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Dynamic fracture and spallation in ductile solids 
J. N. Johnson 
Los Alamos Scientific Laboratory. Los Alamos. New Mexico 87545 

(Received 19 September 1980; accepted for pUblication 16 December 1980) 

A mathematical model of ductile hole growth under the application of a mean tensile stress is 
developed and applied to the problem of spallation in solids. The object is to describe dynamic 
ductile fracture under a wide range of tensile loading conditions. The mathematical model 
presented here describes both plate-impact spallation (as observed by postshot examination and 
time-resolved pressure measurements) and explosively produced spallation (as observed by 
dynamic x-radiographic techniques) in copper. It is found to be inapplicable to ductile fracture of 
expanding rings, even in the absence of possible adiabatic shear banding and classical necking 
instabilities, because of the fact that the mean tensile stress (void growth) and the deviatoric stress 
(homogeneous plastic shear strain) are not independent. A phenomenological model of void 
growth under uniaxial stress conditions is developed independently and applied to the numerical 
finite-difference solution of fracture in an expanding ring. The initial porosity in a material 
element is a random variable following Poisson statistics and the assumption that all the void radii 
are equal. The necessary theoretical generalizations and supporting experimental measurements 
to improve our understanding of fracture and fragmentation in expanding rings are discussed. 

PACS numbers: 62.20.Mk, 62.50. + p, 81.40.Np, 46.30.Nz 

I. INTRODUCTION 

The term "spallation," as used in shock-wave research, 
is defined as planar separation of material parallel to the 
wave front as a result of dynamic tensile stress components 
perpendicular to this plane. The term "scabbing" has also 
been used to describe this phenomenon. Spallation in ductile 
materials is controlled by localized plastic deformation 
around small voids which grow and eventually coalesce to 
form the spall plane. Spallation in brittle materials takes 
place by dynamic crack propagation without large-scale 
plastic deformation (except perhaps in a very small region 
near the crack tip). The work presented here deals only with 
the former case in which the growth of voids within the ma
terial can be described by continuum theories of plastic flow. 

In addition to spallation there is yet another important 
related fracture problem that we would like to be able to 
represent theoretically (perhaps with a single ductile fracture 
model that could also be used for spallation)-this is the case 
of radial fracture of expanding rings and shells. 

The differences between (i) plate-impact-produced 
spallation, (ii) explosively produced spallation, and (iii) dy
namic radial fracture in expanding shells, are illustrated in 
Fig. 1. . 

In Fig. IA a flat impactor (of thickness 0) travehng at 
velocity u strikes a stationary target (of thickness> 0 ). For 
symmetric impact (i.e., target and impactor are of similar 
materials), a compressive wave of amplitude ~ PoUu and du
ration ~2{)IU is generated in the target. Herepo is the initial 
density and U is the wave velocity in the impactor and the 
target. Interaction of this compressive wave with the free 
surface on the right produces a tensile stress - !PoUU at a 
distance {) from the free surface. If the magnitude and dura
tion of this tensile stress are great enough, spallation occurs. 
This is the standard plate-impact spall experiment in which 
both the peak tensile stress and spall position are known a 
priori. 

Figure 1 B shows the development of the tensile stress 
produced by a high explosive in contact with the sample. The 
peak longitudinal compressive stress in this case is on the 
order of 200-300 kbars depending on the explosive and the 
sample. As the triangular-shaped stress wave is reflected 
from the free surface, a tensile wave of increasing negative 
amplitude is propagated back into the sample. At distance 0 1 

from the free surface the tensile stress is - PI' and at Oz it is 
- pz. When the tensile stress becomes large enough (for a 
given tensile loading rate or for sufficiently long time), spall
ation occurs. Hence in this case the spall position and the 
tensile stress are not uniquely determined a priori, in con
trast to the case of plate-impact spall. It becomes a somewhat 
more difficult matter to model explosively produced 
fracture. 

In the case of ductile fracture of an expanding ring or 
shell, as shown in Fig. lC, the process is even more compli
cated. After the passage and reverberation of the radial load
ing wave, the shell is given a mean outward velocity VR 

which results in a uniform hoop strain rate Eee - VR I R. The 
corresponding hoop stress depends on whether or not the 
material is flowing plastically. For elastic expansion 
(Toe =(EVR I R )t, where E is Young's modulus and t is the 
time. Consider flaws/lJz, and/3 shown in Fig. I C. These are 
weak spots that might be due to spatial variation in initial 
porosity, for example. As shown here, the weakest flaw isll 
and will be the place at which fracture (void growth) begins. 
As the element containing flaw II fails, release waves are sent 
out at speed c. Whether or not a nearby flaw undergoes cata
strophic growth depends on its relative strength and its prox
imity to neighboring weak flaws. 

The essential point of this discussion is that calculation 
of radial fracture in shells is even more difficult than that of 
spallation due to explosive loading, which in turn is more 
difficult than that of plate-impact spallation. In the simplest 
case the spall location and maximum possible tensile stress 
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are known a priori. In the second case (explosive loading) all 
that is known is the calculated tensile stress as a nondecreas
ing function of distance from the free surface (at least prior to 
the distance at which the tensile wave is fully formed and 
further hydrodynamic attenuation occurs as the reflected 
wave proceeds to the left). Neither the plate-impact nor the 
explosively loaded cases require statistical treatment of the 
various material elements in a calculation of the spall pro
cess: They are both entirely deterministic in nature. Radial 
fracture of shells must be calculated statistically since the 
detailed behavior shown in Fig. I C depends on the statistical 
distribution of flaws, both in size and in spatial location on 
the circumference. 

The study of spallation seems to begin with the early 
work of Hopkinson. 1 This was followed by a long period of 
relative inactivity until the work of Rinehart. 2-4 There then 
began (about 1960) an intense concentration of effort on this 
subject. McQueen and Marsh5 measured the ultimate spall 
strength in copper for plate-impact conditions producing 
peak compressive pressures of 300-600 kbars. Similar high
pressure spall studies are reported by Skidmore.6 Breed et 
al. 7 presented data on explosively produced spall in a num
ber of metals. 

