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Abstract 

 Dielectric elastomers are capable of large deformation subject to an electric voltage, and 

are promising for uses as actuators, sensors and generators. Because of large deformation, 

nonlinear equations of state, and diverse modes of failure, modeling the process of 

electromechanical transduction has been challenging.  This paper studies a membrane of a 

dielectric elastomer deformed into an out-of-plane, axisymmetric shape, a configuration used in 

a family of commercial devices known as the Universal Muscle Actuators.  The kinematics of 

deformation and charging, together with thermodynamics, lead to field equations that govern 

the state of equilibrium, as well as the conditions under which the state of equilibrium is stable.  

Numerical results indicate that the field in the membrane can be very inhomogeneous, and that 

the membrane is susceptible to several modes of failure, including electrical breakdown, 

electromechanical instability, loss of tension, and rupture by stretch.  Care is needed in design to 

balance the requirements of averting various modes of failure while using the material efficiently.   
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1. Introduction 

 As a class of materials for electromechanical transduction, dielectric elastomers posses a 

unique combination of attributes:  large deformation, fast response, high efficiency, low cost, 

and light weight (Pelrine et al., 2000; Pelrine et al., 1998; Carpi et al., 2008).  These attributes 

make dielectric elastomers promising for applications as transducers in, for example, cameras, 

robots, and energy harvesters (Bar-Cohen, 2002; Liu, et al., 2005; Wingert et al., 2006; Xia et al., 

2005; Koford et al., 2007). The essential part of such a transducer is a membrane of a dielectric 

elastomer. Subject to a voltage, the membrane reduces its thickness and expands its area, 

converting electrical energy into mechanical energy. 

 To deform an elastomer appreciably, the electric field needed scales as εμ /~E , where 

μ  is the elastic modulus of the elastomer, and ε  the permittivity.  Using representative values, 

25 N/m104×=μ  and F/m104 11−×=ε , one finds that actuating a dielectric elastomer requires an 

enormous electric field, on the order of V/m10~ 8E .  The intense electric field has major 

consequences in the design of transducers.  The membrane nearly always operates on the verge 

of electrical breakdown, where the electric field may mobilize charged species in the elastomer 

to produce a path of electrical conduction.  The membrane is also susceptible to an instability 

specific to deformable dielectrics.  As the applied voltage is increased, the elastomer reduces 

thickness, so that the voltage induces an even higher electric field. The positive feedback 

between a thinner elastomer and a higher electric field may cause the elastomer to thin down 

drastically, resulting in electromechanical instability (Stark and Garton, 1955).  Furthermore, to 

avoid excessively high voltage in use, the membrane must be thin.  For example, an electric field 

of V/m108  in a 1 mm thick membrane requires a voltage of V105 .  The thin membrane, 

however, buckles under slight compressive stresses in its plane.  Even for a pre-tensioned 

membrane, the applied voltage induces deformation, which may remove the tensile prestress, a 

condition known as loss of tension.  Of course, when the polymer chains in the membrane are 

stretched severely, the membrane is susceptible to rupture by stretch. 
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 While these modes of failure are known to limit the performance of dielectric elastomer 

transducers, few systematic studies have been reported (Plante and Dubowsky, 2006; Moscardo 

et al., 2008).  Modeling dielectric elastomer transducers has been challenging due to the diverse 

modes of failure, as well as large deformation and nonlinear equations of state (Wissler and 

Mazza, 2005a, 2005b, 2007a, 2007b).  This paper explores these issues by studying a membrane 

of a dielectric elastomer deformed into an out-of-plane, axisymmetric shape (Fig. 1), a 

configuration used in a family of commercial devices known as Universal Muscle Actuators 

(UMAs), marketed by Artificial Muscle, Inc.  While many other configurations have been 

proposed in the literature, the focus on a particular configuration, such as the UMAs, may bring 

the benefits of standardization while still addressing a large range of early applications (Bonwit 

et al., 2006; Duncheon, 2008).  To focus our attention even further, this paper will be restricted 

to the fundamental issues of electromechanics of membranes.  In particular, attention here will 

be placed on a single membrane as illustrated in Fig. 1, rather than two membranes used in 

UMAs.  

