) 

where the symbol <…> stands for ensemble average, 

and   is the increment of stress when the mag-

nification increases by an increment of  .  The 

boundary conditions for Eq. (4) in the absence of 

adhesion are as follows: 

(1) Surface detachment at zero local pressure  

 (0, ) 0P  

(2) contact stress has a finite value 

 
 

 


lim , 0P  

(3) contact stress has a finite upper limit  :
u

  

   ( , ) 0
u

P ,  
 

 

 







,
lim 0

P
 

(4) pressure distribution at the lowest magnification 

( =1) is equal to the nominal pressure distribution 

    
0

,1 δ( )P  

where δ( )  stands for the Dirac delta function. 

In addition to these boundary conditions, the  

diffusion coefficient 



 
 

 

2

2
 must be determined,  

which is a function of multiscale deformation on the 

contact surface. The stress–displacement relation can 

be found using the constitutive equation, and the 

displacement field must satisfy the linear momentum 

balance law in terms of displacement (Navier equation). 

In this theory, it is assumed that the vertical dis-

placements can be approximated by the height profile 

of the rough surface while the lateral displacements 

are neglected. Then, the mean square of the height 

profile is calculated from the surface roughness power 

spectrum, therefore: 

       

 
   

 



  





i . 20
4

0
2

0 e d
2π

( )
2π

z zu u h h

A
h h x

A
C q

 

   

∬ q x

q q q q

x

  (5) 

where 
z

u  and h are displacement and surface height 

profile, respectively, and ( )C q  is the surface roughness 

power spectrum. They are calculated as a function of 

wavevector 


( , )
x y

q qq  of the surface roughness. The 

surface roughness power spectrum is defined as: 

 
 i .

2

1
( ) ( ) (0) e d d

2π
C q h h x y

 ∬ q xx       (6) 

where 


( , )x yx . The details of the derivation of the 

diffusion coefficient as well as the solution for Eq. (4) 

can be found in the original paper by Persson [12]. 

The final results provide the ratio of the apparent 

contact area to the nominal contact area, which for a 

linear viscoelastic material can be calculated using 

the following equation: 

 


 


 

                     
 

 
0

0

1
3 3
22

2π
3

2
00 0

( cos )π
1 ( ) d d

8 (1 )

q

q

A E vq
q C q q

A

ζ

  

(7) 

where E is the viscoelastic modulus, which is a function 

of the frequency of loading applied by the multiscale 

asperities along the sliding direction ( cos )vq , and 

  is the Poisson ratio whose dependency on the 

frequency of loading can be neglected. The parameter 

0
q  is the short cutoff wavenumber corresponding to 

the largest wavelength that contributes to the contact 

area.   

The main shortcoming of Persson’s multiscale 

contact theory is that the vertical displacement field 

is assumed for complete contact between two solids 

while deriving the diffusion coefficient. However, 

this assumption is only valid when there is complete 

contact with no gap anywhere between two contact 

surfaces, which is generally not true and has been 

criticized in Refs. [17, 31]. This overestimation of  
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displacement results in a larger diffusion coefficient 

and accordingly broadening of pressure distribution. 

When the pressure distribution becomes broader, the 

ratio of the apparent contact area to the nominal 

contact area decreases based on Eq. (3). Consequently, 

the theory underestimates the real contact area as 

it overestimates the elastic energy due to large dis-

placements. This error was later addressed by Persson 

as he introduced a correction factor based on the 

comparison of his theoretical results for stored elastic 

energy with calculations obtained from MD simulation 

[16]. This factor can be implemented in the original 

theory using the following equation: 

 
 

     
 

2

0

( )
( ) (1 )

A q
S q

A
           (8) 

where   0.5  [32] and ( )A q A  at  
0

q

q
.  

This correction factor can be multiplied by Eq. (7) 

to correct the relationship between the elastic energy 

and vertical displacement for partial contact. However, 

the physical interpretation of this factor is not clear. 

As Dapp et al. [17] systematically analyzed Persson’s 

contact mechanics theory, they referred to it as a fudge 

factor that is parameterized to match the numerical 

results. In the next section, an asperity-based approach 

is introduced to obtain a correction factor based on 

roughness parameters of a self-affine surface and the 

effective elastic modulus. 