Low-pressure spall thresholds in copper and the transi
tion from incipient to complete failure was first studied by 
Smith,8 followed by low-pressure spallation studies in other 
metals and numerous computational models of cumulative 
or partial damage. 9

- 's Curran and co-workers '6-'9 made de
tailed microscopic observation before and after shock-wave 
loading (both ductile and brittle solids) as a basis for nuclea
tion and growth (NAG) models of spall fracture. 

For every spallation experiment that is conducted, an 
ad hoc model can be developed to reproduce damage levels 
(in the form of residual porosity), spall location, growth 
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FIG. I. Dynamic fracture for A, plate 
impact; B, explosive loading; and C, 
expanding ring. 

rates, and so on. What is presently lacking is a single model 
of ductile fracture capable of reproducing the experimental 
results obtained under widely varying conditions. For exam
ple, in the work of Breed et al. 7 on explosively produced 
spallation of copper a computational model of fracture was 
developed to correlate spall strength with spall thickness. 
This model has been useful in reproducing the observed spall 
layers in explosive events, but is not applicable to low-pres
sure plate-impact experiments. Likewise, models developed 
for plate-impact situations seem to be inadequate in the high
pressure regime. 20 These models were developed to accu
rately represent the onset of fracture in engineering design 
and no serious attempt was made to see how they worked 
under the very extreme conditions of explosive loading at 
200-300 kbars. The problem of fracture of expanding rings 
and shells has been considered from various points of view 
but no attempt has been made to relate it to spallation. 21

-
23 

Therefore models for the unified treatment of fracture 
processes must have sufficient generality to include the sta
tistical distribution of one or more variables such as porosity, 
void density, etc. The NAG models 17-19 have this property 
but require numerous phenomenological constants that are 
difficult to obtain. The model of Cochran and Banner ls is 
also based on statistical distributions of flaws, but is specifi
cally written for use in a one-dimensional finite-difference 
code. 

Therefore, in the present work, a microscopic model of 
ductile hole growth is developed which relates the material 
porosity (an internal state variable) to its initial value, the 
time history of the tensile pressure (or mean stress), and a 
single scalar parameter representing the rate-dependent 
plastic flow properties of the solid material surrounding the 
voids. This introduces a minimum number of adjustable pa
rameters-also, the ones that are used have the possibility of 
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being determined experimentally. The model is expressed 
mathematically in a scalar (zeroth-order tensor) form, in
volving only the mean stress, that can be used in general 
multidimensional situations. 

FinaIly, in recognition of the fact that currently impor
tant fracture problems involve reactive media, the influence 
of internal gas pressure (within the expanding voids) is in
cluded in the theory. In the present applications chemical 
reaction and ablation at the void surface are not considered. 
Theoretical results related to internal gas pressure, Pg are 
purely mechanical and are included here only for future 
reference. 

II. VOID-GROWTH RELATIONS FOR DUCTILE 
MATERIALS 

Carroll and Hole4 describe a very useful model of void 
collapse in porous ductile materials that lends itself directly 
to a theory of void growth under tensile loading condi
tions-the only difference is that the pressure is negative in 
the void-growth case and the porosity increases. In spite of 
the obviously trivial replacement of P and - P in the Car
roll-Holt model, the complete derivation is repeated here 
since additional rate-dependent plastic flow terms and inter
nal gas pressure are added that were not in the original devel
opment. The notation of Carroll and Holt is preserved as 
much as possible. 

The derivation begins with the consideration of a rec
tangular volume element containing a representative distri
bution of voids as shown in Fig. 2. Imagine a uniform hydro
static tension P acting over the surface of this element (ft is 
assumed negative in tension). Throughout this work a bar 
over a variable will refer to macroscopic quantities averaged 
over the entire element, voids and all. Since the cross-sec
tional area occupied by the voids supports none of this stress, 
mechanical equilibrium requires that AsPs + (A - A, )pg 

= Ap, whereps is the mean stress (spatial average) in the 
solid material which subtends an average area A s on plane of 
total area A andpg(>O) is the internal gas pressure (for reac
tive media). For a random distribution of hole shapes and 

SOLID ( p. 1 

v •• SOLID VOLUME 

VOIDS (Pill 

V-V.=VOID VOLUME 

V • TOTAL VOLUME OF RECTANGULAR ELEMENT 

FIG. 2. Material element containing voids: ft is the average mean stress 
acting over the element face, p g is the gas pressure in the voids, and ft, is the 
average mean stress in the solid materiaL 
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FIG. 3. Porous material model. The dimensions a and b are related to 
distension a. 

sizes (AJ A) = (VJV) and we have that the mean stress in 
the solid constituent is24 

. 

p, = ap - (a - l)Pg' (1) 
where a, the distention ratio, is (V / V,» 1. Therefore around 
each of the voids in the distended material there is an average 
mean stress aft - (a - 1 )pg • If this stress is big enough in 
tension (depending on the size of the holes), the voids will 
grow by plastic deformation in the surrounding solid matrix. 
The effect of positive internal pressure P II is the same as an 
externally applied tensile pressure p (negative in tension). 

A simplified model of the porous element is now as
sumed. Consider a single spherical void of radius a in a 
sphere of radius b subject to internal pressure Piland external 
stressu, = - ap + (a - l)pg shown in Fig. 3. The essential 
point to the model is the following: Relative values of a and b 
define the average porosity of the material and ao (the average 
initial hole size) becomes a material parameter. Previous 
treatments of ductile hole growth 16. Hf assumed that the ap
plied tensile loading stress was applied at infinite external 
radius. One of the important consequences of the present 
assumption is that it leads naturally to aft, a threshold rela
tionship for fully plastic hole growth, as we shall see. 

