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a b s t r a c t

All classical boundary conditions including two distinct types of simple support boundary conditions

are formulated by using the Rayleigh quotient variational principle for rectangular plates undergoing in-

plane free vibrations. The direct separation of variables is employed to obtain the exact solutions for all

possible cases. It is shown that the exact solutions of natural frequencies and mode shapes can be

obtained when at least two opposite plate edges have either type of the simply-supported conditions,

and some of the exact solutions were not available before. The present results agree well with FEM

results, which show that the present solutions are correct and the direct separation of variables is

practical. The exact solutions can be taken as the benchmarks for the validation of approximate

methods.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There is no doubt that transverse vibrations of plates are of
great practical importance, since their natural frequencies are
prone to most of the external excitation, and as such there is an
extensive literature relevant to the free transverse vibrations of
rectangular plates. On the contrary, only a few studies are
dedicated to the free in-plane vibrations (FIV) of plates over the
years, since the natural frequencies involved are much higher and
beyond the level of available excitations. However, it has been
found that the in-plane vibrations can be excited in the structures
such as the hulls of ocean-going ships and the shells of flight
vehicles, etc. Hence it is also important to study the in-plane
vibrations of plates.

A significant contribution to this subject was made by Bardell
et al. [1], who calculated the in-plane vibrational frequencies
using the Rayleigh–Ritz method, and provided a valuable review
of the related literature available up to that time, including the
pioneering work of Lord Rayleigh [2] dealing with what was
referred to as ‘simply-supported’ plates.

Gorman [3] introduced the superposition method as a means
to obtain the analytical-type FIV solutions of rectangular plates
with completely free boundaries, fully clamped boundaries [4]
and elastic supports normal to the boundaries [5]. Du et al. [6]
also analyzed the FIV of rectangular plates with elastically
restrained edges by using an improved Fourier series method, in
which the in-plane displacements are expressed as the super-

position of a double Fourier cosine series and four supplementary
functions. Additionally, Seok et al. [7] performed an FIV analysis of
a cantilevered rectangular plate by using a variational approxima-
tion procedure, wherein the differential equations and traction-
free conditions on two opposite edges are satisfied exactly and the
remaining conditions are satisfied variationally. Singh et al. [8]
investigated the FIV of isotropic non-rectangular plates according
to the variational method, wherein the displacement fields are
represented by much higher order polynomials than the ones
used for the geometric representation. And Woodcock et al. [9]
studied the effects of the ply orientation on in-plane vibrations
based on the Rayleigh–Ritz formulation in conjunction with
Hamilton principle.

It is noteworthy that there have been some exact solutions for
the FIV of plates. Park [10] derived the exact frequency equations
for the FIV of the clamped circular plate by using the separation of
the variables. Gorman [11] obtained the exact solutions for the FIV
of rectangular plates with two opposite edges simply supported,
the other opposite edges being both clamped or both free. In
Gorman’s elegant work, only one quarter of the rectangular plate
was analyzed, and it was shown that by this approach, the
interpretation of the computed mode shapes with mode family
separation becomes a much more manageable task, the prob-
ability of missing an eigenvalue can be greatly reduced, and the
problem of repeated eigenvalues can be avoided.

In present study, the exact solutions for the FIV of rectangular
plates are attempted. There are several apparent differences
between the present work and Gorman’s [11] as follows.

(1) Rayleigh quotient variational principle is employed to derive
the mathematical representations of all possible boundary
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conditions including clamped condition, free condition and
two distinct types of simple support boundary conditions that
are denoted by the symbols SS1 and SS2 [11].

(2) The direct separation of variables is used to solve the
governing equations. By this approach, the exact solutions
can be obtained readily. The solution procedure shows that
the exact solutions are available only when at least two
opposite plate edges are simply supported.

(3) The entire rectangular plate is analyzed directly, and there are
no problems such as the interpretation of the computed mode
shapes, the probability of missing an eigenvalue, and the
repeated eigenvalues.

(4) All possible exact solutions are obtained, including the
solutions for the cases SS1–C–SS1–F and SS1–SS2–SS1–F,
etc., which were not available before.

The paper is organized as follows. In Section 2, the formulations
of all boundary conditions are given by using the Rayleigh
quotient variational principle; then in Section 3 the exact
solutions are obtained through the separation of variables; finally
in Section 4 the numerical experiments are conducted and the
results are compared with those by FEM.