3 Asperity-based correction factor for 

Persson’s contact theory  

Several studies [22–27, 33] showed that the concept of 

self-affinity could be applied to many rough surfaces 

of interest, such as asphalt and sandpapers. For self- 

affine fractal surfaces, an affined transformed height 

profile can be introduced to substitute the original 

height profile. This transformed height profile can 

represent a more accurate fraction of the surface that 

contributes to the contact deformation. When an affine 

transformation with a fixed maximum height of 
max

z   

is used for a self-affine fractal surface, the fractal 

dimension and the shape of its height distribution do 

not change. In this transformation, the original height 

profile z = h(x) is shifted towards the upper regions of 

the macro-asperities that have apparent full contact 

with the soft smooth solid at the macroscopic scale. 

Using this approach, the large valleys between those 

asperities that have no contact with the deformed 

material and do not contribute to the displacement 

field can be eliminated. Consequently, the errors due 

to the large displacement assumption corresponding 

to these valleys could vanish. Considering 
max

z  

max{ ( )}h x as the upper fixed boundary, the surface 

profile is shifted towards the upper regions using the 

following affine transformation: 

    
 max

maxT

T

h x z
h x z

p
        (9) 

where 
T

p  is an affine shift parameter and ( )
T

h x  is the 

transformed height profile. After this transformation, 

the mean height profile shifts from zero to  
T

h  

 
 

 
max

1
1

T

z
p

 and this becomes the new nominal  

contact plane and coordinate system. This transformation 

from full contact to partial contact for a sinusoidal 

roughness is shown schematically in Fig. 2. 

After eliminating the offset of the transformed profile 

by zeroing the new mean  
T

h , the mean square of the 

transformed height profile can be calculated as: 

 
  


2

( ) (0)
( ) (0)

T T

T

h h
h h

p

x
x            (10) 

Accordingly, the corrected mean square of dis-

placement in the vertical direction is equal to the 

mean square of the transformed height profile of the 

rough surface as: 

 

 

 





     

  



 




i . 20
4

i . 20
4 2

0
2 2

( ) ( )

( ) (0) e d
2π

( ) (0)

( )

e d

(

2π

( )
2π

)
T Tz z T T

T T

T

T

u u h h

A
h h x

A h h
x

p

A
C q

p

 

 

   





∬

∬

q x

q x

q q q q

x

x   

(11)
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The surface roughness power spectrum can be 

obtained as an analytical function for a self-affine 

fractal surface and written as: 

 
 

   
       
   

2 2( 1)

0

0 0
2π

H
h qH

C q
q q

        (12) 

where H is Hurst exponent, 
0

h  is the root mean square 

(RMS), and 
0

q  is the smallest wavenumber of the 

surface that contributes to the contact mechanics.  

Two different simple asperity-based methods are 

proposed to determine the shift factor 
T

p . The first 

method is based on surface characterization and 

distribution of the local maximum height of the surface 

profile. Using the first method, the errors due to the 

asymmetry of the surface profile can be reduced to 

some extent. However, in this method, the effect of 

material properties is neglected in determining the 

fraction of the height profile involved in the surface  

deformation. On the other hand, the second method 

is based on macroscale deformation and the separation 

distance between two surfaces using an improved 

version of the classical asperity model of GW contact 

theory.  

3.1 Local peak distribution method 

The simplest approach to find the shift factor is based 

on the analysis of the surface roughness profile. In this 

method, it is assumed that the fraction of the substrate 

profile that is in contact with the deformable surface 

can be found using the local peak (maxima) distribution 

of height profile. Thus, the local peaks within the 

range of macroscale wavelengths must be found from 

numerical analysis of the surface profile as shown  

in Fig. 3. The average of local peak distribution, as 

shown by the red dashed line in Fig. 3, can be used to 

shift the original height distribution to the upper regions 

of the rough surface using the affine transformation  

 

Fig. 2 Schematic of transformation from (a) full contact to (b) partial contact. 

 

Fig. 3 Surface profile of 120 grit sandpaper with height distribution (blue curve) and local peak distribution (red curve). 
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presented in Eq. (9). It is assumed that the average  

of the transformed profile with respect to the original 

midplane is equal to the average of local peak 

distribution  
Peaks

h  therefore the shift parameter 

becomes: 


  

max
1

max Peaks

T

z
p

z h
            (13) 

The shortcoming of this method is that the shift 

factor is independent of nominal pressure and sliding 

velocity, and only considers the surface roughness 

characteristics to provide a better approximation of 

displacement field. However, when the surface profile 

is asymmetric and has remarkable skewness, a 

combination of this approach and the macro-scale 

deformation analysis explained in the following section 

can be used to obtain more accurate results.  