The relationship between a, b, and a is 

a = b3/(b} - a3
) (2) 

or 

(b /a)3 = a/(a - 1). (3) 

The relationship between the distention a [or porosity 
<p = (a - I)/a] and the applied pressure aft(t)- (a - l)pg 

on the boundary is obtained by assuming that void expan
sion takes place with spherical symmetry such that the sur
rounding material does not change volume. In the spallation 
(void growth) process nearly all the volume change is associ
ated with hole growth and very little with density changes in 
the solid constituent. This assumption was also made by 
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Cochran and Banner. IS Let ro be the Lagrangian radial posi
tion coordinate in the solid surrounding the void and let r be 
the corresponding Eulerian coordinate. Then, in general, 

(4) 

If the volume of the surrounding material is to be preserved, 
then 4rrrdr = 4rr~dro at each instant of time t. Thus 

r(!!"') =?n, 
aro 1 

(5) 

which has a solution 

rl = r6 - B (t ), (6) 

where B (t ) is a function related to the rate of void growth. 
From Eq. (6) it is found that 

i' = atP, tP(r,t)- jj (t) + [D (t W , (7) 
ar 3r ISr4 

and 

B (t) = a~(ao - a) / (ao - 1). (S) 

Thus 

B (t) > 0, for a < ao (void compaction), 

B (t ) < 0, for a > a o (void growth). 

Two useful relationships are 

B (t) = a o - a, B (t) = a o - a. (Sa) 
a3 a-I b 3 a 

The equation of motion for material surrounding the 
void is given by 

pi' = aaJar + 2(a, - ae)fr, (9) 

wherep is the solid density and a,and a e are the radial and 
circumferential deviatoric stresses shown in Fig. 3. In this 
work, ft is positive and a" a e are negative in compression 
according to the usual convention. Stress and strain varia
bles without a bar refer to microquantities in the material 
surrounding the voids. 

Substitution of Eq. (7) into (9) gives 

(10) 

where..:1s=a, - a e . Equation (10) is then integrated from a 

to b with boundary cond.itions a,(a,t) = - Pg and 
a,(b,t) = - aft + (a - l)Pg' to give 

P[tPa(t)-tPb(t)] = _a(jj_pg)+2fb~r. (11) L r 
With the help ofEqs. (7) and (S), the left-hand side ofEq. (11) 
can be written as 

P[tPa(t) - tPb(t)] = - rYoQ(a,a,a), (12) 

where Yo is the yield stress of the solid and 

r pa~/3Yo(ao - 1)2/3, (13) 

Q(a,a,a)= - arIa - 1)-1/3 - a- 1/3 ] 

+ ~2[(a _ 1)-4/3 _ a-4/3]. (14) 

Thus we have the following general relationship: 

rYoQ(a,a,a) = a(jj - Pg) - 2 fb~r. (15) 
Ja r 

Equation (15) is the relationship from which we obtain the 
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rate-dependent response of void growth in spalling, ductile 
solids when specific expressions are substituted for ..:1s in the 
integrand on the right-hand side. 

First consider elastic deformation in the small strain 
limit (c < r < b in Fig. 3). The infinitesimal radial displace
ment is given by 

u=r-ro;;;;;,-B(t)f3r, (16) 

and the infinitesimal strain components (in the solid material 
surrounding the void) become 

E, =2B(t)13r, Eo = -B(t)/3r. (17) 

Thus 

..:1s = 2GB (t )fr, ( IS) 

where G is the shear modulus of the solid. 
In the plastic region (a < r < c in Fig. 3) the material is 

initially assumed to be elastic perfectly plastic (this assump
tion will later be relaxed to include rate-dependent plastic 
flow): 

(19) 

where Yo is the yield strength and the upper + sign corre
sponds to void compaction (i.e., a, > a e) and the lower -
sign corresponds to void growth (i.e., a, <ao). 

Plastic deformation begins at the inner (r = a) bound
ary (for void growth) when..:1s = 2GB (t )fa3 = - Yo; that is, 
when 

a = (2Gao - Yo)/(2G - Yo). (20) 

If a o = 1.001 (about 0.1 % initial porosity from which the 
voids grow), Yo-l kbar, and G-200 kbars, then 
a = 1.001003-very nearly equal to the initial distention. 
The spherical shell first becomes fully plastic when yielding 
occurs at the outer (r = b) boundary:..:1s = 2GB (t )/b 3 

- Yo, or 
A-

a = 2Gao/(2G - Yo). (21) 

For the same material parameters considered above, 
a = 1.0035, which corresponds to a porosity very small in 
comparison to those expected in the latter stages of hole 
growth. 

Therefore an important and useful simplification can be 
made when calculating complete or nearly complete frac
ture. When dealing with void growth in materials of very low 
initial porosities, we can neglect the initial elastic and elastic
plastic phases of the process and go immediately to the case of 
fully plastic deformation around the void. This may not al
ways be the case, however, as in calculations of very low 
spallation porosities (a= 1), for example. 

