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 Energy release rate.  Fracture energy  
 
 Fracture of steel.  Following Griffith, you are performing the same 
experiment using steel rather than glass.  Let’s say you have several bodies of the 
steel.  Using a diamond saw, you cut each body with a crack of length 2a.  The 
lengths of the cracks are different in different bodies.  You load each body in 
tension up to fracture, and record the applied stress at fracture, cσ .  Many people 
have done such experiments and here are the basic experimental facts. 

1. constant=acσ , independent of the length of the crack. 

2. The constant is orders of magnitude larger than πγ /2 E .  Note that the 

surface energy of most solids is on the order of 1 J/m2. 
Thus, the Griffith theory agrees with one part of the experimental 

observation, but disagrees with the other. While other people complained about 
this large discrepancy, Irwin and Orowan did something about it.  In late 1940’s, 
they found a way to apply the Griffith theory to brittle fracture of steel. 
 
 A frame-by-frame movie.  Such a movie must exist by now, but I don’t 
have it.  I’ll sketch pictures in class. 
 Frame 1.  A crack is cut into a body of steel using a diamond saw.  No force 
is applied to the body yet. 
 Frame 2.  Apply a small load.  A small region around the tip of the crack 
yields.  This small region is called the plastic zone.  The body remains elastic 
outside the plastic zone.  The front of the crack remains stationary. 
 Frame 3.  Increase the load slightly.  The plastic zone increases in size.  
The front of the crack still remains stationary. 
 Frame 4.  Increase the load still more.  The front of the crack starts to 
advance.  The larger the load, the more the crack advances. 
 Frame 5.  The load reaches a constant level, the crack advances in a steady 
state.  Plastic deformation is confined in the thin layers beneath the crack 
surfaces.  The thickness of the plastic layers remains constant as the crack 
advances.       
  
 Plastic deformation. The large discrepancy between the Griffith theory 
and experiments with steel had to do with plastic deformation in the steel 
accompanying fracture. When a crack grows in steel, many atoms off the plane of 
crack will change neighbors.  The steel off the plane of the crack deforms 
plastically.  After the steel fractures into two pieces, the pieces do not fit neatly.  
By contrast, when a crack grows in glass, atoms off the plane of the crack do not 
change neighbors.  The glass off the plane of the crack deforms elastically.  After 
the glass fractures into two pieces, the pieces fit together neatly.  
 
 Dissipation of energy. Let us focus on Frame 5:  a crack grows in 
steady state.  Follow a material particle near the plane of the crack.  As the front 
of the crack passes by, the deformation of the material particle undergoes 
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hysteresis:  elastic loading, plastic flow, and then elastic unloading.  Sketch the 
stress-strain curve of a material particle.  As the crack advances, the material 
particle is initially far ahead the front of the crack, and finally far behind the front 
of the crack.  The material particle goes through a history of stress and strain.  
The material particle dissipates energy as heat.  In this picture, the crack growing 
in steady state is a nonequilibrium process. 
 Compare this picture with the original Griffith theory.  For a crack 
growing in steady state, the original Griffith theory regards the growth as an 
equilibrium process:  the reduction of the elastic energy is fully stored as the 
surface energy.  No energy is dissipated.   
 
 Small-scale yielding.  For the time being we will restrict ourselves to 
the case that the plastic zone size is much smaller than any macroscopic length in 
the body, such as the length of the crack and size of the body.  This condition is 
known as the small-scale yielding condition.   
 Under the small-scale yielding condition, much of the body deforms 
elastically.  Because the size of the plastic zone is much smaller than the length of 
the crack, the crack can attain the steady state after extending by a length small 
compared to the total length of the crack.  
 The thickness of the plastically deformed layer in the steady state is a 
material property.  Unless otherwise specified, we will call this steady-state 

thickness the plastic zone size, r
p

. Let a be a representative macroscopic length 

by a, such as the length of the crack or the size of the body.  The small-scale 
yielding condition requires that the plastic zone size is much smaller than the 
macroscopic length: 

  r
p
<< a . 