3.2 GW theory and the improved version 

The original GW [3] theory is based on contact between 

a rough surface and a flat plane. The rough surface is 

modeled as a plane covered with spherical shape 

asperities (bumps) with the same radius of curvature 

and a Gaussian height distribution. The original GW 

model considers a single-scale roughness and neglects 

the effect of elastic interaction between the asperities. 

Under a small normal load and at large length scales 

when the contact patches are sufficiently separated, it 

might be reasonable to assume that the deformation 

fields induced by the macro-asperities are independent. 

Therefore, the penetration depth of each rigid asperity 

into the elastic surface can be calculated using the 

Hertz contact theory [2]. The penetration depth, as 

shown in Fig. 4, for a single asperity indenting a 

semi-infinite flat surface is: 


 

  
 

1

3
N

* 2

9

16

F

E R
             (14) 

where 
N

F  is the nominal normal load of a single 

asperity, R is the radius of curvature of asperity, and  
*E  is the effective modulus calculated as: 

  
 

2 2

1 2

*
1 2

1 11

E EE
          (15) 

 

Fig. 4 Penetration parameters of a single asperity. 

In the case of rubber in contact with sandpaper or 

asphalt, the elastic modulus of rubber is about 2 to 3 

orders of magnitude less than the substrate surface, 

and it is reasonable to assume that the asperity is rigid  

and 





*

21

E
E , where E and   are modulus and  

Poisson ratio of the rubber sample. 

In modeling multiple macro-asperities, it is assumed 

that the normal load distributes over all the macro 

contact regions, and it can be calculated as the sum of 

the normal forces applied over all the asperities on 

the nominal contact area. Assuming ( )z  is the height 

distribution of the surface profile and defining  d z  

as the separation distance between the rubber surface 

and the centerline of the rough substrate (  0z ), the 

rubber is in contact with macro asperity if z d . Then, 

based on the original GW theory, the nominal pressure 

is equal to: 

   
 




  
 

1
3/ 2N min 2

0 a2
0

( )4
 d

3 1 d

F E
R n z d z z

A
  (16) 

where 
a

n  is the number of asperities per unit area. In 

Eq. (16), the magnitude of the dynamic modulus at 

the minimum loading frequency ( 
min 0

q v ), which 

is applied by the macro-asperities with wavenumber 

0
q , must be used. If the surface height profile has a  
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normal distribution, then 





 



2

22
1

( ) e
2π

z

z  where  




 is the standard deviation. Typically, the asperities 

form a disordered hexagonal-like distribution [34]  

with a lattice constant  
0

0

2π

q
, then: 


 

2

0
a 2 2

0

2

3 2π 3

q
n           (17) 

Assuming the largest length scale (macro-scale) 

roughness can be described using a sinusoidal function 

as  
A 0

( ) cos( )z h x h q x . The amplitude of this function  

is 
A 0

2h h  where 
0

h  is the RMS of the surface height  

profile. Then, the average radius of macro-asperities 

can be calculated as: 





 
   
 

1
2

2 2
0 0 0

d 1

d 2x

z
R

x q h
        (18) 

Using Eqs. (17) and (18) in Eq. (16) and knowing the 

nominal pressure, the only unknown variable is the 

separation distance “d” that has to be found using a 

numerical method. However, the original GW model 

might underestimate the separation distance since it 

does not consider the effect of interaction between 

the asperities on the penetration distance. When the 

normal load on the nominal contact area is not 

sufficiently small, the interaction between the asperities 

cannot be neglected. Ciavarella et al. [7] also showed 

that there are significant differences between the results 

of the original GW theory and the numerical results 

of a contact simulation between a rough surface and 

a flat plane at intermediate loads. Therefore, Ciavarella 

et al. [6] proposed an improved version of the GW 

theory to include the interaction between the asperities. 

In this improved version, it is assumed that the 

asperities are uniformly distributed over the contact 

area and hence, the deformation of the contact area is  

uniform and can be approximated as  *

0 a
/A E  over  

a compact area 
a

A  according to Timoshenko and 

Goodier [35]. Therefore, the interaction between 

asperities results in an increase of the effective 

separation distance between the mean planes of two 

surfaces, so that the effective separation distance 

becomes: 

   
 


 



 

2

a

0 0

min

1 A
d

E
d          (19) 

where 
0

2π
a

A
q

 and using Eqs. (17)–(19) in Eq. (16) 

gives: 

     


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

 
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E q
z d z

h
   

(20) 

which is an implicit function of nominal pressure (
0
) 

and must be solved iteratively. 