2. Differential equations and boundary conditions

Consider the harmonic normal vibrations of a rectangular
plate as shown in Fig. 1. The maximum strain energy Pmax

and the maximum kinetic energy Tmax can be represented,
respectively, as

Pmax ¼
1

2

ZZ
A

eT Ee dx dy

Tmax ¼ o2T0; T0 ¼
1

2

ZZ
A

rðu2 þ v2Þdx dy (1)

where e and E are the strain vector and elastic matrix,
respectively. By means of Rayleigh quotient variational principle
dPmax ¼ o2dT0, one can obtainZZ

A

@sx

@x
þ
@t
@y
þ ro2u

� �
duþ

@sy

@y
þ
@t
@x
þ ro2v

� �
dv

� �
dx dy

�

Z
G
½ðsxlþ tmÞduþ ðsymþ tlÞdv�ds ¼ 0 (2)

where l ¼ cosðn; xÞ ¼ cosy, and m ¼ cosðn; yÞ ¼ siny, n is the
outer normal direction of the boundary. Due to the necessary
and sufficient conditions of Rayleigh quotient principle, the
governing equations and the homogeneous boundary conditions
can be obtained. The latter are given in Table 1, and the governing

equations are

@sx

@x
þ
@t
@y
þ ro2u ¼ 0

@sy

@y
þ
@t
@x
þ ro2v ¼ 0 (3)

or

@2u

@x2
þ u1

@2u

@y2
þ u2

@2v

@x@y
þ u1

o
c

� �2

u ¼ 0

@2v

@y2
þ u1

@2v

@x2
þ u2

@2u

@x@y
þ u1

o
c

� �2

v ¼ 0 (4)

where u and v are the in-plane displacements in x and y

directions, respectively, c ¼
ffiffiffiffiffiffiffiffiffi
G=r

p
is the shear wave velocity, and

u1 ¼
1� u

2
; u2 ¼

1þ u
2

(5)

By solving Eq. (4), one can obtain the modes and natural
frequencies. Further, it is not difficult to solve Eq. (4) when the
four plate edges are simply supported through the inverse
method.

3. The exact eigensolutions

For the free transverse vibrations of rectangular thin plate, the
authors have obtained the exact results for the cases SSCC, SCCC
and CCCC by means of the direct separation of variables [12]. The
direct separation of variables is employed again to obtain the
exact solutions for the FIV of plates. The separation-of-variable
solution of Eq. (4) can be written as

uðx; yÞ ¼ Aemxely

vðx; yÞ ¼ Bemxely (6)

Substitution of Eq. (6) into Eq. (4) leads to

m2 þ u1l
2
þ u1

o
c

� �
lmu2

lmu2 l2
þ u1m2 þ u1

o
c

� �2

2
664

3
775 A

B

� �
¼

0

0

� �
(7)

The existence of nontrivial solutions of A and B requires that

ðl2
þ m2Þ

2
þ

3� u
2

o
c

� �2

ðl2
þ m2Þ þ u1

o
c

� �4

¼ 0 (8)

or

l2
þ m2 þ

o
c

� �2
� �

l2
þ m2 þ u1

o
c

� �2
� �

¼ 0 (9)

From Eq. (9), one can have

m1;3 ¼ �iO; m2;4 ¼ �iL (10)

l1;3 ¼ �iT ; l2;4 ¼ �iZ (11)

where

O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
þ

o
c

� �2
r

; L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
þ u1

o
c

� �2
r

(12)
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Fig. 1. Plate and coordinates.

Table 1
The classic boundary conditions of rectangular plate.

B.C. x ¼ 0 or a y ¼ 0 or b

Clamped (C) u ¼ v ¼ 0 u ¼ v ¼ 0

Free (F) sx ¼ 0, t ¼ 0 sy ¼ 0, t ¼ 0

Simply supported u ¼ 0, t ¼ 0 (SS2) u ¼ 0, sy ¼ 0 (SS1)

v ¼ 0, sx ¼ 0 (SS1) v ¼ 0, t ¼ 0 (SS2)
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T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

o
c

� �2
r

; Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ u1

o
c

� �2
r

(13)

Therefore, the solutions of Eq. (4) can be written as

uðx; yÞ ¼ f1ðxÞf2ðyÞ

vðx; yÞ ¼ c1ðxÞc2ðyÞ (14)

where

f1ðxÞ ¼ A1 cosOxþ A2 sinOxþ A3 cosLxþ A4 sinLx

c1ðxÞ ¼ C1 cosOxþ C2 sinOxþ C3 cosLxþ C4 sinLx

f2ðyÞ ¼ B1 cos Tyþ B2 sin Tyþ B3 cos Zyþ B4 sin Zy

c2ðyÞ ¼ D1 cos Tyþ D2 sin Tyþ D3 cos Zyþ D4 sin Zy (15)

By substituting Eq. (14) into Eq. (4), one can find that the solutions
are meaningless except for the following forms:

uðx; yÞ ¼ f1ðxÞe
ly

vðx; yÞ ¼ c1ðxÞe
ly or

uðx; yÞ ¼ f2ðyÞe
mx

vðx; yÞ ¼ c2ðyÞe
mx (16a,b)

It is shown below that Eqs. (16) can be satisfied only when at least
two opposite plate edges are simply supported. The relations of
f1(x) and c1(x) should be determined prior to the derivation of
the exact solutions, which can be obtained by inserting Eq. (16a)
into Eq. (4) as

C2 ¼
O
l A1 ¼ k1A1

C1 ¼ �
O
l A2 ¼ �k1A2

)
where

k1 ¼
O
l

l2
¼ O2

� o
c

	 
2 (17)

