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Abst rac t -A mathematical model for the rate of growth of microvoids under mean tensile stress 
in dynamic processes is developed, which represents an extension of previous analysis of duc- 
tile void growth rates using the hollow sphere model. A viscoplastic material is assumed for which 
the isotropic hardening saturates as the strain progresses. The microvoid growth model is used 
as an internal damage variable in Perzyna's elasto-viscoplastic constitutive theory for solids ex- 
periencing ductile modes of material damage. Several features of the void growth model are 
illustrated for a copper material, having been taken from our application of the viscoplastic- 
damage constitutive theory to model shock-induced high strain-rate deformation and spall frac- 
ture in polycrystalline solids. 

I. INTRODUCTION 

In several recent papers (EFTIS et al. [1991]; Nvm~s et al. [1989 a,b,c]), a modified form 
of the viscoplastic-damage constitutive theory developed by PERZWrA [1986] has been 
used to model high strain-rate behavior and shock-wave induced spall fracture. The orig- 
inal constitutive model assumed linear isotropic hardening, which had to be replaced by 
a more realistic nonlinear hardening rule, one that saturates as the strain progresses. As 
a consequence of this modification the equations that serve to describe evolution of ma- 
terial damage, that is, the rate of void growth of the microvoid volume fraction, had 
to be rederived. Since the rederivation entails considerable calculation, only the final re- 
sults of this analysis are shown in the references cited above. 

This paper describes in detail the development of an approximate analytical expres- 
sion for the rate of growth of microvoids embedded in a rate-dependent plastic mate- 
rial that admits nonlinear hardening. A material model of this kind would be appropriate 
for polycrystalline solids that experience ductile modes of degradation and fracture. The 
development of the mathematical model for the void growth shown here draws upon 
and extends the earlier work of CARROL ~ HOLT [1972], Jom~sor~ [1981], and PERZY~rA 
[1986], which make effective use of the thick hollow sphere model to develop constitu- 
tive models that describe the mechanical behavior of solid materials having porosity. 

In describing mechanical behavior of polycrystalline materials for ordinary engineering 
applications, the presence of microvoids within the polycrystalline structure is not sig- 
nificant and is justifiably ignored. However in circumstances where material degrada~ 
tion occurs, either because of high intensity shock loading or because of advanced 
deformation, the porosity of the material structure becomes an important factor in at- 
tempting to describe the response of the material. Microvoids in polycrystalline metals 
can range from 10-2-10 -5 cm, with an average density of the order of 106 per cm 3, and 
an initial void volume fraction between 10-3-10 -4 . In the sequel when referring to 
structural metals as "porous solids," it should be borne in mind that our discussion is 
about materials that have initial porosities that are at least two orders of magnitude 
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Fig. 1. Porous solid subjected to hydrostatic tension with idealized spherical microvoid. 

smaller than the porosities of  materials of  geologic origin, or of  materials encountered 
in powder metallurgy. 

Microvoids in polycrystalline materials have arbitrary size and shape and are randomly 
distributed, thereby allowing the porous solid to be treated as a statistically homogeneous 
material that is isotropic. In the analysis for growth of  microvoids it will be assumed 
that the dilatational contribution to the growth far overshadows any distortional con- 
tribution, so that the void growth can be considered to be entirely spherical. Thermal 
effects will not be considered. 

Such limitations are closely satisfied in spall fractures that are induced by high velocity 
plate impact where, owing to the very high tensile mean stresses ] that  are generated 
by the reflected plane waves, void growth is predominately spherical. Also because of 
the very high strain rates involved (104-106 sec - l )  material deformat ion is virtually 
adiabatic. 