In addition, a rate-dependent contribution is added to 
the shear deformation and Eq. (19) is modified to give 

(22) 

where b is the Burgers vector, N is the mobile dislocation 
density, D is the drag coefficient, and y" is the plastic shear 
strain rate. For large finite strains the radial displacement is 
found from Eq. (6) to be 

u = r- ro = r- [r +B(t)]1/3 (23) 
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and,consequently, 

t'=~-.!!..-= 
J, , ( 

B(t))-213 - 1+
~ 

( 
B(t))1/3 +1+-- . 
~ 

(24) 

Since the motion takes place at constant volume, all of the 
strain can be considered plastic once yielding has occurred. 
Hence, by differentiation ofEq. (24), 

Y" = B (t) [1(1 + B (t l) -5/3 + 1(1 + B (t l) -2/3] (25) 
,,4 rl 3 ~ 

and, from Eqs. (2), (22), and (25), 

2ib~,= 
a , 

2Yo I ( a ) +--n --
- 3 a-I 

2D ci + --2 - F(a,ao), 
3b N ala-I) 

(26) 

where 

F(a,ao) = a(~)2/3 _ (a _ 1) (!:.)2/3 
a o - 1 a o 

-=a( a-I )2/3, 
a o - 1 

for(ao -I)<1. (27) 

Substitution ofEq. (26) into Eq. (15) gives 

rYoQ(a,ci,a) = alP - pg ) + 2Ya In(_a_) 
3 a - I 

ci + 1] F(a,ao), 
ala -1) 

(28) 

where 1] = 2D /3b 2N. 
Assume that the terms involving a and ci are small and 

that Pg = O. Thus 

Peq(a) = ± (2 Yo/3a)ln[a/(a - I)}. (29) 

This is the equilibrium path followed for either void expan
sion ( - ) or compaction ( + ) at slow rates of loading. The 
term "slow" is meant here to mean that the quantities aft and 
(~ Yo)ln [a/(a - I)} in Eq. (28) are both large compared with 
those involving l' and 1]. A hypothetical tension/compres
sion process is shown diagrammatically in Fig. 4, where ft is 
plotted as a function of a - 1. Starting at point 1 withp = 0 
and a = aa, the material is taken into tension (without 
change of a) until the Peq curve is reached at point 2. Voids 
then grow and the absolute magnitude of the tensile (nega
tive) pressure that can be supported is reduced as the ft, a 
state goes from point 2 to point 3. At point 3 the remaining 
tensile pressure is relieved and the material compressed to 
point 4 where the reverse yielding occurs. The porosity that 
is created in going from point 2 to point 3 is partially elimi
nated as the material is compacted from point 4 to point 5. 

The symmetry of the ± Peq curves about the a - I axis 
raises an interesting question. In spallation experiments, the 
spall plane initially experiences a maximum compressive 
stress of approximately the same magnitude as tensile state 2 
depicted in Fig. 4. This suggests that the material state could 
never reach the - Peq curve in a spallation experiment; i.e., 
the precompression would reduce the distention to a value 
such that the later tension would not be sufficient to cause 
void growth. This conclusion is contrary to what is known 

2816 J. Appl. Phys., Vol. 52, NO.4, April 1981 

p 

z 
o 
C/l 
C/l 
W 
cr 
0.. 
::E 
o 
(.) 

z 
o 
C/l 
z 
W 
l-

t 

1~1m----:~========--- a-) :CD 
+ 

® 

FIG. 4. Slow (equilibrium) tension-compression path in material with initial 
distension a o [porosity = lao - Ij/a,,]. 

about spallation in ductile materials-namely, (i) ductile 
metals do undergo spallation following an initial compres
sion, (ii) precompression does not significantly change the 
spallation threshold, I I and (iii) ductile void growth plays an 
important part in the initial stages of dynamic ductile frac
ture.13.16.IX Therefore the initial distention a o might be 
thought of as an effective distention caused by solid inclu
sions (that cannot be eliminated by precompression), for ex
ample. These inclusions would necessarily have to be weakly 
bonded to the surrounding material in order that O',(a,t )~O 
(inert case) in the prototype model of void growth described 
here. This also raises interesting questions regarding the pos
sibility of placing artificial spherical inclusions weakly bond
ed within well-understood ductile materials to verify the pre
sent model of ductile void growth. 

To interpret the rest of the terms in Eq. (28), it is written 
as 

2v Q("') ciF(a,ao) _ A 
l' ~ 0 a,a,a - 1] - a,;,J,p, 

ala-I) 
inertial 
resistance 
to void 
growth 

resistance driving 
to plastic stress 
flow 

where 

Lip ft - Pg - Peq(a) 

andpeq(a) is given by Eq. (29). Equation (30) applies for 

(30) 

(31) 

P <Peq (a) in tension or P> Peq (a) in compression. Otherwise, 
ci=O. The first term on the left-hand side of Eq. (30) repre
sents inertial resistance to void growth and is proportional to 
the density of the solid surrounding the voids. This term 
vanishes when ci and a are zero. Even in the case of ideal 
rate-independent plastic flow in the solid material surround
ing the voids (1] = 0) there is a rate-dependent relationship 
between void growth and the driving stress. This depends 
specifically on the relaxation time l' given in Eq. (13). For 
example, if p = 8.9 g/cm' (copper), Yo = 0.001 Mbar, 
ao = 10-4 cm, and a o - 1 = 0.001, we find 1'-50 ns. 
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Thus T is small and void growth may be dominated by 
rate-dependent plastic flow rather than inertial effects. Since 
it is difficult to ascribe clear physical significance to the pa
rameter T, this conjecture can be better tested by comparing 
the relative magnitudes of the two terms on the left-hand side 
ofEq. (30). Fortypicalmaterials25 D-IO-4 dynes/cm2

, and 
therefore 1/-103 dyne s/cm2

• With a = 1O- 2 /ts-', a = 0, 
and the remaining parameters as given in the previous 
paragraph: 

rYoQ(o,a,ao)-5X 10-7 Mbars, 

1/a/[ao(ao - 1)]_10- 2 Mbars. 

Thus, with some fairly reasonable values of 1/, etc., it seems 
that rate-dependent void growth can be initially dominated 
by plastic flow rather than inertial effects, at least in some 
specific instances. This is certainly not meant to be a general 
conclusion. Each case must be investigated individually. 