C4 ¼
l
L A3 ¼ k2A3

C3 ¼ �
l
L A4 ¼ �k2A4

)
where

k2 ¼
l
L

l2
¼ L2

� u1
o
c

	 
2 (18)

Then the f1(x) and c1(x) in Eq. (15) can be rewritten as

f1ðxÞ ¼ A1 cosOxþ A2 sinOxþ A3 cosLxþ A4 sinLx

c1ðxÞ ¼ �A2k1 cosOxþ A1k1 sinOx� A4k2 cosLxþ A3k2 sinLx(19)

Similarly, one can obtain the relations of f2(x) and c2(x). It follows
from Eq. (19) that, if f1(x) is a sine function, c1(x) must be a
cosine function, and vice versa. Therefore, Eqs. (16) can only be
satisfied when at least two opposite plate edges are simply
supported. This paper assumes the opposite plate edges x ¼ 0 and
a to be simply supported, i.e., Eq. (16b) will be used below.

3.1. The eigensolutions for the simply-supported edges x ¼ 0 and a

There are four combinations of the simply-supported condi-
tions for the edges x ¼ 0 and a, as given in Table 2. The case
SS2–SS2 is solved here for the eigenfunctions and eigenvalue
equations. The SS2 conditions are

u ¼ 0; t ¼ G
@u

@y
þ
@v

@x

� �
¼ G

@v

@x
¼ 0 (20)

or

f1ð0Þ ¼ f1ðaÞ ¼ 0

c01ð0Þ ¼ c01ðaÞ ¼ 0 (21)

Substituting Eq. (19) into Eq. (21), one can obtain A1 ¼ A3 ¼ 0, and

sinO a sinLa

k1O sinOa k2L sinLa

" #
A2

A4

" #
¼

0

0

� �
(22)

Then the eigenvalue equation is

ðk2L� k1OÞsinOa sinLa ¼ 0 (23)

Since sinOa ¼ 0 and sinLa ¼ 0 are equivalent, here only sin
Oa ¼ 0 is considered, and A4 ¼ 0 from Eq. (22). Thus the normal
eigenfunctions in Eq. (19) can be obtained as

f1ðxÞ ¼ sinOx

c1ðxÞ ¼ �k1 cosOx (24)

As the eigenfunctions f1(x) and c1(x) are the factors of modes,
which are used below to derive the eigenfunctions f2(y) and
c2(y), Eq. (24) can be rewritten as

f1ðxÞ ¼ sinOx

c1ðxÞ ¼ cosOx (25)

All possible eigenfunctions and eigenvalue equations for the
simply-supported edges x ¼ 0 and a can be solved in the same
way. These eigensolutions are listed in Table 2 from which one can
see that, although there are four combinations of SS1 and SS2,
there are only two distinct types of eigenfunctions and eigenvalue
equations.

3.2. The eigenfunctions for arbitrary opposite edges y ¼ 0 and b

Based on f1(x) and c1(x) obtained by using the simply-
supported conditions of the edges x ¼ 0 and a, the eigenfunctions
f2(y), c2(y) and corresponding eigenvalue equations can be
derived by using the boundary conditions of the other opposite
edges y ¼ 0 and b. Assume that the in-plane natural mode of the
plate are given in separation of variables form as

uðx; yÞ ¼ f2ðyÞf1ðxÞ

vðx; yÞ ¼ c2ðyÞc1ðxÞ (26)

where f1(x) and c1(x) are given in Table 2. Let m ¼ iO, and
substitute it into Eq. (13) to obtain

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
c

� �2

�O2

r

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1

o
c

� �2

�O2

r
(27)

which show that T and Z may be real or pure imaginary. And there
are three cases as follows.

Case 1: u1ðo=cÞ2XO2. The eigenvalues T and Z are real from
Eq. (27). Thus the eigenfunctions in Eq. (15) can be used directly,
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Table 2
The four combination of SS1 and SS2 for the edges x ¼ 0 and a and eigensolutions.

Eigenvalue equations Eigenfunctions

SS2–SS2 sinOa ¼ 0 f1(x) ¼ sinOx, c1(x) ¼ cosOx

SS1–SS1 sinOa ¼ 0 f1(x) ¼ cosOx, c1(x) ¼ sinOx

SS2–SS1 cosOa ¼ 0 f1(x) ¼ sinOx, c1(x) ¼ cosOx

SS1–SS2 cosOa ¼ 0 f1(x) ¼ cosOx, c1(x) ¼ sinOx

Table 3

The coefficient relations of the functions f2(y) and c2(y).