 The inelastic zone for silica is of atomic dimension, so that a crack beyond 
a few nanometers satisfies the small-scale yielding condition.  By contrast, the 
plastic zone for a steel may be of millimeter in size, so that a crack beyond a few 
centimeters satisfies the small-scale yielding condition.  For a particularly ductile 
steel, however, the plastic zone can be several centimeters in size.  To test such a 
ductile steel under the small-scale yielding condition requires a body of a size 
about a file cabinet.  Such a test is carried out sometimes, but is expensive.  We 
will discuss large-scale yielding later in this course.  
 Under the small-scale yielding condition, the deviation form elasticity is 
confined within thin layers of materials beneath the surfaces of the crack. 
 In the original Griffith theory, the deviation from elasticity is confined 
with a few atomic layers beneath the surfaces of the crack. 
 
 Modify the Griffith theory to account for plasticity.  Griffith’s 
picture of fracture is   
  Fracture = atomic bond breaking.   
Griffith used the surface energy to account for the inelastic process of bond 
breaking, and obtained the condition for fracture:  
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 Irwin’s and Orowan’s picture is 
  Fracture = atomic bond breaking + plastic deformation.   
They define the fracture energy Γ  as the energy needed to advance a (steady 
state) crack by a unit area. 
  Fracture energy = surface energy + plastic work. 
   pw+=Γ γ2 . 

Here pw  is the work done to create per unit area of the plastic layers.  Irwin and 

Orowan used the fracture energy to account for the inelastic process of bond 
breaking and plastic deformation, and they modified the condition for fracture as 

  
a
E

c π
σ

Γ
= . 

 A few quick notes about fracture energy: 
1. The fracture energy is a material property, independent of the length of 

the pre-crack, so long as the small-scale yielding condition applies. 
2. The fracture energy is difficult to calculate from first principles, and is 

determined by fracture test, as described above. 
3. The fracture energy is much larger than the surface energy.  A lot more 

atoms participate in plastic deformation than in bond breaking.  Some 
rough values.  Glass:  10 J/m2.  Ceramics:  50 J/m2.  Glassy polymers: 103 
J/m2.  Aluminum: 104 J/m2.  Steel: 105 J/m2. 

 
 The above modification eliminates the discrepancy between the theory 
and the experiments, but is bothersome in two respects.  First, the Griffith theory 
was developed for a small crack in a large plate.  How about other configurations 
of crack?  Second, what do we really mean by the phrase “energy needed to 
advance a crack by a unit area”?   We need an operational definition of the 
fracture energy, a definition that will enable theoretical calculation and 
experimental measurement. 
  
  Elastic energy.  Let us first consider a pre-cracked body of an arbitrary 
shape.  Imagine many copies of the body, identical in all respect except that the 
sizes of the pre-cracks are different for different bodies.  The body is purely 
elastic:  no bond breaking or plastic deformation occurs.  The body is loaded, say, 
by a force P.  The elastic energy stored in the body U is a function of the 
displacement Δ  of the weight and the area A of the crack, namely, 
  ( )AUU ,Δ= . 
This function can be determined by solving boundary-value problems within the 
theory of elasticity. 
 Alternatively, the function ( )AU ,Δ  can be determined by experimental 
measurement.  For each copy of the body, we make sure that the crack is 
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stationary as we load the body.  Consequently, the work done by the weight is 
fully stored as the elastic energy in the body, dUPd =Δ .  We write 

  
( )
Δ∂
Δ∂

=
AUP ,

. 

By measuring the force P as a function of Δ  and A, we can integrate and obtain 
the function ( )AU ,Δ . 
 We can even consider elastic materials of nonlinear stress-strain behavior, 
such as elastomers. 

 
 
 Energy Release Rate.  Now consider two copies of the body:  one copy 
has a crack of area A, and the other copy has a crack of area A+dA .  The copy 
with the larger crack is more compliant—that is the load-displacement curve of 
the body with the larger crack is below the load-displacement curve of the body 
with the smaller crack.  Consequently, at the same displacement, the body with a 
larger crack has lower elastic energy: 

  U Δ,A+dA( )<U Δ,A( ) . 