 The study of axisymmetric deformation of membranes has a long tradition (e.g., Adkins 

and Rivlin, 1952; Tezduyar et al., 1987).  Also studied recently is the axisymmetric deformation 

of membranes subject to electromechanical loads (Goulbourn et al., 2005; Mockensturm and 

Goulbourne, 2006; Goubourne et al., 2007).  In this paper, we use these analytical and 

computational tools to study various modes of failure.  We combine the kinematics of 

axisymmetric deformation of membranes and the thermodynamics of elastic dielectrics.  This 

approach follows the recent studies of elastic dielectrics (McMeeking and Landis, 2005; 

Dorfmann and Ogden, 2005; Suo et al., 2008).  Governing equations derived here recover those 

in Goulbourn et al. (2005) for an idealized material model, and can accommodate more general 

material models.  We further derive the condition under which an inhomogeneous state of 

equilibrium is stable against inhomogeneous perturbation. We then describe numerical results 

for the specific configuration illustrated in Fig. 1.  We show that the field in the membrane can 
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be highly inhomogeneous, such that a judicious design is needed to avert various modes of 

failure, while using the material efficiently.  

 

2. State of equilibrium   

 Fig. 1 illustrates the cross section of a membrane of a dielectric elastomer.  A circular 

dielectric membrane is coated on both surfaces with compliant electrodes.  In the undeformed 

state (Fig. 1a), the membrane is of thickness H and radius B.  A specific particle of the membrane 

is at a distance A from the center O, and a general particle is at a distance R from the center.  In 

the deformed state (Fig. 1b), the membrane is attached to a rigid disk of radius a, and to a rigid 

ring of radius b , such that the particle A moves to the place a, and the particle B moves to the 

place b.  When a force F is applied to the disk and a voltage Φ  is applied between the two 

electrodes, the disk moves relative to the ring by a distance u, and an amount of charge Q flows 

from one electrode to the other.  Meanwhile the membrane deforms into an out-of-plane, 

axisymmetric shape.    

 Following Adkins and Rivlin (1952), we first examine the kinematics of deformation.  In 

the deformed state (Fig. 1b), the particle R moves to a place with coordinates r and z.  The two 

functions, ( )Rr  and ( )Rz , fully describe the deformed shape, and are subject to the following 

boundary conditions:  ( ) aAr = , ( ) bBr = , ( ) uAz =  and 0)( =Bz .  Consider the longitudinal 

stretch by examining two nearby particles, R  and dRR + . In the deformed state, the two 

particles occupy places separated by ( ) ( )RrdRRrdr −+=  and ( ) ( )RzdRRzdz −+= .  Let dl  be 

the distance between the two particles when the membrane is in the deformed state, and ( )Rθ  

be the slope of the vector connecting the two particles, so that dldr θcos= , dldz θsin−= , and 

( ) ( ) ( )222 dzdrdl += .  The longitudinal stretch is defined by the distance between the two particles 

in the deformed state divided by that in the undeformed state, dRdl /1 =λ .  In terms of the 

functions ( )Rr  and ( )Rz , the longitudinal stretch is 
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Consider the latitudinal stretch by examining a circle of material particles, of perimeter Rπ2  in 

the undeformed state.  In the deformed state, the circle of particles occupy a circle of places, of 

perimeter ( )Rrπ2 .  Thus, the latitudinal stretch is 

  
R
r

=2λ . (2) 

 To characterize the kinematics of charging, we use nominal electric displacement; See 

Suo et al. (2008) and Dorfmann and Ogden (2005) for more general discussion.  In the 

deformed state, let D
~

 be the nominal electric displacement, namely, the electric charge on an 

element of an electrode in the deformed state divided by the area of the element in the 

undeformed state.  Consequently, in the deformed state the total electric charge on the electrode 

is   

  ∫= RdRDQ
~

2π . (3) 

Together, 1λ , 2λ  and D
~

 are the three kinematic variables that characterize the state of an 

element of the membrane. 

 The membrane is a thermodynamic system, taken to be held at a constant temperature.  

Let W be the Helmholtz free energy of an element of the dielectric in the deformed state divided 

by the volume of the element in the undeformed state.  Consequently, the Helmholtz free energy 

of the entire membrane in the deformed state is ∫WRdRHπ2 . We stipulate that the free-energy 

density is a function of the three kinematic variables, ( )DW
~

,, 21 λλ .   