f1ðxÞ ¼ sinO x

c1ðxÞ ¼ cosO x

f1ðxÞ ¼ cosO x

c1ðxÞ ¼ sinO x

Case 1 B1 ¼ �k3D2 ;B2 ¼ k3D1

B3 ¼ k4D4;B4 ¼ �k4D3

B1 ¼ k3D2;B2 ¼ �k3D1

B3 ¼ �k4D4;B4 ¼ k4D3

Case 2 B1 ¼ �k3D2 ;B2 ¼ k3D1

B3 ¼ �k4D4 ;B4 ¼ �k4D3

B1 ¼ k3D2;B2 ¼ �k3D1

B3 ¼ k4D4;B4 ¼ k4D3

Case 3 B1 ¼ �k3D2;B2 ¼ �k3D1

B3 ¼ �k4D4;B4 ¼ �k4D3

B1 ¼ k3D2 ;B2 ¼ k3D1

B3 ¼ k4D4 ;B4 ¼ k4D3

Y.F. Xing, B. Liu / International Journal of Mechanical Sciences 51 (2009) 246–255248
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given by

f2ðyÞ ¼ B1 cos Tyþ B2 sin Tyþ B3 cos Zyþ B4 sin Zy

c2ðyÞ ¼ D1 cos Tyþ D2 sin Tyþ D3 cos Zyþ D4 sin Zy (28)

Case 2: ðo=cÞ2XO24u1ðo=cÞ2. The eigenvalue T is real, and Z is
pure imaginary, from Eq. (27). For simplicity, the eigenvalue Z is
changed from imaginary to real, as

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
c

� �2

�O2

r

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u1

o
c

� �2

þO2

r
(29)

and the eigenfunctions in Eq. (15) should be modified accordingly
as

f2ðyÞ ¼ B1 cos Tyþ B2 sin Tyþ B3 cosh Zyþ B4 sinh Zy

c2ðyÞ ¼ D1 cos Tyþ D2 sin Tyþ D3 cosh Zyþ D4 sinh Zy (30)

Case 3: ðo=cÞ2oO2. Both T and Z are pure imaginary values, and
they can also be changed to be real as

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
�

o
c

� �2
r

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2
� u1

o
c

� �2
r

(31)

The corresponding eigenfunctions in Eq. (15) are rewritten as

f2ðyÞ ¼ B1 cosh Tyþ B2 sinh Tyþ B3 cosh Zyþ B4 sinh Zy

c2ðyÞ ¼ D1 cosh Tyþ D2 sinh Tyþ D3 cosh Zyþ D4 sinh Zy (32)

To substitute Eqs. (28), (30) and (32) into Eq. (4), the coeffi-
cient relations of f2(y) and c2(y) can be determined for the
above three cases that are given in Table 3, in which k3 ¼ T/O,
k4 ¼ O/Z.

4. The eigenvalue equations and numerical results

The eigenvalue O and the corresponding eigenfunctions
f1(x) and c1(x) for the simply-supported edges x ¼ 0 and a are
given in Table 2. And the eigenfunctions for another two edges
y ¼ 0 and b have also been derived for all three cases, see
Eqs. (28), (30) and (32) and Table 3. The remaining problems
are to derive the eigenvalue equations corresponding to the
opposite edges y ¼ 0 and b according to the relevant boundary
conditions, and then to solve for the natural frequencies by using
Eqs. (27), (29) and (31).

Consider a rectangular plate with in-plane dimension a� b ¼ 1
m�1.2 m, the volume density r ¼ 2800 kg/m3, Young’s modulus
E ¼ 72�109 Pa, and Poisson’s ratio u ¼ 0.3. The calculated
frequencies are given in dimensionless frequency parameter
b ¼ oa/pc, and the frequencies by FEM are denoted by b*. Except
the results for the simplest cases with four simply-supported
edges, all frequencies and mode shapes are compared with those
by FEM, which are obtained by MSC/NASTRAN with the mesh
100�120 and using membrane elements.

ARTICLE IN PRESS

Table 6

The frequency parameter b and the values of m, n and i.

x ¼ 0, a SS1–SS1 SS2–SS2

y ¼ 0, b SS1–SS1 SS2–SS2 SS2–SS2 SS1–SS1

1 0.8333 (m,n) ¼ (0,1) 0.8333 (m,n) ¼ (0,1) 1.3017 (m,n) ¼ (1,1) 1.0000 (m,n) ¼ (1,0)

2 1.0000 (m,n) ¼ (1,0) 1.3017 (m,n) ¼ (1,1) 1.4086 (m,i) ¼ (0,1) 1.3017 (m,n) ¼ (1,1)

3 1.3017 (m,n) ¼ (1,1) 1.6667 (m,n) ¼ (0,2) 1.6903 (m,i) ¼ (1,0) 1.4086 (m,i) ¼ (0,1)

4 1.6667 (m,n) ¼ (0,2) 1.6903 (m,i) ¼ (1,0) 1.9437 (m,n) ¼ (1,2) 1.9437 (m,n) ¼ (1,2)

5 1.9437 (m,n) ¼ (1,2) 1.9437 (m,n) ¼ (1,2) 2.1667 (m,n) ¼ (2,1) 2.0000 (m,n) ¼ (2,0)

6 2.0000 (m,n) ¼ (2,0) 2.1667 (m,n) ¼ (2,1) 2.2003 (m,i) ¼ (1,1) 2.1667 (m,n) ¼ (2,1)