The effective separation distance at the largest 

length scale represents the fraction of the rigid height 

profile, which does not contribute to the vertical 

displacement of the deformable surface. Shifting the 

height profile to the higher regions so that the minimum 

height of the transformed profile equals the effective 

separation distance eliminates the valleys where no 

contact occurs. The shift factor is then calculated using 

the following equation: 

 



0

2

0 max

2
T

d

h
p

z
             (21) 

Using this method, the shift factor is not only a 

function of roughness parameters but also a function 

of nominal pressure and elastic properties of the 

materials. When the height distribution of the rough 

surface is non-gaussian, e.g., worn or polished surfaces, 

it is suggested that instead of the original height 

distribution, the local peak distribution as discussed 

in the previous section is used in Eq. (20). 

Since in rubber materials, the viscoelastic modulus 

highly depends on sliding velocity, the shift factor is 

also a function of velocity. At high sliding velocities, 

the rubber exhibits glassy behavior due to the high 

frequency of oscillating loads applied by substrate 

asperities, and its stiffness increases. Therefore, it 

cannot deform sufficiently to fill the gap between the 

asperities and the effective separation distance becomes 

larger. On the other hand, at low sliding velocity, the 

rubber undergoes large deformation, and the effective 

separation distance decreases, consequently; it is 

expected that the shift factor approaches unity at very  
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low sliding velocity, and the original displacement 

assumption of Persson’s contact theory becomes exact. 

Since the IGW method is based on the Hertz contact 

theory with the assumption of small deformation, it 

gives more accurate results for the rubber in the 

glassy state rather than the rubbery state. Therefore, 

the results are more reliable at high velocities when 

the rubber has higher stiffness. Hongyan et al. [36] also 

studied the applicability of the Hertz contact theory 

to large deformation using finite element methods. 

They found that the Hertz contact theory can predict 

the maximum contact stress under large deformation 

with about 2% error and overestimates the contact 

length with about 33%, but they did not validate the 

results with experiments. 

4 Theory of rubber friction  

Persson used his multiscale contact mechanics theory 

to develop a theory of hysteresis friction in viscoelastic 

materials, assuming that the energy dissipation due 

to friction is equal to the energy loss due to internal 

friction (hysteresis effect) in the rubber. Based on this 

theory, the hysteresis friction coefficient can be 

calculated using the following equation: 

 


 

 

       
   

 
max 0

0

H

2π
3

20
0 0

( ) ( cos )1
( ) ( ) cos d d

2 (1 )

q

q

v

A q E vq
q S q C q Im q

A

ζ

(22) 

where 
max
ζ  is the magnification corresponding to the 

maximum wavenumber (upper cutoff) that contributes 

to the hysteresis friction. It is proposed by Lorenz et al. 

[37] that the upper cutoff wavenumber is determined 

by the condition that including all the roughness 

components up to the cutoff results in the (cumulative) 

root mean square slope of 1.3 or reciprocal of the road 

contamination particle size (whichever is smaller). 

Note that the correction factor ( )S q  did not exist in 

the original model, and was added later to this model 

to match the MD numerical results, resulting in the 

reduction of hysteresis friction. Although adding this 

correction factor is necessary to improve the model to 

match the numerical simulations [38], but as Dapp  

et al. [17] stated: “it has so far been implemented 

only heuristically”.  

Persson developed a friction theory assuming the 

dominant friction mechanism at high velocities is the 

hysteresis friction; however, many experimental results 

[39–45] suggest that the hysteresis friction could not 

accurately explain the rubber friction over a wide range 

of velocities and surface conditions. Rubber friction is 

generally due to more complex processes occurring 

on the contact area. In addition to hysteresis loss due 

to oscillating loadings applied by multiscale asperities, 

contact processes include adhesion, interfacial crack 

propagation, shearing on possible lubricant and 

contamination particles at the interface, and different 

wear processes [44, 45]. Therefore, Lorenz et al. [44] 

proposed a semi-empirical model of friction coefficient 

for low sliding velocities. This semi-empirical model 

includes the contribution from the area of real contact 

to the friction, while the real contact area is calculated 

from Persson’s contact theory. This semi-empirical 

model is formulated as 

  




              

0 max

2

A

0 0 0

( )
exp log

 

f
A v v

v c
A v

   (23) 

where 
0 0
, ,

f
v  and c must be obtained from the 

experiments. 
0f

 is the maximum shear stress on the 

real contact area ( max
A ) when 

0
.v v  Based on several 

experiments, Lorenz et al. [44] suggested  0.1c  and 


0

6 mm/sv  at room temperature for different tire 

tread compounds, and 
0f

 is in the range of 5.3 to 8.3 

MPa. They proposed that the total friction coefficient 

over a wide range of velocities could be calculated by 

adding the semi-empirical model to the hysteresis 

friction shown in Eq. (22) so that: 