 Define energy release rate, G, as the reduction of the elastic energy 
associated with the crack increasing per unit area: 

  G = −
U Δ,A+dA( )−U Δ,A( )

dA
. 

The displacement Δ  is held fixed as the area of the crack changes.  Write the 
above definition using the notation of calculus: 

  
( )
A
AUG

∂
Δ∂

−=
,

. 

The partial derivative signifies that the displacement Δ  is held fixed when the 
area of the crack A varies.   
 Once we know the function ( )AU ,Δ , the above definition gives the energy 
release rate G.  Thus, G is purely an elastic quantity, and you need to know 
nothing about the process of fracture to obtain G.   
 When both the displacement of the applied force and the area of the crack 
vary, the elastic energy of the body varies according to 
  GdAPddU −Δ= .  

Δ
U

fixedA

Δ

A
dAA+

dU−

P P
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Just as P is the thermodynamic force conjugate to the displacement Δ , the 
energy release rate G is the thermodynamic force conjugate to the area A. 
 
  Fracture energy.  Consider a pre-cracked body loaded by a weight P.  
Under the small-scale yielding condition, we can still obtain the function ( )AU ,Δ  
as if the entire body were purely elastic, either by solving a boundary-value 
problem with the theory of elasticity, or by the load-displacement curves 
determined experimentally with bodies containing cracks of different sizes.   
 When the weight drops by distance Δd , the weight does work ΔPd .  
Under the small-scale yielding condition, much of the work done by the weight is 
stored in the body as elastic energy, and only a small fraction of the work done by 
the weight goes to inelastic processes such as breaking atomic bonds and plastic 
deformation.  We will use this small fraction to define the fracture energy.  That 
is, the fracture energy Γ  is defined as an excess, according to 
  dAdUPd Γ+=Δ . 
This definition of the fracture energy is independent of microscopic processes, be 
they bond breaking or plasticity. 
    
 Fracture criterion.  Now compare the two definitions:  the energy 
release rate G, and the fracture energy Γ .  The crack will grow if the energy 
release rate equals the fracture energy: 

  G = Γ . 
The energy release rate is the driving force for the extension of the crack, and 
represents an applied load.  The fracture energy is the resistance to the extension 
of the crack, and represents a material property.  The relation between G and Γ  is 
analogous to the relation between stress and strength. 

 
 The above discussions complete the modifications of the Griffith theory to 
deal with 

1. cracked bodies of any configuration, and 
2. materials capable of plastic deformation. 

In what follows we collect a few useful mathematical refinements.  These 
refinements often confuse students, but contain no new information. 
 
 Potential energy.  View the body and the weight together as a system, 
and lump their energy together:   
  Δ−=Π PU .  
This quantity is called the potential energy in mechanics, and is called the Gibbs 
free energy in thermodynamics.  This definition, in combination with 

GdAPddU −Δ= , gives 
  GdAdPd −Δ−=Π .  
Now the potential energy is a function of the load and the crack area,  
  ( )AP,Π=Π .  
The displacement Δ  and the energy release rate G are the differential 
coefficients, namely, 
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( )
P
AP

∂
Π∂

−=Δ
,

, 

  
( )
A
APG

∂
Π∂

−=
,

. 

 

 
 
 Linear elasticity.  When the body is linearly elastic, the applied force P 
is linear in the displacement Δ .  Consequently, the elastic energy is 
  2/Δ= PU , 
and the potential energy is 
  Π = −U . 
 We can write the energy release rate as 

  
( )
A
APUG

∂
∂

+=
,

.  

The partial derivative signifies that the load P is held fixed when the crack area A 
varies.  The opposite signs in the two expressions for the energy release rate 
reflect a simple physical fact.  When the area of the crack is larger, the body is 
more compliant, so that the body stores less elastic energy at a fixed 
displacement, but stores more elastic energy at a fixed load. 
 