7 2.1667 (m,n) ¼ (2,1) 2.2003 (m,i) ¼ (1,1) 2.6034 (m,n) ¼ (2,2) 2.2003 (m,i) ¼ (1,1)

8 2.2003 (m,i) ¼ (1,1) 2.5000 (m,n) ¼ (0,3) 2.6926 (m,n) ¼ (1,3) 2.6034 (m,n) ¼ (2,2)

9 2.5000 (m,n) ¼ (0,3) 2.6034 (m,n) ¼ (2,2) 2.8172 (m,i) ¼ (0,2) 2.6926 (m,n) ¼ (1,3)

10 2.6034 (m,n) ¼ (2,2) 2.6926 (m,n) ¼ (1,3) 3.1136 (m,n) ¼ (3,1) 2.8172 (m,i) ¼ (0,2)

T ¼ 0, yes T ¼ 0, no T ¼ 0, no T ¼ 0, yes

Z ¼ 0, no Z ¼ 0, yes Z ¼ 0, yes Z ¼ 0, no

O ¼ 0, Tb ¼ np, yes O ¼ 0, Tb ¼ np, yes O ¼ 0, Tb ¼ np, no O ¼ 0, Tb ¼ np, no

O ¼ 0, Zb ¼ ip, no O ¼ 0, Zb ¼ ip, no O ¼ 0, Zb ¼ ip, yes O ¼ 0, Zb ¼ ip, yes

Table 5
The four combinations of eigenvalue equations.

1 2 3 4

sinOa ¼ 0

sin Tb sin Zb ¼ 0

sinOa ¼ 0

cos Tb cos Zb ¼ 0

cosOa ¼ 0

sin Tb sin Zb ¼ 0

cosOa ¼ 0

cos Tb cos Zb ¼ 0

Table 4
The eigensolutions for simply-supported edges y ¼ 0 and b.

Eigenvalue equations Eigenfunctions

SS2–SS2 sinTb ¼ 0 f2ðyÞ ¼ �k3 cos Ty; c2ðyÞ ¼ sin Ty

sin Zb ¼ 0 f2ðyÞ ¼ k4 cos Zy; c2ðyÞ ¼ sin Zy

SS1–SS1 sinTb ¼ 0 f2ðyÞ ¼ k3 sin Ty; c2ðyÞ ¼ cos Ty

sin Zb ¼ 0 f2ðyÞ ¼ �k4 sin Zy; c2ðyÞ ¼ cos Zy

SS2–SS1 cos Tb ¼ 0 f2ðyÞ ¼ �k3 cos Ty; c2ðyÞ ¼ sin Ty

cos Zb ¼ 0 f2ðyÞ ¼ k4 cos Zy; c2ðyÞ ¼ sin Zy

SS1–SS2 cos Tb ¼ 0 f2ðyÞ ¼ k3 sin Ty; c2ðyÞ ¼ cos Ty

cos Zb ¼ 0 f2ðyÞ ¼ �k4 sin Zy; c2ðyÞ ¼ cos Zy

Y.F. Xing, B. Liu / International Journal of Mechanical Sciences 51 (2009) 246–255 249
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4.1. The edges y ¼ 0 and b are simply supported

For the simply-supported opposite edges y ¼ 0 and b, all
possible eigensolutions can be obtained readily by using Eqs. (28),
(30) and (32) and boundary conditions, which are given in Table 4.
It follows from Tables 2 and 4 that there are many different
combinations of SS1 and SS2, which is a significant difference
from the free out-of-plane vibrations of plate when the four edges
are simply supported.

For the rectangular plate with four simply-supported edges,
the frequencies are available only for Cases 1 and 2, and the Case 2

is involved in Case 1. It is noteworthy that the Case 3 is available
only for the plate with at least one free edge. Using the obtained
eigenvalues O, T and Z from the eigenvalue equations, the
frequencies can be calculated from Eq. (27) as

omn ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

n þO2
m

q

omi ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

i þO2
m

u1

s
(33)

and omnaomi for any positive integers n and i. There are no rigid
body modes, and hence the eigenvalues T and O cannot be zero
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Table 7
The eigenvalue equations when the edges y ¼ 0 and b are arbitrary.