   
H A

( ) ( ) ( )v v v            (24) 

This friction model, without the correction parameter 

( )S q , is used along with the asperity-based correction 

factor proposed in this paper to calculate the friction 

coefficient of a rubber sample sliding on an asphalt 

track at different velocities. In order to evaluate the 

modified model, the theoretical results are compared 

with some experimental results obtained using a sliding 

friction test set-up designed and developed in the 

Center for Tire Research (CenTiRe) [46]. The input 
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parameters for theoretical models are explained in 

the next section. 

5 Input parameters of the theoretical 

models  

5.1 Rubber dynamic modulus  

One of the input parameters of the theoretical model 

is the viscoelastic master curve of the rubber sample 

for a wide range of frequencies. Dynamic mechanical 

analysis (DMA) is a standard method for the mea-

surement of viscoelastic modulus, which uses an 

oscillating load to deform the sample with constant 

strain amplitude at a limited range of frequencies. 

Since there are always some limitations to the testing 

frequency, the tests must be repeated at different 

temperatures. Temperature–frequency superposition 

is typically used to obtain the master curve for a 

broader range of frequencies. Since the variation of 

the viscoelastic modulus is very high near the glass 

transition temperature, in this work, a smaller tem-

perature step was used around this temperature so 

that the viscoelastic modulus curves could overlap one 

other. The overlapping of curve segments is necessary 

to obtain the shift factor. The amplitude of strain was 

kept constant at 0.5% to avoid the effect of softening 

in the filled rubber and to remain in the linear region. 

The horizontal shift factor ܽܶ was obtained from 

shifting the curves with continuous overlaps to have 

a smooth master curve. The dynamic modulus of two 

Styrene-Butadiene Rubber (SBR) compounds used in 

this study is shown in Fig. 5. Compound A has a 

glass temperature of Tg= –32 °C and compound B has 

a glass temperature of Tg= –21.7 °C. 

When a rubber block slides on a rough surface, its 

surface undergoes large strains of the order of 100% 

or even more as observed by Iwai and Uchiyama [47]. 

Therefore, the material properties at large strain 

provide a more accurate representation of the material 

properties close to the contact surface. To obtain a 

viscoelastic master curve for large deformation, the 

rubber samples were tested at a fixed frequency of  

1 Hz and the strain amplitude is changed from a 

small value (about 0.5%) to the maximum limit of the 

sample. This procedure was repeated for different 

temperatures ranging from –25 to 80 °C. Then, 

 

Fig. 5 Dynamic modulus master curve of two SBR compounds. 

using the frequency–temperature shift factor aT, the 

master curve for large strain values was approximated 

over a wide range of frequencies and used in the 

theoretical model. 

5.2 Surface roughness power spectrum 

An optical profilometer (Nanovea JR25) was used to 

measure the surface height profile. This profilometer 

offers high accuracy and precision for both lateral 

and height positions with submicron resolution. The 

profile measurement is considered valid only if the 

drop-out rate for the height signal is less than 10% 

[48]. Linear interpolation was used to replace the 

invalid samples. Before the analysis of height 

distribution, any curvature, slope, or offset that might 

exist in the measured profile must be eliminated. A 

sample of line-scan of asphalt profile before and after 

slope and offset suppression is shown in Fig. 6. 

Before the calculation of the power spectrum of  

the surface profile, it is necessary to eliminate the  
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spectral leakage of the signal using an appropriate 

windowing technique. The spectral leakage occurs 

when the discrete Fourier transform (DFT) is used for 

surface profile analysis. In DFT analysis, it is assumed 

that the input signal (surface profile) is repeated 

periodically with a period equal to the length of a 

measured profile in horizontal (x or y) direction. 

Therefore, at the edges of the height signal, a jump in 

the composite signal might occur. In order to prevent 

spectral leakage, a window must be applied to reduce 

the signal to zero at the edges. There are various 

windowing techniques available for this purpose, 

and two of the common windows widely used for 

calculation of the power spectrum of the surface are 

Hann and Split Cosine Bell (also known as Cosine 

Digital Tapering) windows. The drawback of using a 

Hann window is that it reduces the effective length 

of the signal, which influences the low-frequency 

content of the height signal. On the other hand, the 

Split Cosine Bell Window (SCBW) keeps 80% of the 

original length of the signal unaffected because it 

goes from zero to unity and vice versa much faster than 

the Hann window. Therefore, SCBW is very suitable 

for short length signals [33], and was used in this 

study, which is defined mathematically as: 

        
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where N is the number of sample points. 