 When the kinematic variables vary by small amounts, the free-energy density varies by  

  DEssW
~~

2211 δδλδλδ ++= . (4) 

This equation defines the three partial differential coefficients 
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These partial differential coefficients can be readily interpreted from (4):  1s  is the longitudinal 

nominal stress, 2s  the latitudinal nominal stresses, and E
~

 the nominal electric field.  Once a 

free-energy function ( )DW
~

,, 21 λλ  is prescribed for a given material, (5) constitutes the equations 

of state. 

 We now combine the kinematics and thermodynamics to derive the field equations that 

govern the state of equilibrium.  This approach avoids introducing the nebulous notion of 

electric body force; see Suo et al. (2008) for further discussion.  When the rigid disk moves by a 

small distance uδ , the applied force does work uFδ .  When a small amount of charge Qδ  flows 

from one electrode to the other, the applied voltage does work QδΦ .  In a state of equilibrium, 

thermodynamics dictates that, for arbitrary variation of the system, the change in the Helmholtz 

free energy of the membrane should equal the sum of the work done by the applied force and the 

applied voltage, namely, 

  QuFWRdRH
B

A
δδδπ Φ+=∫2 . (6) 

 Let the membrane be in a state of equilibrium characterized by ( )Rr , ( )Rz  and ( )RD
~

, 

and let the state undergo a small variation characterized by ( )Rrδ , ( )Rzδ  and ( )RD
~δ .  From (1) 

we obtain the associated variation in the longitudinal stretch, 
( ) ( )

dR
zd

dR
rd δθδθδλ sincos1 −= .  

Using (4) and integrating by parts, we obtain that 
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Comparing (6) and (7), and recalling that ( )Rrδ , ( )Rzδ  and ( )RD
~δ  are independent variations, 

we obtain that 

  FHRs =θπ sin2 1 , (8) 

  
( )

2
1 cos

s
dR

Rsd
=

θ
, (9) 

  Φ=EH
~

. (10) 

Equations (8) and (9) can also be obtained by balancing forces in the directions of z and r, 

respectively, as done in the literature (e.g., Tezduyar et al., 1987).  Equation (10) recovers the 

definition of the nominal electric field. 

 

3.  Stability of a state of equilibrium 

 The electromechanical instability of Stark and Garton (1955) has been analyzed by using 

a method of thermodynamics (Zhao and Suo, 2007; Norris, 2008), where both the state of 

equilibrium and its perturbation are taken to be homogenous.  We now extend the analysis to 

the stability of an inhomogeneous field of equilibrium against inhomogeneous field of 

perturbation. 

 The membrane is in a state of equilibrium subject to prescribed force F and prescribed 

voltage Φ .  The Gibbs free energy of the system is 

  QFuWRdRHG
B

A
Φ−−= ∫π2 . (11) 

As indicated before, the free-energy density is a function ( )DW
~

,, 21 λλ .  When the three kinematic 

variables ( )D
~

,, 21 λλ  are expressed using (1)-(3), the free energy G  is a functional of ( )Rr , ( )Rz , 

and ( )RD
~

, the three functions that characterize the state of the membrane.  The state of 
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equilibrium is stable against any small perturbation in ( )Rr , ( )Rz , and ( )RD
~

 if and only if the 

functional G is a minimum. 

 Let the membrane be in a state characterized by the three functions, ( )Rr , ( )Rz , and 

( )RD
~

, and let a neighboring state be characterized by ( ) ( )RrRr δ+ , ( ) ( )RzRz δ+ , and 

( ) ( )RDRD
~~ δ+ .  The difference in the Gibbs free energy between the two states, 

( ) ( )DzrGDDzzrrG
~

,,
~~

,, −+++ δδδ , may be expanded in terms of the variations rδ , zδ , and D
~δ .  

In deriving the equilibrium equations in the previous section, we have only expanded the 

variation of the Helmholtz free energy (4) to the terms linear in the variations of the kinematic 

variables.  To examine the stability of the state of equilibrium, we need to include the variations 

quadratic in the kinematic variables.   

 In a state of equilibrium, the variation of G linear in rδ , zδ , and D
~δ  vanishes, as 

expected from the derivation in the previous section.  The variation of G quadratic in the 

kinematic variables is 
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Consequently, the state of equilibrium is stable against any arbitrary perturbation in the 

kinematic variables if and only if the above integral is positive-definite for any arbitrary 

perturbation.  This condition of stability is equivalent to requiring that the Hessian 
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be positive-definite for every material particle in the membrane in the state of equilibrium.   
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 The Hessian is a symmetric matrix, and therefore has three real-valued eigenvalues.  