I1. HOLLOW-SPHERE MODEL 

In the process of  developing a model for the porous solid, consider an arbitrarily small 
cubical volume element containing a representative distribution of  voids on the surfaces 
of  which act a uniform tension, (6), equal in all directions (cf. Fig. 1). The internal gas 
pressure within the voids can be ignored. With V as the total volume of  the element, 
Vs and Vv = V -  V~ as the solid and void volume, respectively, 

=--vv Go-<~<l  (1) 
V '  

V 1 
- - a -> C~o > 1 (2) 

v, 1 - ~ '  

IMean stress levels of 1-100 kbars in materials with yield stress at 1-10 kbars. 
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define the void volume fraction and the void distention ratio. The zero subscripts desig- 
nate initial values. Assuming that for a random distribution of void sizes and shapes the 
ratio of solid surface area to total surface area for each face of the volume element 
equals the ratio of the solid volume to the total volume, then it follows from mechani- 
cal equilibrium that 

1 

~ s -  - - # = - ~ #  (3) 
1 - ~  

is the uniform tensile stress acting over the solid portion of each face of the element. 
The hollow sphere model for the porous solid replaces each of the microvoids with 

a spherical microvoid surrounded by a thick spherical shell of solid material having in- 
ner radius (a) and outer radius (b), with a tensile radial stress as = -et6 applied along 
the outer spherical boundary (cf. Fig. 1). Corresponding to the spherical void geome- 
try the void volume fraction and the void distention ratio have the values 

- - -  - ( 4 )  

o/ 

and 

b 3 
ot - b3 _ a 3 .  (5)  

The main drawback of the model resides in the fact that in analyzing a porous solid vol- 
ume element by a single isolated void surrounded by solid material, the effects of void 
interaction and coalescence that would enter into the analysis if the model were to con- 
sider all of the voids simultaneously are not accounted for. However the acceleration 
of void growth because of void interaction and coalescence can be introduced into the 
final expression for the void growth rate in the form of a postulated void interaction 
function (PERzYr~A [1986]). 

The radial loading produces spherically symmetric radial deformation of the solid ma- 
terial enclosing the void such that each point Po(ro, 00, ~0) of the reference configura- 
tion is displaced to the point P(r, O, 4~) of the current deformed configuration whereby 

r = f ( ro ,  t) 

0 = 0 o  (6) 

t~ = t ~ 0  , 

and the func t ionf  is continuous and differentiable. It has been shown that for materi- 
als having small initial porosities (Jon~rso~r [1981]), for example, G0 - 10 -4 - 10 -3, 
changes in the void distention as a result of the elastic and elastic-plastic phases of the 
deformation are very small (compared to the values expected at the latter stages of void 
growth). Consequently, a useful simplification can be introduced. For microvoid growth 
in materials having very small initial porosities, only the full plastic stage of the defor- 
mation around the void need be considered. 
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The condition that inelastic deformation of  the solid spherical shell be isochoric re- 
quires that 

O f )  = rd, (7) 
f 2  ~F0 / 

which leads to the relation 

r 3 = r ~  - B ( t ) ,  (8) 

where B (t)  is an unspecified differentiable function related to the deformation of the 
surrounding material, and thus to the void volume growth. The spherically symmetric 
deformation produces acceleration components ar = ~, ao = % = 0, with zero value for 
the shear stress components of  the Cauchy stress tensor T. The equations of  motion for 
material points surrounding the void reduce to the single equation along the radial 
direction 

0~____5~7". + _2 (T~, - Too) = O,L (9) 
Or r 

where Too = T~¢, os is the density of  the solid material and 

T r r ( a , t )  = 0 

T , , ( b , t )  = - ~ 6  

(lO) 

are the boundary conditions at the spherical surfaces. 

then 

!11. VOID VOLUME GROWTH RATE 

Introducing the acceleration potential ff (r, t ) such that 

o ~  
J; = cg-r' (1 1) 

1 B + 1 B2 (12) 
~ ( r , t )  = 3~ t8r  4 

follows from eqns (11) and (8), and an integration of  the equation of  motion will give 
at each instant t 

f 
0 1 

p s [ ~ b ( b , t )  - ~b(a,t)] = - o ~ ( t ) 6  + 2 - (T,# - Too) dr. 
r 

(13) 
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Furthermore, it follows using relations (5) and (8) that 

b 3 _ a 3  = b o  3 - a 0 3  

B ( t )  = a~ (0/0 - 0/) 
(0/o- -1~ <- o 

B ( t )  (0/0 - 0/) 
a 3 ( 0 / -  1) 