The optical profilometer was used to scan a square 

area of the rough surface with dimensions of L L . 

The heights of equally spaced points with a constant  

distance of 
L

N
 along the perpendicular directions  

were measured using the profilometer. The height 

profile of the surface is denoted by ( , )h x y  where  


x

L
n

N
, 

y

L
y n

N
, and both 

x
n  and 

y
n  are from 0  

to N. Then, the Fourier transform of height profile 

was calculated using the following equation: 
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where    
   

 

 2π 2π
, ,

x y x y
q q m m

L L
q  is the discretized 

wavevector.  

The fast Fourier transform (FFT) algorithm was 

used to calculate  h q , and then the surface roughness 

power spectrum was calculated using the following 

equation [30]: 

     


2

2

2

2π
C q h q

L
           (27) 

The calculated power spectra of the 120-grit sandpaper 

and asphalt surface used in numerical calculations are 

shown in Figs. 7(a) and 7(b), respectively. 

The short cutoff wavenumbers of both surfaces are 

 

Fig. 6 (a) Measured surface profile and (b) after slope and offset suppression. 
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shown in Fig. 7, both are about 2,000 m–1. The Hurst 

exponent of the fractal surfaces can be calculated 

using the slope of the power spectrum as: 

 
Slope

1
2

H             (28) 

The Hurst exponent of the sandpaper is 0.7, and 

for the asphalt surface, it is 0.87. A smaller value of 

Hurst exponent indicates that more irregularities exist 

in the topography of the surface. The RMS values of 

sandpaper and asphalt are 76.572 and 265.7 μm, 

respectively. The maximum magnification for the large 

cutoff wavenumber is chosen as 500 for both surfaces.  

6 Results and discussion 

6.1 Modified contact area   

The asperity-based approach for modification of the 

contact theory was initially evaluated by comparing 

the results with the factor that Persson introduced  

in his model to fit the results with MD numerical 

simulations. In the asperity-based approach introduced 

in this paper, the surface roughness power spectrum 

has been transformed in the model, which affects the 

real contact area as presented in Eq. (7). On the other 

hand, in Persson’s approach, the real contact area 

remains the same but a correction parameter is 

multiplied by the original contact model. Therefore, to 

compare the results of these two different approaches, 

the correction factor (CF) of the asperity-based approach  

is expressed as m m

0

( ) ( )

( )

A q C q

A C q
, where 

m
( )A q  and 

m
( )C q   

are modified contact area and surface roughness power 

spectrum, respectively. Then, this factor is compared 

with the equivalent Persson’s fitted correction factor  

(PF-CF), which is expressed as 
0

( )
( )

A q
S q

A
. Note that  

the value of PF-CF is different from ( )S q , which 

approaches   0.5  very rapidly. It can be shown that  

m m
( ) ( )

( ) ( )

A q C q

A q C q
 is also approach similar value as ( )S q   

but to provide a better demonstration of the com-

parison  m m

0

( ) ( )
CF

( )

A q C q

A C q
 is compared with PF-CF  


0

( )
( )

A q
S q

A
. 

Next, the modified multiscale contact area is 

compared with the original theory to demonstrate 

how it affects the calculation of the real contact area. 

As mentioned previously, the validity of the Persson 

original contact model for partial contact is 

questionable. It is expected that the original model 

underestimates the real contact area [49] due to the 

overestimation of displacement and elastic energy. 

However, using the methods proposed in this paper, 

some of the errors due to this issue are eliminated.  

6.1.1 Modification of contact area based on local peak 

distribution  

The local peak distribution method was used to find 

the shift factor for 120-grit sandpaper. The material 

properties of compound A were used in Eq. (7). When 

the local peaks were selected within a fixed minimum  

distance of  
0

0

2π

q
, few asperities affecting the contact  

area were not captured using the peak finding algorithm 

and resulted in an overestimation of the shift factor, 

 

Fig. 7 Surface roughness power spectra of (a) 120-grit sandpaper and (b) asphalt surface. 
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
1

2.5
T

p . Figure 8 shows the local peaks used in the 

calculation of the shift factor and the comparison 

between the local peak correction factor (LP-CF) and 

the Persson fitted correction factor (PF-CF).  