Therefore the simplified model for ductile hole growth 
is written, for Pg = 0, 

a =O,..:1p:>O 

(a _ 1)2/3 a = - 0 ala - 1)1/3..:1p, ..:1p<O (32) 
1/ 

_ as a 
..:1p p+-In--, 

a a-I 

where the constant as has replaced ~ Yo, and the approxima
tion given by Eq. (27) is used. In the calculations of this paper 
as is assumed to be a material parameter independent ofthe 
yield strength used in the macroscopic wave-propagation 
calculations. This seems justified because of the large 
amount of work hardening and temperature increase that 
occur in the vicinity of a growing void in comparison to 
uniaxial-strain shock-wave compression. 

In the case that inertial effects are included, Eq. (30) is 
used in conjunction with..:1p of Eq. (32). 

III. ONE-DIMENSIONAL FINITE-DIFFERENCE 
CALCULATIONS 

The one-dimensional flow equations in terms of the La
grangian position coordinate x are 

al + at; = 0, l I _ Po 
at ax P 
- at; au 0 
Po---= , at ax 
- aE _at; 0 
P°iit - (7 ax = , 

(33) 

(34) 

(35) 

where t is the time, p is the density fiio = initial density), t; is 
the particle velocity in the x direction, u is the longitudinal 
stress component, and Eis the internal energy per unit mass. 
As stated previously, a bar over a variable indicates a macro
scopic value, i.e., one averaged over void and solid. These 
equations are written in centered finite-difference form, 
combined with a material constitutive equation, and solved 
numerically to give the stress, particle-velocity, and void
growth histories in a shock-loaded sample undergoing 
spallation. 

2817 J. Appl. Phys., Vol. 52, No.4, April 1981 

The material constitutive equation is written in terms of 
the mean stress (pressure) p and the deviatoric stress compo
nents ~j' in the model described here, void growth is related 
only to p. The deviatoric stress components depend on the 
shear modulus iJ and the yield strength f, which are each 
functions of porosity. The plastic yield condition for the sol
id is 

~~);-ij = y2 = (Yolaf. (36) 

No attempt is made to include a rate-dependent term of the 
type used in Eq. (22) for calculations of wave profiles. These 
effects are still poorly understood themselves and do not 
greatly influence the fracture process. Nothing is claimed in 
this paper about the quantitive correctness of shock rise 
times and other macroscopic elastic-plastic rate effects of 
plane-wave propagation. 

In the elastic region (3sij~j < 2 y2) the stress deviator 
rates are given by 

i;j = 2GCEij - !<5iji). (37) 
In the absence of porosity, the pressure-volume re

sponse is represented in terms ofthe high-pressure straight
line Us (shock speed), Up (particle velocity) relationship: 

Us = Co + sUp, (38) 

where Co is the low-pressure bulk sound speed (Kol Po)' 12, Ko 
is the adiabatic bulk modulus at zero pressure, and s is a 
nondimensional constant. The Mie-Griineisen equation of 
state for solids of this type is given by (in the absence of 
porosity the bars are removed from the variablesp, PO' E, etc. 
without ambiguity) 

= Ko( I - !roE) + rE (39) 
p (1 - SE)2 P, 

where r is the Griineisen coefficient (here pr is assumed to 
be a constant given by its low-pressure value pJ 0)' The time 
derivative (at constant x) ofEq. (39) is 

. _ K (1 + SE - roE) . r i-
p - 0 3 € + PPr' 0"" 

(1 -se)' 
(40) 

Equation (40) applies to solids for which there is no perma
nent inelastic volume strain. For void growth this is not the 
case. The plastic opening of voids results in an inelastic vol
ume strain increment given by - d ( V - Vs )/ V (see Fig. I), 
which becomes - a/a when V, remains constant, as as
sumed in the plastic model of void growth. The elastic, or 
recoverable, part of the total strain E is then c = E + Ina 
which alone is capable of supporting a pressure. Therefore 
when voids are growing Eq. (40) must be replaced by 

~ K(1 + SEe - ro€e)(~ a) -r-
p = e + - + PO' oB· 

(1 - see)] a 
(41) 

The (macroscopic) moduli G and K are assumed to be 
degraded by the presence of voids according to a model sug
gested by Mackenzie26

: 

K = 4G(~o( 1 - cP )/(4Go + 3KocP ), 

G = Go(l - cP )( I _ 6Ko + 12G°cP )' 
9Ko + 8Go 

(42) 

(43) 

where Ko and Go are the elastic moduli of un distended mate
rial and cP = (a - I)la is the porosity. Equation (43) agrees 
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exactly with Mackenzie's result for <p « 1, but has been modi- 8 

fied here such that G goes to zero as <p approaches unity. It is 
also required that (6Ko + 12Go)«9Ko + 8Go) to satisfy the 
stability condition G;;.O. 

IV. PLATE·IMPACT AND EXPLOSIVELY GENERATED 
SPALL IN COPPER 

As an application of the foregoing theory, two quite 
different spallation experiments on copper are calculated. 
The first is a plate-impact experiment lR in which a 0.6-mm
thick copper plate strikes a 1.6-mm copper target backed by 
a relatively thick plate ofPMMA (po)ymethylmethacrylate) 
in which a manganin pressure gauge is embedded approxi
mately 0.5 mm from the copper (target)lPMMA interface. 
The impact velocity of 0.016 cmlfJ,s produces a 29-kbarpeak 
stress in the copper. The reason for choosing this particular 
experiment is that postshot photomicrographic observations 
of the residual porosity are available, and that the stress am
plitude (29 kbars) and pulse duration (-0.3 fJ,s) are suffi
ciently great to produce substantial porosity ( - 30%) at the 
spall plane. The experimental setup and the manganin pres
sure gauge record are shown in Fig. 5. The effect of spall
ation in the copper target is first detected by the gauge at a 

IMPACTOR 

(u = 0.016 cm/fLs) 

SPALL 
PLANE 

TARGET 

SPECIMEN 
(COPPER) 

PMMA 

MANGANIN 
GAGE 

LOCATION 

6.0..----r--....--...--.,---,---,---' 

5.0 

(f) 
3.0 (f) 

IJ.J 
a:: 
I-

2.0 (f) 

1.0 

0
0 

\ 
NO ;, 

SPALL \ 
\ 

1.4 

FIG. 5. Plate-impact test ISRI-S24) on copper backed with polymethyletha
crylate (PMMA) containing manganin pressure gauge (gauge record shown 
on botton). 
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FIG. 6. Measured response for spall fracture in copper compared with sim
ple tensile fracture model. The mean stress to produce fracture is taken as 
~ 18 kbars. 

time between 0.8 and 0.9 fJ,s after impact. The dashed line in 
Fig. 5 denotes the hypothetical record that would have been 
obtained if the sample had not spalled. 