Case 1

C–C F–F
1� cos Tb cos Zb

sin Tb sin Zb
¼ �

1

2

k3

k4
þ

k4

k3

� �
1� cos Tb cos Zb

sin Tb sin Zb
¼

1

2

a1

a2
þ
a2

a1

� �

SS2–C SS1–C
k3 tan Zb ¼ �k4 tan Tb k3 tan Tb ¼ �k4 tan Zb

SS2–F SS1–F
a1 tan Tb ¼ a2 tan Zb a2 tan Tb ¼ a1 tan Zb

C–F

a1
k3

k4
� a2

� �
cos Tb cos Zbþ a2

k3

k4
� a1

� �
sin Tb sin Zb ¼ a1a2 �

k3

k4

Case 2

C–C F–F

1� cos Tb cosh Zb

sin Tb sinh Zb
¼

k2
3 � k2

4

2k3k4

1� cos Tb cosh Zb

sin Tb sinh Zb
¼

1

2

a3

a1
�
a1

a3

� �

SS2–C SS1–C
k3 tanh Zb ¼ k4 tan Tb k3 tan Tb ¼ �k4 tanh Zb

SS2–F SS1–F
a1 tan Tb ¼ a3 tanh Zb a3 tan Tb ¼ �a1 tanh Zb

C–F

a1
k3

k4
þ a3

� �
cos Tb cosh Zbþ a3

k3

k4
� a1

� �
sin Tb sinh Zb ¼ �a3a1 �

k3

k4

Case 3

F–F
1� cosh Tb cosh Zb

sinh Tb sinh Zb
¼ �

1

2

a3

a4
þ
a4

a3

� �

SS2–F SS1–F
a4 tanh Tb ¼ a3 tanh Zb a3 tanh Tb ¼ a4 tanh Zb

C–F

a4
k3

k4
þ a3

� �
cosh Tb cosh Zb� a3

k3

k4
þ a4

� �
sinh Tb sinh Zb ¼ �a3a4 �

k3

k4

Fig. 2. Mode shapes of plate with four simply-supported edges, b ¼ 1.3017. (a) SS1–SS1–SS1–SS1, (b) SS1–SS2–SS1–SS2, (c) SS2–SS2–SS2–SS2 and (d) SS2-SS1-SS2-SS1.

Y.F. Xing, B. Liu / International Journal of Mechanical Sciences 51 (2009) 246–255250



Author's personal copy

simultaneously, as also Z and O. There are four combinations, as
shown in Table 5, for the eigenvalue equations in Tables 2 and 4.
Here only the first combination (the first column of Table 5) is
discussed for the analysis of frequency properties. For this
combination, Eq. (33) can be written as

omn ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnp=bÞ2 þ ðmp=aÞ2

q

omi ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðip=bÞ2 þ ðmp=aÞ2

u1

s
(34)

It can be seen from Tables 2 and 4 that the same frequencies can
be calculated from Eq. (34) for the four combinations
SS2–SS2–SS2–SS2, SS2–SS1–SS2–SS1, SS1–SS2–SS1–SS2 and
SS1–SS1–SS1–SS1. The first 10 frequencies are given in Table 6
from which it follows that, if O, T and Z are not equal to zero, there
are four repeated frequencies; if one of O and T or one of O and Z

equals zero, the boundary conditions should be checked, and
there are two repeated frequencies. For the case
SS1–SS1–SS1–SS1, T can be zero, but not Z; and if O ¼ 0, Tb ¼ np
is the root, but not Zb ¼ ip. Similar analysis can be performed for
the other three combinations.

The mode shapes are drawn in Fig. 2 for b ¼ 1.3017, which
corresponds to the four repeated frequency.

4.2. The edges y ¼ 0 and b are arbitrary

According to the coefficient relations in Table 3 and Eqs. (28),
(30) and (32), one can derive the eigenfunctions f2(y), c2(y) and
the corresponding eigenvalue equations by means of the arbitrary
boundary conditions of the edges y ¼ 0 and b. But only for the
seven cases C–C, F–F, SS1–C, SS2–C, SS1–F, SS2–F and C–F, the
eigenvalue equations and the coefficient relations of eigenfunc-
tions are derived here, which are given in Table 7 and Table A1,
respectively.

The simply-supported and clamped boundary conditions are
separable, but the free boundary conditions are not separable for
FIV of plate, as is the case for the free transverse vibrations. For the
sake of brevity, only the case F–F is considered below. The free
boundary conditions are

t ¼ 0)
@u

@y
þ
@v

@x
¼ 0) f1f

0

2 þc01c2 ¼ 0

sy ¼ 0) u @u

@x
þ
@v

@y
¼ 0) uf01f2 þ c1c

0

2 ¼ 0 (35)
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Table 10

The frequency parameters b for the case y ¼ 0 is clamped, and y ¼ b is free (C–F).

1(1) 2(1) 3(3) 4(1) 5(2) 6(3) 7(1) 8(1) 9(1) 10(1)

Oa/p 0 0 1 0 1 2 1 1 0 0

Tb/p 0.5 0.8452 0.0922 1.5 1.4834 0.9439 2.1463 2.1863 2.5 2.5355

Zb/p 0.2958 0.5 0.9690 0.8874 0.4073 2.0139 0.8224 0.8585 1.4790 1.5

b 0.4167 0.7043 0.9970 1.2500 1.5900 1.8388 2.0492 2.0783 2.0833 2.1129

b* 0.4167 0.7043 0.9972 1.2502 1.5902 1.8395 2.0494 2.0786 2.0838 2.1130

x ¼ 0,a SS1–SS1 SS2–SS2 Both SS1–SS1 Both Both Both Both SS1–SS1 SS2–SS2

Table 11

The frequency parameters b for the case SS1–C–SS2–F.