-<0 
(14) 

B ( t )  ao - 0/ 
- -  <- O, 

b 3 0/ 

where the inequalities shown apply only for void growth for which 0 /_  0/o > 1. These 
relations allow representation of the left side of the integrated equation of motion in 
terms of velocity and acceleration of the void distention, 

f b 1 r Q ( & , & , 0 / )  = - a ( t ) #  + 2 - (Trr - -  TOO ) d r  
r 

(15) 

with 

Q(ot ,~ ,0 / )  -- - t ~ [ ( 0 / -  1) -1/3 - o t  -1/3] q- 1 ~ 2 [ ( 0 / _  1)-4/3 _ 0/-4/3] (16) 

and 

7"-- 
3(0/0-  1) 2/3. 

Radial deformation of the spherical shell produces the displacement components 

U r = r - ro = r - [r 3 + B ( t ) ]  1/3 (17) 

Uo = Ue~ = O. 

The corresponding spherical strain components are (small strain approximation) 

Err OUr = 1 - [1 + B ( t ) ] - 2 / 3  

= 0--7 L - ~ - J  

1 [ B ( t ) ]  1/3 
= = - - U r =  1-- 1 + (18) EO0 E~,ep r r3 

E,e = E r ,  = Eo~ = O. 

In their calculations for pore collapse relations using this model CARROL and HOLT 
[1972] assumed rate-independent perfectly plastic material surrounding the void having 
the yield condition 
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[~ ]1/2 1 Y 0 , =  - -  (19) ( j~) l /2  = tr(T' .T') 

in which T' = T - ~ (tr T)I  is the stress deviator and Yo is the rate-independent yield 
stress. Subsequent generalization of the model by JOHNSON [1981] for void growth cal- 
culation introduced rate-dependence for the nonhardening plastic deformation by means 
of the yield condition 

1 
( j ~ ) l / 2  = K(~p ) = ~ (Yo @ ~ P ) ,  

43 
(20) 

where ~P is the equivalent plastic strain rate, ~ is a material microviscosity param- 
eter and ~-P, the equivalent plastic strain, is defined in terms of the octahedral plastic 
strain 3' p 

2 2(Ur aur] 
~p = ~f2,.~p = 3 [(E p _ E p ) 2 ]  1 / 2 =  3 r Or /"  (21) 

The void growth model was further generalized by PERZYNA [1986], whereby 

1 
( j ~ ) l / 2  = K(~-p ~p)  = - -~  (Y0 + Hf:P + f l lP)  • 

43 
(22) 

For reasons that are discussed in the sections that follow, it was found necessary to re- 
place the linear hardening assumption by a nonlinear hardening rule wherein the hard- 
ening increases at a decreasing rate as the strain progresses, that is, it saturates (NEMES 
et al. [1989a]). For this kind of isotropic hardening 

( j~) l /2  = K(~p ,~p)  = q q_ (K 0 - -  q)e-~  p + ~p ,  (23) 

where Ko = (1/ ,~)  Yo and q,/3 are viscoplastic material hardening parameters. With 

1 
( J D  1/2 = - -  ( T , , -  Too), (24) 

the integro-differential eqn (15) for the void distension ratio becomes 

If(  rQ(~,&,~) = - a ( t ) 6  + 2~f3 + - -  (Ko - q) e_~p + ~ dr , 
r 

(25) 

with 

B(t)  ]-2/3 2 B(t)  1 + 
3 r 3 r 3 ] 

(26) 

and 

~P 2 B(t)  
r 9 r 4 

( ( B(t)  ]-5/3 ( B(t)  ]-2/3] 
- -  2 l + - - ~ j  + 1 + - ~ ]  j ,  (27) 
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which follow from (18) and (21). Because of  the smallness of the radial displacement 
at the microscale, the ratio (ro/r) 3 = 1, which multiplies the right side of (27), is not 
shown. 