When a state of equilibrium is stable, all three eigenvalues should be positive.  When the 

instability sets in, one or more eigenvalues vanish.  Consequently, the critical condition for the 

electromechanical instability is 

  ( ) 0det =K  (14) 

for at least one material particle of the membrane. 

 

4. Material model 

 To carry out numerical calculations, we need to prescribe an explicit form of the free-

energy function ( )DW
~

,, 21 λλ .  Here we adopt a material model, called the ideal dielectric 

elastomer, where the dielectric behavior is liquid-like, unaffected by deformation (Zhao et al., 

2007).  Specifically, the true electric displacement is linear in the true electric field, and the 

permittivity is independent of deformation.  This material model seems to describe some 

experimental data (Koford et al., 2003), but is inconsistent with other experimental data 

(Wissler and Mazza, 2007).  Nevertheless, this model has been used almost exclusively in 

previous analyses of dielectric elastomers.  For a model of nonideal dielectric elastomers, see 

McMeeking and Landis (2005) and Zhao and Suo (2008).  In what follows we develop results for 

the ideal dielectric elastomer.   

  The elastomer is assumed to be incompressible, so that the stretch in the thickness 

direction of the membrane, 3λ , relates to the longitudinal and latitudinal stretches as 

( )213 /1 λλλ = .  The thickness of the membrane is H in the undeformed state, and is 

( )213 / λλλ HH =  in the deformed state.  By definition, the true electric field E is the voltage 

divided by the thickness of the membrane in the deformed state, so that EHE
~

/ 2121 λλλλ =Φ= .  

The true electric displacement D is defined as the charge in the deformed state divided by the 

area of the membrane in the deformed state, so that ( )21/
~ λλDD = .   
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 For the ideal dielectric elastomer, following Zhao et al. (2007), we assume that the free-

energy density takes the form   

  ( ) ( ) 2
2

2
1

2
2

2
2

1
2
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2
121 2
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2
~

,, −−−− +−++= λλ
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The first term is the elastic energy, where μ  is the small strain shear modulus. The second term 

is the dielectric energy, where ε  is the permittivity.  As seen in (15), the elastomer is taken to be 

a network of long and flexible polymers obeying the Gaussian statistics, so that the elastic 

behavior of the elastomer is neo-Hookean.  For the ideal dielectric elastomer, the dielectric 

energy per unit volume is ε2/2D , and the permittivity ε  is a constant independent of 

deformation.  In (15) the dielectric energy has been expressed in terms of the nominal electric 

displacement D
~

, a variable required by the function ( )DW
~

,, 21 λλ .  

 Inserting (15) into (5), we obtain the equations of state: 
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Recall that the true stresses 1σ  and 2σ  relate to the nominal stresses as 111 sλσ =  and 222 sλσ = .  

We rewrite (16) in terms of the true quantities: 

  ( ) 22
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2
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2
11 Eελλλμσ −−= −− , (17a) 

  ( ) 22
1

2
2

2
22 Eελλλμσ −−= −− , (17b) 

  ED ε= . (17c) 

These equations are readily interpreted.  For example, the first term in (16a) is the contribution 

to the stress due to the change of entropy associated with the stretch of the polymer network, 

and the second term is the contribution to the stress due to the applied voltage.  Equation (17) in 
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various forms has been used in previous analyses (e.g., Wissler and Maza, 2005a; Goulbourne et 

al., 2005 ). 

 The Hessian is obtained by inserting (15) into (13), so that (Zhao and Suo, 2007) 
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5. Numerical results and discussions 

 The theory presented above results in coupled nonlinear differential and algebraic 

equations, which we solve numerically; see Appendix for an outline of the method.   This section 

describes results and discusses their implications.  As discussed above, the membrane is a 

thermodynamic system of two generalized coordinates:  the displacement u  of the rigid disk, 

and the amount of charge Q on either electrode.  The respective work-conjugate loading 

parameters are the applied force F and the applied voltage Φ .  In presenting results, we 

normalize the four variables into dimensionless forms:  au/ , ( )εμπ 22/ aQ , ( )μπaHF 2/  and 

( )εμ // HΦ .   