Time-independent criteria are not sufficient to repre
sent the experimental data shown in Fig. 5. A calculation of 
this experiment is shown in Fig. 6 for time-independent spall 
strength of 18 kbars. 

Application of the dynamic hole growth analysis to the 
problem of time-dependent spallation in copper gives very 
good representation of the data (as shown in Fig. 7) with the 
material parameters listed in Table I. 
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FIG. 7. Measured response for spall fracture in copper compared with rate
dependent ductile hole-growth modellr = 0.054 fls). Calculations with 
r = 0 and 0.100 fls give identical results. 
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TABLE I. Material parameters for spallation and fragmentation 
calculations. 

Copper PMMAal A533B Steel 

Po 8.924 glcm' 1.184 g/cm' 7.890 g/cm' 
Co 0.391 cm/Jl.s 0.276 cm/Jl.s 0.458 cm/Jl.s 
s 1.51 2.5 1.50 
T,. 2.0 2.0 
Yo 1.5 kbars 5.5 kbars 
Go 484 kbars 790 kbars 

a" 1.0003 1.0006 
a, 1.7 kbars 
r 0.054 

." lOP 

alPMMAis treated in these calculations as a fluid (no shear stre;"gth). but 
with the longitudinal sound speed of 0.276 cm/Jl.s substituted for the bulk 
velocity CO" 

The initial distention a o = 1.0003 is taken to be the 
measured porosity in the recovered sample at locations far 
from the spall plane: the actual porosity prior to shock load
ing was not reported. 18 The parameter 7 is determined from 
Eq. (13) and the measured void number density (107 cm- 3)at 
points far from the spall plane. This gives an average initial 
pore radius ao = 0.00019 cm and value of 7 = 0.054 f..ls. 

Two independent calculations were performed for 
7 = 0 and 7 = 0.100 f..lS with the result that the computed 
pressure histories were indistinguishable from the 7 = 0.054 
f..ls case (Fig. 7). Thus the abbreviated and simplified hole
growth model represented by Eqs. (32) can be used without 
loss of accuracy in describing the physical process. 

The calculated peak amplitude shown in Fig. 7 does not 
agree with the measured value. The same problem was en
countered by Seaman et al. ls and may have to do with the 
experimental measurement itself or with the equation of 

16S~~L-~~~~~~~~~~-J 
0.02 0.04 0.06 0.08 0.10 0.12 0.14' 0.16 
DISTANCE FROM IMPACT INTERFACE (em) 

FIG. 8. Comparison of calculated (solid line) and measured (data points) 
postimpact porosity in copper sample (SRI-S24). 
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state used for PMMA. In any event, the measured spall sig
nal is believed to be accurate, and no attempt is made to 
"force" the maximum stress amplitude into better agree
ment with the data. 

Comparison of the calculated final porosity, or void 
volume, with experimental measurement is shown in Fig. 8. 
The calculated distribution is narrower than measured, par
ticularly for porosities less than I %, but the overall agree
ment is reasonably good. 

An unexpected result of these calculations is the small 
value of 1] that is required to reproduce the measured spall 
signal in Fig. 7. The "viscosity" of metals (i.e., the maximum 
resolved shear stress divided by the plastic shear strain rate 
in states of rapid plastic deformation) is usually found to be 
on the order of anywhere from 103 to 105 P for conditions of 
homogeneous compressive deformation. 27

-
29 For heteroge

neous plastic deformation there exists substantial localized 
heating effects. Plastic shear strains of several thousand per
cent are developed at the expanding pore walls. The magni
tude of the corresponding temperature change can be esti
mated by calculating the plastic shear strain l' at the pore 
wall (r = a) from Eqs. (8a) and (24): 

l' = Er _ Eo = _ (ao - 1) -2/3 + (ao - 1)1/3. (44) 
a-I a-I 

Since plastic deformation is assumed to take place at con
stant shear stress (ar - afJ = - Yo), the plastic work per 
unit mass done at the expanding pore wall is 
Wp = - Yo1' /Po· For a o = 1.0003 and a = 1.1 (expansion 
to 10% porosity), Po = 8.9 g/cm3

, and Yo = 0.0015 Mbar, 
l' = 48 and Wp ~ 200 cal! g. If it is assumed that all the plas
tic work goes into heating, and the specific heat is taken to be 
0.3 cal!g K, then.:1 T~670 K. Thus the temperature at the 
expanding pore wall can be a substantial fraction of the melt
ing temperature. It is not quantitatively known what effect 
this has on the relationship between plastic shear strain rate 
and applied shear stress, but there presently exist no data 
that precludes the possibility of a value of 1] = 10 P in the 
heterogeneous spallation and void growth process envi
sioned here. Seaman et a/. 18 also found that a value of 1]( - 75 
P) slightly lower than expected was required for the NAG 
model to reproduce these data on copper, but did not specu
late on possible sources of this low value. 

Tensile stresses generated by detonation of a high ex
plosive4

,5.7 in contact with a metal are much greater than 
usually studied by plate-impact techniques. Also, as outlined 
in the introduction, the fracture process is considerably 
more complicated than in the plate-impact configuration 
since the spall location becomes one of the variables in addi
tion to the spall strength. 