Making use of (5), (14), and (27), integration of the first and third terms of the in- 
tegrand of (25) gives 

2x/3 - (q + ~ P )  dr = q In + 
r ~ ~ 

where 

& ff(ot,ao), (28) 
a(ct - 1) 

ff(c~,ao) = \ ~ - 1 1  - (c~ - 1) \C~o/-- 7/ = 3 ~/" (29) 

The remaining term of the integrand of (25) has the nonelementary integral form 

fab l e -~P d r =  2 f c21 2~f3(Ko - q) r ~ (do - q) - e -c3ztl+z)-2/3 dz, (30) 
i Z 

where for any fixed value of t 

B( t )  B ( t )  B ( t )  2 
Z - ~  Cl "~" C2 ~- C3 ~ - - :  [~ , f~ > O, 

r 3 ' b 3 '  a 3  ' 3 
(31) 

and - 1  < c 2 < c I < 0. For all points of the open interval (-1,0)  containing the closed 
interval I = [c2,ci] the function f ( z )  = exp[-c3z(1 + z) -2/3] is differentiable and 
therefore continuous, with limit values f(0)  = 1 and f ( -  1) = 0. Furthermore, 

df(z)  _ exp[-c3z(1 + Z) -2/3 ] (1 + Z)-2/3[1 2 z ] > 0  for -1  < z  < 0. 
dz I_ 3 ( l + z )  1 

(32) 

Thus f ( z )  is a monotonically increasing function over the open interval (-1,0) D I. With 
g(z)  = 1/z continuous and bound over I, where g(z) < 0 for all z ~ I, it follows by 
means of  a mean value theorem for integrals (MIrrER [1957]) that 

fcC21e-C3Z(l+z)-2/3dz=e-C3Z°(l+z°)-2/3~C21dz- - = 3 I n ( b ) f ( z o )  (33) 
1 Z L'Cl Z 

for some point Zo E L Since f ( z )  is monotonic it has a greatest lower bound value at 
z = c2 and a least upper bound value at z = cl. Therefore 

3 l n ( b ) f ( c 2 ) -  < 3 1 n ( b ) f ( z o )  < - 3 l n ( b ) f ( c , ) ,  (34) 

and a good approximation for the value of the integral can be represented by the mean 
value of the upper and lower bound values 



282 J. EFTIS and J. A. NEMES 

c2 _1 e_C3Z(l+z)-2/3 dz ~ 2 In [e_C3~2(1+c2) q-e_CSCl( l+cl)  2/3], 

i z 
(35) 

Substituting from (30), (31), (35), and (14) gives 

f f  le_~CPdr 1 _  _ ( o~ ) -  2"~/-3(K0 - q) r - ~  (~0 q)ln ~ Fj (~,o~0), (36) 

where 

The integral results from (28) and (36) transform (25) into the following nonlinear 
second-order differential equation for the microvoid distention 

2 & TQ(6t,&,o~) r//7(ot, ~o) 
- ~  c~(c~ - 1) 

' 
x/3 {2q + (Ko q)Fl(a,Olo)lln = --o~6. (38) 

The first term on the left side is the inertial resistance to void growth, and through ~- 
is proportional to the density of the material surrounding the voids. The second and 
third terms represent the viscous and the nonlinear hardening resistances to the growth 
of microvoids. 