On the other hand, when a more flexible range of 

distance between the local peaks, e.g., within 
0

 to  


0

2
 was considered to find the effective asperities,  

the shift factor reduced to 
1

2
T

p , which results in a 

perfect match between LP-CF and PF-CF as shown in 

Fig. 9. The comparison between the results suggests 

that the local peak distribution can give a similar 

correction factor as found using MD simulation. 

Additionally, the results of the original contact 

theory (without correction factor) compared with the 

modified version using local peak distribution for 

sliding velocity of 0.1 m/s under three different 

nominal pressures are shown in Fig. 10. As expected, 

the modified theory predicts a larger real contact area. 

6.1.2 Modification of contact area based on improved GW 

method 

In the second method, the effective height profile of 

the rough surface was calculated using the improved 

GW (IGW) contact theory. The advantage of this method 

compared to the local peak distribution method is 

that the material properties and normal load are also 

considered to determine the effective height profile of 

the rough surface. Therefore, the shift factor does not 

only depend on the surface roughness parameters, but 

also on the nominal pressure and the sliding velocity 

(in the case of viscoelastic materials). Figure 11 shows 

the comparison between the IGW-based correction 

factor (IGW-CF) and Persson fitted correction factor 

(PF-CF) for compound A with the sliding velocity of 

0.1 m/s and three different nominal pressures on a 

120-grit sandpaper surface. The shift factors for nominal 

pressures of 0.3 and 0.5 MPa found to be 2.02 and 

1.83, respectively, which are close to the constant shift  

 
Fig. 8 Height profile and local peaks of the 120-grit sandpaper within a fixed minimum distance of 0 (left) and the comparison 
between the proposed correction factor based on local peak distribution and simulation-based fitted correction factor (right). 

 

Fig. 9 Height profile and local peaks of the 120-grit sandpaper within the range of 0

2


 to 0  (left) and the comparison between the 

proposed correction factor based on local peak distribution and simulation-based fitted correction factor (right). 
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Fig. 10 Comparison of the original contact theory and modified 
multiscale contact theory using local peak distribution method. 

 

Fig. 11 Comparison between the correction factors based on 
IGW theory and MD simulation. 

factor found from the local peak distribution method. 

Therefore, both asperity-based methods give results 

similar to Persson’s correction factor. However, the 

shift factor for a nominal pressure of 0.1 MPa was 

found to be 2.46, which predicts a smaller penetration 

depth compared to the other methods. 

The comparison between the original contact model 

and the modified version using the IGW method for 

sliding velocity of 0.1 m/s and different nominal 

pressures is shown in Fig. 12.  

As expected, the IGW based modified contact model 

predicts a much larger real contact area at low normal 

pressures. The separation distances calculated using 

the IGW method and the corresponding shift factors 

as functions of nominal normal pressure and sliding 

velocity are shown in Figs. 13 and 14, respectively. 

 

Fig. 12 Normalized contact area at the sliding velocity of 0.1 m/s 
using original Persson model vs corrected contact model. 

When the normal pressure increases, the separation 

distance between the nominal contact surfaces decreases, 

and consequently, the shift factor decreases. On the 

other hand, when the sliding velocity increases, the 

elastic modulus of rubber also increases as the rubber 

becomes stiffer. Therefore, the separation distance 

between the two surfaces increases, and a larger shift 

factor must be implemented in the contact model. 

The numerical results suggest that for a wide range 

of velocities and intermediate normal pressures, the 

average shift factor is about two, and it gives similar 

results as the correction factor based on MD numerical 

simulation.  

6.2 Modified friction model: Theory and 

experiments 

The modified displacement assumption and contact 

theory, obtained from the IGW method, were imple-

mented in the theory of rubber friction as expressed 

in Eqs. (22) to (24) excluding Persson’s correction factor 

S(q). Then, the numerical results were compared with 

some experimental results obtained from a sliding 

friction tester. The details of the test set-up and the 

experimental procedure can be found elsewhere [46]. 

In this experiment, a small rubber block of compound 

B was tested on the asphalt surface with the power 

spectrum shown in Fig. 7(b). All the parameters used 

in the theoretical model were summarized in Table 1. 

In the velocity range used in the experiment, it is 

expected that the hysteresis friction is the dominant 
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mechanics of friction. Therefore, the displacement 

assumption has a significant effect on the theoretical 

results. The friction test was repeated several times for 

each sliding velocity for at least 3 m sliding distance. 

The experimental friction coefficients (blue dots) and 

the average friction coefficient (red marks) for each 

velocity are shown in Fig. 15 along with the theoretical 

model calculated based on (a) original multiscale contact 

theory and (b) the modified version of the theory. Red 

and orange dashed lines show the contributions of 

hysteresis friction using Eq. (22) and adhesive friction 

using Eq. (23), respectively.  