To show the rather remarkable generality of the forego
ing model of dynamic ductile fracture of copper, as deter
mined by a single plate-impact experiment, a calculation is 
made of explosively produced spall fracture in copper as ob
served by the Los Alamos Scientific Laboratory flash-radio
graphic facility PHERMEX. 30 Figure 9 shows a flash radio
graph of 25-mm-thick copper plate in contact (below, not 
shown) with a 12.7-mm-thick piece of composition B-3 initi
ated with a P-40 lens (PHERMEX Shot 500, Ref. 30). The 
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FIG. 9. X radiograph (LASL PHERMEX Shot 5(0) ofspalling copper 
sample (25 mm thick) in contact with l2.7-mm composition B-3. The deto
nated explosive (not shown) lies below the copper sample. Two distinct spall 
layers are seen: 2 and 3 mm thick. 

radiograph is taken at a time of 27.6 f-ls after explosive initi
ation and shows two distinct spall planes-the first (at the 
top, closest to the free surface) plane is approximately 2 mm 
thick and the second plane is approximately 3 mm thick. 
Calculation of the loading history on the copper sample was 
performed by Mader with the numerical finite-difference 
code SIN31 which contains the necessary explosive burn rou
tines. With the known loading history, a spallation calcula
tion is made using the same pore-growth model used for the 
plate-impact experiment of Fig. 7: The material parameters 
remain exactly the same, only the loading conditions are 
changed. The results of this calculation are shown in Fig. 10 
at successive times following first application of the SIN
calculated stress history at a point 1 cm from the free surface. 

At t = 2.0 f-lS, the triangular-shaped particle-velocity 
pulse is just about to reflect from the free surface (1 cm from 
the left boundary). At 3.0 f-lS, the pulse has reflected, the 
particle velocity at the free surface has approximately dou
bled, and the porosity has just begun to grow (maximum at 
- 1 mm from the free surface). The porosity continues to 
grow until two rather distinct humps are formed at 2 and 5 
mm from the free surface. When the porosity reaches 30%, it 
is assumed that additional ductile hole growth is halted by 
brittle fracture between individual voids and complete spall 
ensues, as indicated by the two spikes in the porosity curve at 
t = 5.3 f-lS. 

The material between these two planes is still being 
pulled in tension at t = 5.3 f-ls, as indicated by the positive 
velocity gradient. Therefore additional fracturing should oc
cur in this layer. This is indeed the case as shown in Fig. 11 
(t = 6.0 f-ls), where a region about 2 mm thick is continually 
fractured, but the major discontinuities in particle velocity 
are at the two initial spall planes. Therefore one would pre
dict that two distinct spall layers would be seen, one 2 mm 
thick, closest to the free surface, and the second 3 mm thick. 
This, of course, is what is observed experimentally in Fig. 9. 

It is quite remarkable that the pore-growth model, 
whose parameters were derived from the plate-impact data 
at a peak tensile stress of - 15 kbars, would work so well in 
representing dynamic ductile fracture for tensile stresses ap
proaching 100 kbars. In addition to simply giving the correct 
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FIG. 10. Calculated particle velocities and porosities for LASL PHER
MEX Shot 500 based on ductile hole-growth model with material param
eters obtained from plate-impact test (SRI-S24). 

spall thicknesses, the theoretical calculation shows the un
usual way in which the porosity changes with time. Simple 
heuristic models of explosively induced spall (as discussed in 
the introduction) picture multiple spall fracture originating 
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FIG. 11. Final calculated fracture and porosity distribution for LASL 
PHERMEX Shot 500. The region between the two visible spall planes (i.e., 
those with particle velocity discontinuities) continues to break up after spall 
plane formation. 
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FIG. 12. X radiograph (LASL PHERMEX Shot 464) ofspaIling copper 
sample (25 mm thick) in contact with 25 mm of composition B-3. Note the 
"wispy," fractured nature of the material behind the first spall plane. 

first near the free surface and progressing back into the solid. 
The pore-growth model calculation presented here shows 
the second spall plane (at 5 mm from the free surface) as 
occurring first. 

Also, the calculation shows a multiply fractured seg
ment between the two spall planes while the radiograph of 
Fig. 9 does not. However, it is found experimentally that a 
change of the explosive thickness from 12.7 to 25.4 mm gives 
the result shown in Fig. 12 (PHERMEX Shot 464, Ref. 30). 
Here, the material between the two spall planes appears to be 
multiply fractured in almost exactly the way predicted by the 
pore-growth fracture model (see Fig. 11). 

These results are a consequence of, and highly sensitive 
to, the loading history applied by the high explosive. This is 
something that is calculated rather than measured, and 
therefore detailed conclusions about the way in which mate
rials fracture must be postponed until adequate measure
ment of these loading conditions are determined experi
mentally. 

Nevertheless, it is obvious that the theory presented 
here goes a long way in unifying the low-pressure (plate
impact) and high-pressure (explosive loading) spallation 
data. 

v. DYNAMIC FRACTURE OF EXPANDING RINGS 

Based on the dynamic ductile fracture properties of 
copper, determined in the previous section, and similar 
properties for A533B pressure-vessel steel, the fracture of 
expanding metal rings is now considered. 

For an initial distention of aD = 1.0003 and a value of as 
= 1.7 kbars, void growth in copper begins at a mean tensile 

stress given by Eq. (32); i.e., 

as aD 
Peq = - -In--- = - 13.8 kbars. 

aD a o - 1 

For an expanding ring, with only one nonzero principal 
stress component, (j ee, the mean tensile stress is ¥Tee. There
fore ductile hole growth in an expanding copper ring would 
not begin until (jee reached 41 kbars, which is very likely 
impossible. Because of homogeneous plastic shear deforma
tion in the absence of work-hardening, (jee is limited to Yo 

which is on the order of a kilobar or so. Even in the presence 
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of substantial work-hardening, it is unlikely that the yield 
strength would increase as much as 40 kbars. 