In the limit as the rate of void distention approaches zero, it follows from (38) that 

lim 

(~,&) ~ 0 
1 {2q+  (Ko-q)F~(o~,ao)}ln(--~) =----O~6G, (-~,~) = - ~  (39) 

which represents the threshold hydrostatic tensile stress for void growth, with magnitude 

I,~cl- ~l ,~1 ln (a___~)12q  + (Ko-  q)Fl(a ,~o)} (40) 

The differential equation for the void distention rate therefore becomes 

2 & - o~(6-  fiG). (41) rQ(dt,&,a) -~ rlff(°~'a°) a(a - 1) 

For polycrystalline materials the initial sizes of the microvoids are very small. The pa- 
rameter r, which is proportional to the microvoid dimension a 2 (cf. (16)2), can there- 
fore have very small values, suggesting that the void growth is dominated by viscous 
plastic deformation rather than by inertial effects. This has been demonstrated by JOHN- 
SOr~ [1981], who has shown that the inertial term in (41) can be many orders of  magni- 
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tude smaller than the viscous contribution. Equation (41) can accordingly be simplified 
to the following expression for the microvoid growth rate 

2 & 
viP(°e'°~°) t~(ot - 1) - or(5 - 5G). (42) 

Before applying this expression as part of a macroscopic description of the viscoplastic 
behavior of  a solid that experiences damage in the form of void growth, several modi- 
fications need to be introduced. The uniform hydrostatic stress 5 applied to the surface 
of  a microvolume element with voids is now, from the macroscopic point of  view, to 
be interpreted as the mean stress o = (1/3) tr T at each material point of the porous solid. 
To ensure nonnegative values for the void growth rate, the stress difference at the micro- 
scale, (6 - 5o), is replaced by the absolute value of the stress difference, I o - o l, at 
each material point of  the porous body. It will be recalled that the analysis leading to 
(42), having employed an isolated hollow sphere model, takes no account of the void 
intereaction effects which tend to enhance the void growth rate. This process may be 
simulated by introduction of a positive valued material void interaction function, g ( t) ,  
(PERZYNA [1986]) in the manner shown below. With these modifications and with ap- 
plication of the transformation relation (4) to expressions (29), (37), (40), and (42), the 
equations describing the rate of growth of  the void volume fraction can be summarized 
as follows 

where 

= _1 g ( t ) F ( ~ , t o ) l ~ r _ o o  I, tr < oc, (43) 
7/ 

( 1 _ t/2/3 [(~2/3 ]-l 
F(~j,~jo) = ~ t \ l  _ t o /  \ t o /  - ~ 

(44) 

and 

ao = --kl - ~  (1 -- ~)ln [2q + (to -- q)Fl(~,~o)] 

F,(~,~o) = e x p  ~ / ~ - - ~ - o )  \ l - - - ~ o ]  

+ exp (i  J" 

(45) 

(46) 

We note that the minus sign in (45) signifies a tensile void growth threshold stress, while 
the constant kl represents a void interaction material parameter. 

The material parameters and the material function appearing in these expressions can 
be determined from mechanical tests and from metallurgical data obtained at the tem- 
perature of interest (cf. Nv.~s  et al. [1989a,c]). For example, a procedure for determi- 
nation of the material function g(~) can be based upon observations of  microvoid 
growth data obtained from spall fracture tests. An illustration of this is discussed in Sec- 
tion V. 
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Finally, it should be noted that the microvoid growth rate equation (43), which does 
not include the inertial contribution to the void growth, is nevertheless used in formulat- 
ing a viscoplastic-damage constitutive model for dynamical circumstances, and will be 
inserted into field equations that include the inertia term. Thus the simplification that 
has been introduced by writing (42) assumes, in effect, that the viscoplastic deforma- 
tion dominates the microvoid growth process even though points of the deforming ma- 
terial body may be experiencing acceleration. 