1(2) 2(1) 3(3) 4(1) 5(1) 6(2) 7(3) 8(1) 9(1) 10(1)

Oa/p 0.5 0.5 1.5 0.5 0.5 1.5 2.5 0.5 1.5 1.5

Tb/p 0.6480 0.9022 0.6551 1.7291 2.2735 1.6587 1.1973 2.8317 2.4979 2.5942

Zb/p 0.2950 0.2256 1.5021 0.9014 1.2550 1.0691 2.5203 1.6039 0.2790 0.4994

b 0.7359 0.9029 1.3971 1.5252 1.9594 2.0398 2.2923 2.4121 2.5657 2.6312

b* 0.7360 0.9029 1.3975 1.5254 1.9597 2.0401 2.2933 2.4124 2.5662 2.6315

Table 9

The frequency parameters b for the case y ¼ 0 and b are free (F–F).

1(3) 2(1) 3(2) 4(1) 5(1) 6(1) 7(1) 8(3) 9(3) 10(1)

Oa/p 1 0 1 0 0 1 1 2 2 1

Tb/p 0.7242 1 0.9493 1.6903 2 1.6917 1.7380 1.0946 0.6518 2.6453

Zb/p 1.0581 0.5916 0.7878 1 1.1832 0.2563 0.4482 2.0404 1.9730 1.2301

b 0.7974 0.8333 1.2751 1.4086 1.6667 1.7284 1.7600 1.7799 1.9248 2.4206

b* 0.7974 0.8334 1.2752 1.4087 1.6669 1.7285 1.7602 1.7803 1.9252 2.4208

x ¼ 0,a Both SS1–SS1 Both SS2–SS2 SS1–SS1 Both Both Both Both Both

Table 8

The frequency parameters b for the case y ¼ 0 and b are clamped (C–C).

1(1) 2(1) 3(2) 4(1) 5(1) 6(2) 7(1) 8(1) 9(1) 10(2)

Oa/p 0 0 1 0 1 2 1 0 1 2

Tb/p 1 1.6903 1.4063 2 1.7737 1.2350 2.6068 3 2.8455 2.3126

Zb/p 0.5916 1 0.4938 1.1832 0.4063 1.7917 1.2010 1.7748 1.3776 1.3863

b 0.8333 1.4086 1.5406 1.6667 1.7846 2.2493 2.3915 2.5000 2.5735 2.7774

b* 0.8334 1.4087 1.5406 1.6668 1.7847 2.2496 2.3917 2.5007 2.5739 2.7779

x ¼ 0,a SS1–SS1 SS2–SS2 Both SS1–SS1 Both Both Both SS1–SS1 Both Both
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There are two distinct types of eigenfunctions for the simply-
supported edges x ¼ 0 and a as given in Table 2, which are

f1ðxÞ ¼ sinOx

c1ðxÞ ¼ cosOx
and

f1ðxÞ ¼ cosOx

c1ðxÞ ¼ sinOx
(36a,b)

for which the signs of the coefficients of f2 and c2 are opposite.
This means that the sign of the second column in Table 3 is
opposite to that of the third column for three cases. Thus, the
substitution of Eq. (36a) or Eq. (36b) into Eq. (35) leads to the
same result, as

f02 þOc2 ¼ 0

uOf2 �c02 ¼ 0 (37)

Then one has

f02ð0Þ þOc2ð0Þ ¼ 0

uOf2ð0Þ �c02ð0Þ ¼ 0
;
f02ðbÞ þOc2ðbÞ ¼ 0

uOf2ðbÞ � c02ðbÞ ¼ 0
(38a,b)

By solving Eqs. (38), one can obtain the eigenvalue equations as
shown in Table 7, and the eigenfunction coefficients as shown in
Table A1. The parameters ai(i ¼ 1,2,3,4) in these two tables are
given by

a1 ¼
k3T �O
k4Z þO

¼
T2
�O2

2O2
; a2 ¼

k3Ou� T

k4Ouþ Z
¼ �

ZTð1� uÞ
O2uþ Z2

a3 ¼
k3Ou� T

Z � k4Ou
¼

ZTðu� 1Þ

Z2
�O2u

; a4 ¼ �
k3T þO
k4Z þO

¼ �
T2
þO2

2O2
(39)
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Fig. 4. Mode shapes of plate with both free edges y ¼ 0 and b (F–F). (a) SS1–F–SS1–F, (b) SS2–F–SS2-F, (c) SS1–F–SS1–F and (d) SS2–F–SS2–F.

Fig. 3. Mode shapes of plate with both clamped edges y ¼ 0 and b (C–C). (a) SS1–C–SS1–C, (b) SS2–C–SS2–C, (c) SS1–C–SS1–C and (d) SS2–C–SS2–C.
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The numerical results and comparisons are presented in Tables
8–11, wherein the numbers in parentheses (*) of the first rows
indicate that the frequencies are computed from the eigenvalue
equation of Case*, see Table 7. The ‘both’ in Tables 8–10 means
that the two cases SS1–SS1 and SS2–SS2 (for x ¼ 0 and a) have the
same frequencies. The boundary conditions for the edges x ¼ 0
and a are SS1–SS2 in Table 11. The mode shapes are shown and
compared with those by FEM in Figs. 3–6.