 Unless otherwise stated, we fix the applied force to ( )μπaHF 2/  = 2, and vary the 

voltage applied.  In designing a device using the configuration in Fig. 1, three dimensionless 

parameters can be varied:  Aa/ , Bb/  and ab/ .  We first fix the three parameters to specific 

values, = =/ / 1.2a A b B  and 4/ =ab .   

 Fig. 2 plots the cross section of the deformed shapes of the membrane.  As the voltage 

increases, the membrane expands its area and lowers the disk.  Observe that the cross section of 

the membrane is curved due to the deformation in three dimensions.   
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 Fig. 3 plots the distribution of the stretches 1λ  and 2λ  in the membrane. As expected, 

both stretches increase with the voltage.  At a fixed voltage, the longitudinal stretch 1λ  is largest 

at the inner end of the membrane, and monotonically reduces to the smallest value at the outer 

end.  The latitudinal stretch 2λ  is held at prescribed values at the two ends by the disk and the 

ring, and reaches maximum in the middle region of the membrane.    

 Fig. 4 plots the distribution of the true stresses in the membrane.  To balance the applied 

force in the z direction, eq. (8), the longitudinal stress 1σ  is always tensile.  The latitudinal stress 

2σ , however, can become compressive when the applied voltage is large.  This loss of tension 

may cause the membrane to buckle.  Fig. 4 shows that the stresses are inhomogeneous in the 

membrane, and the loss of tension is expected to occur first at the inner end of the membrane. 

 Fig. 5 plots the distribution of the true electric field in the membrane.  Recall that the 

applied voltage Φ  is homogenous in the membrane.  Consequently, the true electric field, 

HE /21λλΦ= , scales with 21λλ .  As shown in Fig. 3, the two stretches reach maximum in 

different regions in the membrane.  Fig 5 shows that E increases monotonically from the outer 

end of the membrane to the inner end.  Assume that electrical breakdown occurs when the true 

electric field exceeds a critical value.  Consequently, we expect that electrical breakdown occurs 

at the inner end of the membrane when the voltage is too high. 

 Fig. 6 plots the distribution of ( )Kdet   in the membrane.  At a fixed applied voltage, 

( )Kdet  is lowest at the inner end, and increases monotonically from the inner end to the outer 

end.  The level of ( )Kdet  decreases as the applied voltage increases.  For example, when 

( ) 3.0// =Φ εμH , the value of ( )Kdet  becomes negative in a region near the inner end, 

indicating that the membrane will undergo electromechanical instability.  

 Fig. 7 plots the relation between the voltage and the displacement of the rigid disk.  The 

range of the displacement corresponds to the range of actuation of the device.  Fig. 8 plots the 
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relation between the voltage and the electric charge on either electrode.  The area under this 

curve corresponds to the work done by the voltage.   

 Fig. 9 shows the plane whose axes are the two generalized coordinates,  the displacement 

of the disk and the charge induced on either electrode.  A point on the plane represents a state of 

the transducer, and a curve on the plane represents a path of an electromechanical process.  Fig. 

9 plots several paths of constant applied force and paths of constant applied voltage.  

As mentioned previously, the transducer has three parameters of design:  a A , b B  and 

b a .  These parameters may be varied to modify the performance of the transducer.  As a 

example, Fig. 10 plots the relations between the applied voltage and 0u u  by varing a A and 

b B  while retaining 4b a = .  Here u  is the displacement of the disk when the membrane is 

subject to a voltage, and 0u  is the displacement of the disk when the membrane is subject to no 

voltage.  At a fixed voltage, 0u u  increases with a A  = b B .   

In addition to the cases where a A  = b B , Fig. 10 also includes a case when 1.1a A =  

and 1.8b B = .  Fig.11 gives the distributions of the true electric field when 1.1a A =  and 

1.8b B = . In this case the true electric field in the membrane is nearly uniform.   

As seen above, the various fields in the membrane are inhomogeneous.  Consequently, 

some regions of the membrane may be on the verge of failure, while other regions are still far 

below the capacity.  This uneven distribution of the fields leads to an inefficient use of the 

material.  However, once a particular device is selected, and criteria for failure are specified, one 

can make judicious choice of the parameters of design (e.g., Aa/ , Bb/  and ab/ ), such that 

the material is used efficiently and various modes of failure are averted.  Such an exercise of 

design is beyond the scope of this paper, but the method developed here should play an 

important role.  