IV. CONSTITUTIVE MODEL FOR THE SOLID WITH MICROVOIDS 

The mechanical behavior of a solid with microvoids includes elastic (recoverable) and 
inelastic (nonrecoverable and rate-dependent) components. Because of the presence of 
voids the elastic properties of the material are assumed to degrade with void growth ac- 
cording to the model proposed by MACKENZIE [1950], where the elastic shear and bulk 
moduli are determined by the relations 

~ = # ( 1 - ~ ) ( 1  6K+12/z  ) 9 K + 8 #  ~ 

/~ _ 4 I ~ K ( I  - 4)  

4/~ + 3K~ 

(47) 

K,~ are the values of the bulk and shear moduli for the solid without voids (actually 
an idealization for polycrystalline materials that have some degree of porosity, although 
small, with typical average initial void volume fraction 40 of the order 10-3-10-4). The 
Poisson ratio for the voided solid has the value 

1 3 / ( -  2 g  
(48) 

~ -  2 3 / ~ + g  

The rate of deformation is the sum of the elastic and inelastic rates 

D = D e + D p. (49 )  

Considering small elastic strains, the elastic rate of deformation has the form 

1 [~. ~ (tr ~i')l] (50) 

~i" is the corotational (Jaumann) time rate of the Cauchy stress tensor T. 
The inelastic rate of deformation is determined by the viscoplastic constitutive model 

proposed by PERZYNA [1986] for dynamic fracture of ductile solids. 

D p = ~ ~ ( ~ . )  Of  f o r / ~ >  0, 
0T 

D p = 0 for f" ___ 0, 

(51) 
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where • is a material functional of  the yield function 

f =  p(T,~p,~j)  = f(J1,J~,~) 1, (52) 
K(EP,~) 

3' = 3"o/Ko, dO is related to the quasistatic yield stress while 3'0 is a macroscopic material 
viscosity parameter. The function ~ is a rate of  deformation control function that has 
as its argument the ratio of  invariants (12/12 - 1), and is defined such that ~(0) --- 0 
and ~( . . . .  ) - 0 for ( I2 / I~  < 1). 12 is the invariant 

I2 = II (nD)'/211 

IID = ½ [(tr D) 2 - t r (D.D)] ,  
(53) 

and 12 is the value of  I2 at the quasistatic rate of  deformation. 2 
Because of  the plastic dilatation by void growth, the yield function has both devia- 

toric and dilatational components  (cf. SHIMA a OVANE [1976]; HANCOCK [1983]; 
DORAWELU et  al. [1984]) 

f ( J 1 , J ~ , ~ )  = J~ ÷ n ~ J  2, (54) 

where the stress invariants 

Jl = Ix  = tr T 

J~ = - - I IT=  ½tr(T ' .T ' ) .  
(55) 

The coefficient n is a material parameter that weights the effect of  the void induced di- 
latation. The function r (e P, ~) describes the isotropic material hardening because of  the 
plastic deformation, and the softening because of  the void growth. The form originally 
proposed by PERZYNA [1986] 

K(~P,~) ~--- [d 0 ÷ H e p ] 2 [ 1  - n l ~ l / 2 ]  2 (56) 

assumes the linear hardening form (do + He p) (cf. Section III), where H is a harden- 
ing parameter and ~ p is the plastic strain invariant defined by the relation 

fo t fot 2 e p = ~ P d t '  = - ~  II(IIDu)'/211 d t :  (57) 

The material parameter n~ is related to the void volume fraction at fracture and may 
be shown to have the value n I = (~r) -1/2 (PERzYr~A [1986, 1984]). 

During the course of  progressive material degradation in polycrystalline materials, 
leading to material instability and fracture, metallographic observations have shown that 
the void volume fraction can increase by several orders of  magnitude (e.g., G0 - 10 -~ 

2The rate of deformation below which no significant rate effect of the inelastic material response can be 
observed by the usual means of laboratory testing. 
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~F ~ 10-1 as observed in spall fracture of copper (CURRAN et al. [1987])). At the micro- 
void scale this order of change of void volume can be associated with relatively large 
strain around and between the microvoids. In such circumstances a linear monotonically 
increasing hardening rule can predict intense hardening, leading to a situation where the 
void growth threshold mean stress becomes very large, thereby preventing further void 
growth and stress relaxation at the larger strains. This result is demonstrated in more 
detail in the following section. As mentioned in the previous section, to circumvent such 
predicted behavior the hardening rule (56) is replaced by the form (NEMES et al. [1989a]) 

K(6P,~) = [q + (Ko - q)e-~P]2[1 - -  HIll /2]  2, (58) 

which allows for saturation of the hardening as the strain progresses, where q is the sat- 
uration stress and/3 a hardening material parameter. 