There are several points pertaining to the numerical results as
follows.

(1) The computed frequencies and mode shapes agree with those
by FEM, see Tables 8–11 and Figs. 3–6.

(2) For the cases when the edges y ¼ 0 and b are C–C, F–F and C–F,
the eigenvalues T and Z cannot be zero, but O can be zero, see
Tables 8–10. If O ¼ 0, Tb ¼ np/2 (n ¼ 1,2,3,y) correspond to
SS1–SS1 (for x ¼ 0 and a), but Zb ¼ ip/2 (i ¼ 1,2,3,y)
correspond to SS2–SS2 (for x ¼ 0 and a).

(3) If the edges x ¼ 0 and a are SS2–SS1 or SS1–SS2 corresponding
to the eigenvalue equation cosO a ¼ 0, O, T and Z cannot be
zeros, and there are no repeated frequencies, see Table 11.

ARTICLE IN PRESS

Fig. 6. Mode shapes of plate with SS1–C–SS2–F.

Fig. 5. Mode shapes of plate with clamped edge (y ¼ 0) and free edge (y ¼ b) (C–F). (a) SS1–C–SS1–F, (b) SS2–C–SS2–F, (c) SS1–C–SS1–F and (d) SS2–C–SS2–F.
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5. Conclusions

All possible exact solutions for the free in-plane vibrations of
rectangular plate have been derived by using the direct separation
of variables for the first time. The exact solutions for the cases in
which two opposite edges are simply supported and the other two
opposite edges are asymmetrical such as SS1–C–SS1–F, etc. were
not available before.

One can see from present work that the method of direct
separation of variables is powerful. The present work provides
further insight into the overall subject of the free in-plane
vibrations of rectangular plate.
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Appendix A

See Table A1 for details.
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Table A1

The coefficients of the eigenfunctions f2(y) and c2(y).

Case 1

C–C F–F

D3 ¼ �D1 ;D4 ¼
k3

k4
D2 ;D2 ¼ �f 1D1

D3 ¼ D1a1 ;D4 ¼ D2a2 ;D2 ¼ �D1f 3

f 1 ¼
k4ðcos Tb� cos ZbÞ

k4 sin Tbþ k3 sin Zb
f 3 ¼

a1ðcos Tb� cos ZbÞ

a1 sin Tb� a2 sin Zb

SS2–C SS1–C

D1 ¼ D3 ¼ 0;D4 ¼ �D2
sin Tb

sin Zb
D2 ¼ D4 ¼ 0;D3 ¼ �D1

cos Tb

cos Zb

SS2–F SS1–F

D1 ¼ D3 ¼ 0;D4 ¼ D2a1
sin Tb

sin Zb
D2 ¼ D4 ¼ 0;D3 ¼ D1a1

cos Tb

cos Zb

C–F

D3 ¼ �D1 ;D4 ¼
k3

k4
D2 ;D2 ¼ D1f 6 ; f 6 ¼

a1 cos Tbþ cos Zb

�a1 sin Tbþ k3
k4

sin Zb

Case 2

C–C F–F

D3 ¼ �D1 ;D4 ¼ �
k3

k4
D2 ;D2 ¼ �f 2D1

D3 ¼ D1a1 ;D4 ¼ D2a3 ;D2 ¼ �D1f 4

f 2 ¼
k4ðcos Tb� cosh ZbÞ

k4 sin Tb� k3 sinh Zb
f 4 ¼

a1ðcos Tb� cosh ZbÞ

a1 sin Tb� a3 sinh Zb

SS2–C SS1–C

D1 ¼ D3 ¼ 0;D4 ¼ �D2
sin Tb

sinh Zb
D2 ¼ D4 ¼ 0;D3 ¼ �D1

cos Tb

cosh Zb

SS2–F SS1–F

D1 ¼ D3 ¼ 0;D4 ¼ D2a1
sin Tb

sinh Zb
D2 ¼ D4 ¼ 0;D3 ¼ D1a1

cos Tb

cosh Zb

C–F

D3 ¼ �D1 ;D4 ¼ �
k3

k4
D2 ;D2 ¼ �D1f 7 ; f 7 ¼

a1 cos Tbþ cosh Zb

a1 sin Tbþ ðk3=k4Þsinh Zb

Case3

F–F C–F
D3 ¼ D1a4 ;D4 ¼ D2a3 ;D2 ¼ �f 5D1 D3 ¼ �D1 ;D4 ¼ �

k3

k4
D2 ;D2 ¼ �D1f 8

f 5 ¼
a4ðcosh Tb� cosh ZbÞ

a4 sinh Tb� a3 sinh Zb
f 8 ¼

a4 cosh Tbþ cosh Zb

a4 sinh Tbþ k3

k4
sinh Zb

SS2–F SS1–F

D1 ¼ D3 ¼ 0;D4 ¼ D2a4
sinh Tb

sinh Zb
D2 ¼ D4 ¼ 0;D3 ¼ D1a4

cosh Tb

cosh Zb
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