 
 
 Compliance of a linearly elastic body containing a crack.  For a 
linearly elastic body, the displacement is linear in the load.  Write 
  CP=Δ , 

Δ

U

fixedA

Δ

A dAA+

dU−

P P

Δ

P
Π−

fixedA

Δ

A
dAA+

Π−d

P
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where C is the compliance of the body.  For a linearly elastic body containing a 
crack, the compliance is independent of the load, but is a function of the area of 
the crack, namely, 
  ( )ACC =  . 
This function can be determined experimentally or calculated by solving 
boundary-value problems.  As we said before, the compliance is an increasing 
function of the area of the crack. 
 Using the compliance, we can write the energy release rate as 

  
( )
dA
AdCPG

2

2

= . 

 
  
 
 Recover the Griffith result.  The energy release rate can be 
determined by solving a boundary-value problem in linear elasticity.  Consider 
the Griffith crack (i.e., a crack of length 2a, in an infinite plate of unit thickness, 
subject to a remote stress σ ).  The boundary-value problem was solved by Inglis 
(1913).  The crack opens to the shape of an ellipse, and the opening displacement 
is 

  ( ) 224 xa
E

x −=
σ

δ . 

 Under the stress-prescribed condition, the cracked body stores more 
elastic energy than the uncracked reference body.  The difference in the elastic 
energy between the two bodies is 

  U =
1
2

σδ x( )dx∫  

The integral extends over the length of the crack.   
 Integrating, we obtain that   

  
E
aU
22σ

π= . 

The form of this equation can be obtained by elementary considerations.  The 
exact solution to the boundary-value problem gives the coefficient π .  You will be 
asked to derive this equation from the Inglis solution.   
 The area of the crack is 12 ⋅= aA .  The energy release rate is defined by 

Δ

fixedA

P

1

C

Δ

A dAA+

P 1 1

( )AC ( )dAAC +
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   G =+
∂U σ ,A( )

∂A
 (for fixed load),  

giving 

 
E
a

G
2σ

π= . 

 The crack grows when Γ=G , namely, 

  
E
a2σ

π=Γ . 

This equation recovers the Griffith condition for fracture. 
 
 Cracked body of other configurations.  For cracked bodies of other 
configurations, the energy release rate is often written in the same form, but with 
a different coefficient: 

 
E
aG
2σ

β= . 

The coefficient β  is dimensionless, and depends on the configuration of the 
cracked body. 
 For example, consider a crack of length 2a in an elastic strip of width 2b, 
subject to a remote tensile stress σ .  This boundary-value problem cannot be 
solved analytically.  Numerical solutions are summarized in the Tada handbook.  
The dimensionless coefficient β  is a function of a/b.  A formula fits the 
numerical solutions is 

  
( ) ( )( )

( )ba
baba

/1
/326.0/5.01

22

−
+−

=πβ . 

You can comfort yourself by checking the trend and the limiting cases.  The 
energy release rate increases with the ratio a/b.  When 0/ →ba , the length of 
the crack is much smaller than the width of the strip, and the above solution 
recovers the result for the Griffith crack, πβ = .  When 1/ →ba , the small 
ligament carries huge stresses, so that ∞→β . 
 
 Ways to determine energy release rate G.  The energy release rate is 
a quantity defined within the theory of elasticity.  The energy release rate is 
specific to the configuration of a body containing a crack, and can be determined 
by the following methods. 
• Look it up in handbooks.  Elasticity solutions to cracked bodies of many 

configurations can be found in handbooks, e.g., H. Tada, P.C. Paris and G.R. 
Irwin, The Stress Analysis of Cracks Handbook, Del Research, St. Louis, 
MO., 1995. 

• Determine it experimentally.  This method is particularly easy for linearly 
elastic body.  For a linearly elastic body containing a crack of a fixed area, A, 
the displacement Δ  is linear in the applied force P, namely, CP=Δ .  The 
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compliance C can be measured experimentally.  Use several bodies, which are 
identical except for the areas of the cracks.  Measure the compliance of each 
body, and obtain the function ( )AC .  The energy release rate is given by 

 
( )
dA
AdCPG

2

2

= . 