The material functional 4~ and the control function are assumed to have power forms. 
Thus, the constitutive equation for the rate of inelastic deformation (51) acquires the 
detailed form 

Dp _ "Yo [ J~ + n~ J 2 ] m' 1 T' 
( ~  l)m [ q +  ( K 0 - q ) e - ~ ' n ] z [ 1 - n , ~ l / z ]  2 - 1  --K0 (2n~J , l+  ), 

\ 12 
(59) 

in which m and m~ are additional viscoplastic material parameters. 
Void volume change in general in polycrystalline materials has been identified and 

characterized by three micromechanisms: diffusion of voids, nucleation of new voids, 
and growth of existing voids due to plastic deformation. The diffusional microprocesses 
are significant only at elevated temperatures, so that at nonelevated temperatures the 
void volume fraction rate of change will consist essentially of void nucleation and void 
growth 

= (~), + (~)g, (60) 

where (~)g is obtained from (43). The rate of void nucleation is modeled by the relation 
(cf. CURRaN et al. [1987]; SEAMAN et al. [1976]; PERZYNA [1986]) 

h(~) [ (m210-- ON[ ) 1 (~ )n -  ~ exp ~¢~ - 1 , o < o N .  (61) 

ON is the threshold mean stress for void nucleation, 0 is the temperature, k is the Boltz- 
mann constant, and m2 is a material constant. The function h (~), introduced by Per- 
zyna, represents the effect of void interaction on the void nucleation process, and is 
analogous to the void growth interaction material function g (~) appearing in (43), Thus, 
the value of the void volume fraction appearing in the constitutive relations (47) and (59) 
is determined from (60), or 

~:-  1-~h(~) exp ~,-~ - 1 +-r /g(~)F(~,~o)JO-t ra] ,  (62) 

with F(~,~0) and oo specified by expressions (44)-(46). 
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In view of several comparisons that are to be discussed in the following section, we 
note here that with a linear hardening assumption (cf. (22) and (56)), the void volume 
rate due to the void growth (~)g will also be determined by (43) and (44). However, the 
corresponding expression for the threshold mean stress will now have the form (P~R- 
ZVNA [1986]): 

oG = - k l  Ko(1 - ~)ln + ~ H(1 -/j)FE(~,~jo) , (63) 

with 

:1 ,:[1 ] 
F2(~,~o)  = 3 \ 1  _ G0! (64) 

V. EXAMPLES OF APPLICATION TO OFHC COPPER 

The viscoplastic-damage constitutive theory, outlined above, has been used to model 
high strain-rate deformation and plate impact induced spall fracture for OFHC copper 
at room temperature. The reduced constitutive equations appropriate for calculating 
uniaxial stress-strain, and stress-uniaxial strain, are given in the references cited at the 
outset of the Introduction. A discussion of how the material parameters were determined 
or chosen can also be found there. 

The manner of variation of the void growth threshold stress with increase of poros- 
ity is shown in Fig. 2 with three different assumptions for the hardening; nonlinear (cf. 
eqn 58)), linear (cf. eqn (56)), and nonhardening (H = 0 in eqn (56)). These curves il- 
lustrate the simultaneous competition that takes place between the hardening of the ma- 
terial as deformation increases, and the softening that accompanies the void growth. At 
small void volume fraction (and small strain) the strain-hardening process is much more 
influential than the void softening. This relationship is reversed as the void growth pro- 
gresses and the material degradation overwhelms the ability of the material to continue 
hardening. Linear hardening produces a peak value for the threshold stress approxi- 
mately twice the value for the nonlinear hardening that saturates, occurring at a poros- 
ity that is approximately 30 times as great. In the case of no strain hardening the void 
growth threshold decreases progressively as the material softens immediately with the 
onset of void growth. 