As expected, the original model overestimates the 

contribution of hysteresis friction and predicts a higher 

value of the friction coefficient. On the other hand, 

the corrected model gives a better prediction of the 

real contact area and friction coefficient. Therefore, the 

numerical results of the modified friction model are 

in good agreement with the experimental results.  

7 Conclusions 

An asperity-based approach was introduced to 

modify the displacement approximation in Persson’s 

multiscale theory of contact mechanics and rubber 

friction. This approach is applicable to contact 

mechanics of self-affine fractal surfaces, including 

various types of sandpapers and asphalt textures. In 

this approach, an affine transformation is used to 

shift the height profile of the rigid rough surface to  

 

Fig. 13 Separation distance (left) and shift factor (right) as a function of nominal pressure for rubber compound A sliding with different 
velocities on 120-grit sandpaper surface. 

 

Fig. 14 Separation distance (left) and shift factor (right) as a function of sliding velocity for rubber compound A sliding under different 
nominal pressures on 120-grit sandpaper surface. 

Table 1 Parameters used in the theoretical model of friction coefficient on an asphalt surface. 

H h0 (μm) q0 (m
–1) qmax (m

–1) c0 v0 (mm/s)  τf0 (MPa) σ0 (kPa) 

0.87 265.7 2,000 106 0.1 6 8.3 81 
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Fig. 15 Friction coefficient vs. sliding velocity on an asphalt 
track.  

the upper regions of the asperities, which effectively 

contribute to the displacement field of the deformable 

body at the macro scale. This affine transformation 

reduces the effective height profile without altering 

the fractal properties of the surface.  

Two asperity-based methods were studied to find 

the shift factor for the affine transformation. The first 

method uses the height profile distribution to find 

the local peaks of asperities at the largest length scale 

of the surface roughness. The basic assumption in 

this method is that the height distribution of local 

peaks mainly contributes to the displacement field at 

the contact area. The main drawback of this method 

is that it only considers the height profile of the surface 

and neglects the material properties to find the shift 

factor. On the other hand, the second method uses 

material properties in addition to surface roughness 

parameters to find the shift factor for the affine 

transformation. It finds the effective penetration depth 

of the deformable body at the largest length scale  

using the improved Greenwood-Williamson (IGW) 

contact theory, which includes the interaction between 

asperities in an approximate way. Then, this penetration 

depth is used to transform the height profile so that 

the maximum vertical displacement of the smooth 

deformable surface becomes equal to the large-scale 

penetration depth. These two methods can also be 

combined to obtain a better approximation of the 

vertical displacement field on the contact area  

when the surface profile has a non-Gaussian height 

distribution or has significant skewness. In this 

condition, at first, the original nonsymmetric height 

profile must be shifted using local peak distribution 

to eliminate the deep valleys, which do not contribute 

to the contact mechanics. Then, the shifted profile  

can be used within the IGW contact theory to find the 

penetration depth at the largest length scale.  

The numerical results showed that the asperity- 

based correction factors are in good agreement with 

the factor obtained based on fitting the theoretical 

results to MD numerical simulation. The local peak 

distribution method can perfectly match the fitting 

factor when the local peaks are found appropriately. 

On the other hand, the results of the IGW method 

deviate slightly from the MD-based correction factor 

at very low normal pressure as it predicts smaller 

penetration depth. However, it is also not clear in 

what conditions and to what extent the MD based 

factor can effectively correct the model. Besides, 

different values of γ for Eq. (8), though in the limited 

range of 0.4 to 0.5, were reported in Refs. [16, 32, 44, 

50], which can give slightly different results. The 

effect of nominal pressure and sliding velocity on the 

penetration depth and the shift factor in the IGW 

method were also studied. The results suggest that, 

on average, the vertical displacement on rough surfaces, 

such as sandpaper and asphalt, is approximately half 

of the height profile for intermediate pressures and a  

wide range of velocities. Therefore, 
2z

h
u  is a better  

approximation than 
z

u h  in the contact model, at 

lease for the case study done in this paper.  

Finally, the modified displacement and contact 

models were implemented in the theoretical model 

of rubber friction. The results of both modified and 

original theoretical models were compared with the 

experimental results of friction between rubber and 
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asphalt at different sliding velocities. The comparison of 

the results indicates that the modified theoretical friction 

model is in good agreement with the experiment, 

while the original theory (without the parameter S(q)) 

overestimates the hysteresis friction component.  
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