• Determine it by solving the elasticity boundary-value problem.  For cracked 
bodies of some configurations, the boundary-value problems can be solved 
analytically.  For most configurations, the boundary-value problems are 
solved numerically by using finite element programs. 

 Historically, the analytical method came first, beginning with Griffith’s 
(1921) use of the solution obtained by Inglis (1913), and  followed by Obreimoff’s 
(1930) analysis of a splitting layer.  The method of functions of a complex 
variable was used to great effect by Muskhelishvili and others. 
 The method of using the experimentally measured compliance to 
determine energy release rate was probably introduced by Irwin (~1950).  The 
method is still occasionally used today.   
 The method of choice today is the finite element method.  
     
 Ways to determine fracture energy Γ .  Fracture energy is a material 
property.  It can be determined in several ways. 
• Look it up in a material data sheet.  Representative values: Glass:  10 J/m2.  

Ceramics:  50 J/m2.  Polymers: 103 J/m2.  Aluminum: 104 J/m2.  Steel: 105 
J/m2.  Warning:  The fracture energy is sensitive to the microstructure of 
materials; heat treatment of a steel can change the fracture energy by orders 
of magnitude. 

• Measure it experimentally by doing a fracture test.  Of course, the values on 
the data sheet have been determined by experimental measurement. 

• Compute it by a numerical simulation of the fracture process.  This is an 
emerging field.  Exciting but immature.  Not a standard engineering practice 
yet. 

 
 Division of labor.  The qualitative picture of the fracture may be well-
understood, across disparate scales of length and time, from the distortion of 
electron clouds, to the jiggling of atoms, to the motion of dislocations, to the 
extension of a crack, to the load-carrying capacity of a structure.  This statement 
by itself, however, is of limited value: it offers little help to the engineer trying to 
prevent fracture of a structure.  Hypes of multiscale computation aside, no 
reliable method exists today to predict fracture by computation alone.  
 A pragmatic approach is to divide the labor between numerical 
computation and experimental measurement. Some quantities are easier to 
compute, and others easier to measure. A combination of computation and 
measurement solves problems economically. 
 Of course, what is easy to do changes when circumstances change. As new 
tools and applications emerge, it behooves us to renegotiate a more economical 
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division of labor. The history of fracture mechanics offers excellent lessons on 
such divisions and renegotiations.  The evolution of fracture mechanics is better 
appreciated historically and economically. 
 
 Design based on fracture mechanics.  Compare design based on 
fracture mechanics with design based on the linear elastic theory.   
 In the linear elastic theory of strength, the stress is the loading parameter, 
and the strength is the material property.  We determine the stress in the body by 
solving a boundary-value problem, and measure the strength by doing an 
experiment.  The structure is safe if the stress is below the strength. 
 In fracture mechanics, the energy release rate is the loading parameter, 
and the fracture energy is the material property.  We determine the energy 
release rate of a crack in the body by solving a boundary-value problem, and 
measure the fracture energy by doing an experiment.  The structure is safe if the 
energy release rate is below the fracture energy. 
 

Make sure

Calculate energy release rate

G = β
σ 2a
E

Measure fracture energy

Γ

β
σ 2a
E

< Γ

Determine load σ Determine crack size, a

 
 
  Historical Notes 
 The literature sometimes traces the modified Griffith theory to the 
following two papers, but these papers are not explicit enough about details for us 
to learn basics of the fracture mechanics.  They are of historical interest. 
E. Orowan, Fracture and strength of solids. Reports on Progress in Physics 12, 

185-232 (1948). 
G.R. Irwin, Fracture Dynamics. In Fracturing of Metals, pp. 147-166. ASM 

Symposium (Trans. ASM 40A), Cleveland (1948). 
F.R.N. Nabarro and A.S. Argon, Egon Orowan (1901-1989).  Biographical 

Memoirs of Fellows of the Royal Society 41, 316-340 (1995).   
A.A. Wells, George Rankin Irwin. Biographical Memoirs of Fellows of the Royal 

Society 46, 270-283 (2000). 