The linear hardening, which continually increases as the strain progresses, endows the 
material with an unrealistic excess of hardening. This effect is graphically demonstrated 
by Fig. 3, which shows calculated tensile stress versus uniaxial strain at strain rate 
105 sec -1 for the three hardening assumptions. The linear hardening, as expected, gives 
the highest stress prior to onset of stress relaxation caused by the degradation of the ma- 
terial. Because of the higher void growth threshold stress and the fact that its value be- 
gins to decrease at a much larger void volume fraction, the predicted stress relaxation 
appears virtually to cease at a high stress level, rather than continuing on with further 
increase of strain as would be expected on physical grounds. At the larger strains and, 
correspondingly, at the larger void volume fractions, the closer proximity of the non- 
linear hardening stress-strain curve to the curve with no hardening also appears to be 
more realistic. 

The material interaction function g(O appearing in (43) serves to amplify the rate of 
void growth at the later stages of the void development, thereby simulating the effects 
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of void interaction and coalescence. The function was chosen as an exponential of the 
void volume fraction, g (O = e ~ (where & is a material parameter), based upon ob- 
served void volume distributions in spalled plates, and also because of its desirable char- 
acteristics at small and large values of ~. The parameter value & = 20 gave good 
experimental data correlation for the spall fracture studies (NE~s  [1989c]; EFTIS et al. 
[1989]). The relative effect of this material parameter on the stress-uniaxial strain re- 
sponse, and upon the rate of void growth with strain, is shown in Figs. 4a and 4b. The 
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curve for which & = 0, or g(~) = 1, corresponds to void growth with no void interac- 
tion on the void growth process. The peak tensile stress that occurs prior to softening 
is practically unchanged by the value for & which, as seen from Fig. 4a, takes place at 
very small values of the void volume fraction where interaction effects would be expected 
to be negligible. The predicted behavior beyond the peak stress, however, is strongly af- 
fected by the value of  this parameter, as one would expect since it is at the higher val- 
ues of ~ that the interaction function g(~) becomes significant. As the value of & in- 
creases from & = 0 to & = 10, the rate of  increase of  damage increases considerably; 
however for & = 20 the void volume fraction increases dramatically for small changes 
in strain (cf. Fig. 4b), effectively simulating void coalescence behavior. 

The relative effect of  variation of  the material microviscosity parameter ~/appearing 
in the void growth relation (42) on the macroscopic stress-strain behavior, and on the 
damage versus strain behavior, is indicated by Figs. 5a and 5b. The values of ~ shown 
bracket the value ,7 = 10 p,3 suggested by JOHNSON [1981], that was chosen for copper 
in the spall fracture study. It is rationalized by Johnson that this relatively low value 
for the microviscosity associated with the microvoid growth is due to substantial highly 
localized heating effects that develop at and around the plastically expanding micropore 
walls, creating local "hot spots" that can be at a substantial fraction of the melting tem- 
perature. (We note that published values for the viscosity for copper range from ~/ = 
105 P at room temperature to ~ = 2 × 10 -2 P at melting temperature (CARROL et al. 

[1986]). As can be seen from the stress-uniaxial strain curves of  Fig. 5a, and the 
damage-strain curves of Fig. 5b, the variation of ~/has strong influence on the predicted 
response. Larger values of ~ result in lower rates of  increase of the porosity, and in 
higher peak stresses prior to the onset of softening. However, the strength of the vis- 
cosity is shown to have little effect on the rate of  stress relaxation, and also upon the 
maximum void volume that is reached, which is close to the void volume fraction ~ = 
0.3 observed for spallation of  copper. 

The effect that the void volume or porosity can have on the yield behavior of the ma- 
terial is illustrated in Figs. 6a and 6b, showing a plot of the yield function f ,  eqn (54), 
at different void volume fractions. As the porosity of the material increases and it soft- 
ens, the effect of the mean stress (dilatation) on plastic yield becomes pronounced, and 
the combined stress state required for onset of  yield decreases dramatically. 
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