 

6. Concluding remarks 
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 To produce large deformation, a membrane is usually subject to an intense electric field, 

and is susceptible to various modes of failure.  Because the field in the membrane is 

inhomogeneous, the membrane may fail at a single point of high field, while the rest of the 

membrane operates much below its full capacity.  This paper illustrates these issues by analyzing 

a configuration used in a family of commercial devices.  We combine the kinematics of 

axisymmetric deformation with the thermodynamics of electromechanical interaction, and 

obtain both the governing equations for the inhomogeneous state of equilibrium and the 

condition for the stability of such a state against inhomogeneous field of perturbation.   

Numerical results illustrate several potential modes of failure, including electrical breakdown, 

electromechanical instability, loss of tension, and rupture by stretch.  The approach can be used 

to optimize the design of electromechanical transducers for specific applications. 
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Appendix:  Coupled differential and algebraic equations 

 Rewrite (1) as 

  θλ cos1=
dR
dr

. (A1) 

A combination of (8) and (9) gives 

  θθ
sin

1

2

Rs
s

dR
d

−= . (A2) 

The stresses in (A2) are expressed using (16a) and (16b), which in turn are expressed as 

functions of r , 1λ  and Φ  by using (2), (10) and (16c).  Rewrite the algebraic equation (8) as  

  0
sin

1
2

3
1

4
1

2

=⎟
⎠
⎞

⎜
⎝
⎛−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Φ−

r
R

R
F

R
r λ

θ
λ .  (A3) 

In writing (A3), we have normalized F and Φ . 

Once the force F and the voltage Φ  are prescribed, the ordinary differential equations 

(A1) and (A2), together with the algebraic equation (A3), govern the three functions ( )Rr , ( )Rθ  

and ( )R1λ , subject to the boundary conditions ( ) aAr = , ( ) bBr = .  The boundary value 

problem is solved by using the shooting method. Once ( )Rr  are ( )Rθ  are solved, the function 

( )Rz  is determined by integrating drdz θtan−= , subject to the initial condition ( ) 0=Bz .  We 

have checked our numerical results with those in Tezduyar et al. (1987) for the special case when 

the disk is moved by the applied force, in the absence of the voltage. 
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Figures 

 

 

 

(a)  Undeformed state 

 

 

 

 

 

 

 

 

(b) Deformed state 

 

Fig.1 Schematic cross section of an actuator.  A circular membrane of a dielectric elastomer is 

sandwiched between two compliant electrodes.  (a) In the undeformed state, the membrane is of 

radius B, and a particle of the membrane is at a distance A from the center O.  Label a general 

particle of the membrane by the distance R of the particle from the center.  (b) In the deformed 

state, the membrane is attached to a rigid circular disk of radius a, and to a rigid circular ring of 

radius b, such that the particle A moves to the place a, and the particle B moves to the place b. 

The ring is then held fixed, a force F is applied to the disk, and a voltage Φ  is applied between 

the electrodes.  In response to the applied load, the disk moves relative to the ring by a distance 

u, an amount of charge Q flows from one electrode to the other, and the particle R moves to a 

place with coordinates ( )Rr  and ( )Rz . 
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Fig.2 Deformed shapes of the membrane when the actuator is subject to a fixed force and 

several levels of voltage.  
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Fig.3 The distributions of stretches in the membrane. 
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Fig.4 The distributions of true stresses in membrane. 
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Fig.5 The distributions of true electric field in the membrane. 
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Fig. 6 The distributions of Hessian in the membrane 
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Fig.7 The relation between the applied voltage and the displacement of the disk. 
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Fig.8 The relation between the applied voltage and the amount of electric charge on either 

electrode. 
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Fig.9 The actuator may be regarded as a thermodynamic system of two degrees of freedom, 

characterized by the generalized coordinates:  the displacement of the disk, and the charge 

induced on either electrode.  Their respective work-conjugate generalized forces are the 

mechanical force applied to the disk, and the electric voltage applied across the membrane.  A 

point on the plane spanned by the two generalized coordinates represents a state of the actuator.    

A curve in the plane represents a path of actuation.  Plotted in the plane are curves of constant 

applied force and curves of constant applied voltage.  
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Fig.10 The relations of the applied voltages versus the ratio 0u u under several different 

a A and b B  
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Fig.11 The distributions of true electric field in the membrane when 1.1a A = and 1.8b B =  