In the case of spallation under conditions of uniaxial 
strain, the stress state is predominantly hydrodynamic with 
a relatively small, superimposed deviatoric component. Ho
mogeneous plastic shear deformation under conditions of 
uniaxial strain cannot limit the magnitude of the mean ten
sile stress as it can in a simple uniaxial-stress tensile experi
ment. Thus the ductile fracture model based on growth of 
spherical voids under the influence of a mean tensile stress 
does not apply to fracture of expanding rings. One might 
think that this should have been obvious from the start, but 
that is not true. This conclusion stems from the fact that 
13Peq I:> Yo' If 13Peq I < Yo, spherical hole growth according 
to the model presented here would have been theoretically 
possible. 

The new theory that is needed in one which describes 
the plastic growth of voids under combined mean and devia
toric stress conditions. The case of pure hydrodynamic stress 
state would then simply be a special case, and spallation 
would also be encompassed by the more general analysis. 
Shockey et al. 32 propose a method of doing this for void 
growth in uniaxial tension by using a mathematical result of 
Rice and Tracey33 for the expansion of spherical voids in a 
nonhydrostatic stress field. This analysis gives ilia (see Fig. 
3) in terms of the mean stress and shear stress as r~ 00 • 

Instead of applying this result to the problem of an ex
panding ring, a purely phenomenological approach is used 
here. This is based on the data of Shockey et al.32 for the 

0.03 

0.02 I 
I 

I' 
0.01 I 

LIJ I 
~ O.ooa I 
=> .... ....J 0.006 
0 I > 

I 0 0.004 / 0 
I > 0.003 

LIJ • I 
> / 
..... 0.002 / 
c3: I ....J 
LIJ / 
a: I 

0.001 I 
0.0008 .; 

/ 
0.0006 

0.0004 L... __ ---L.._---'-_..L..-..J..--'-:--:-'":-:-' 
0.1 0.2 0.3 0.6 0.8 1.0 

PLASTIC STRAIN 

FIG. 13. Experimentally determined variation in relative void volume (po
rosity) and longttudinal plastic strain for A533B pressure-vessel steel sub
ject to uniaxial tensile loading. Catastrophic void coalescence and fracture 
occurs at a porosity of 3%. 
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FIG. 14. Ring geometry. The origin for the equivalent one-dimensional 
system is point A. The initial radius is '0' 

ductile fracture of A533B pressure-vessel steel. In simple 
tensile rupture experiments it is found that the fractional 
void volume (or plastic volume strain) is approximately 
e.; = 0.0006 at a longitudinal plastic strain of tf;P = 0.11. The 
longitudinal plastic strain t/JP is related to the shear strain yP, 
defined previously, according to yP = ~tf;P. The plastic vol
ume strain is a linear function of t/JP on a log-log scale up to 
e.; = 0.03 and t/JP = 1.0, at which point the material fails 
catastrophically. The experimental data are shown in Fig. 
13. 

For fracture and fragmentation in an expanding ring, 
one is interested in wave propagation around the circumfer
ence. Thus it is convenient to cast the nearly radially sym
metric two-dimensional ring problem in a one-dimensional 
form. 

The equations of motion for an expanding ring of radius 
r (initial radius ro) with single nonzero stress component u(!e 

as a function of e only (see Fig. 14) are 

j/!e = _ +e;;e}, (45) 

(46) 

where the total time derivatives in Eqs. (45) and (46) repre
sent the acceleration components of a material element. 
Equation (45) gives the acceleration in the circumferential 
direction due to wave propagation around the ring circum
ference, while Eq. (46) gives the radial acceleration due to 
hoop forces. 

To translate Eqs. (45) and (46) to an equivalent one-

. [- a/3a 
eP = 0 

o 

o 
-a/3a 

o 
o 1 [1/1' o + 0 

- a/3a 0 

in a coordinate system such that x I is in the circumferential 
direction and X 2 and X3 are the mutually perpendicular 
transverse directions. The first matrix in Eq. (54) represents 
the porosity change and the second represents homogeneous 
plastic shear deformation. The total volumetric plastic strain 
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dimensional problem, a Lagrangian circumferential coordi
nate h is defined in terms of the initial radius ro according to 
h = roe. Point A in Fig. 14 is arbitrarily chosen as the materi
al element h = 0, and the initial length of the one-dimension
al system is 2rrro. Conservation of mass requires that 

147) 

whereA is the cross-sectional area of the ring and subscript 0 
refers to initial conditions. With these definitions, Eqs. (45) 
and (46) can be written in Lagrangian form as 

- (aue ) A (aueo ) (48) 
Po ---at h = - ~ Jh / 
_ (aur ) A u(!(J 
Po at h = ~ --;;. (49) 

As the ring is driven outward, the material is being strained 
in the circumferential direction as a result of two effects: a 
strain rate u j r due to outward radial motion and a contribu
tion (1!r)au(Jae due to circumferential motion. Ifa velocity 
u is defined as 

(SO) 

where (ur > is the circumferential average of ur and therefore 
independent of e, 

I au (ur > laUe 
--=--+---. 
r ae r r ae (51) 

Therefore the velocity function u in Eq. (SO) contains both 
the effect of average radial straining and the circumferential 
motion. From Eqs. (48)-(50) one can then write 

_ (au) A (auee ) h (AU(!(! ) 
Po at h = - ~ Jh t + ?a ~ (52) 

for the equivalent one-dimensional system describing the 
motion ofa ring. The first term on the right-hand side ofEq. 
(52) is the driving force for circumferential motion, while the 
second term is an acceleration term due to the average hoop 
stress around the circumference. Initial conditions on the 
velocity variable u are obtained from a known initial out
ward velocity Vand Eq. (SO): u(h,O) = h V fro' 

The elastic-plastic stress-strain relationship for an ex
panding ring undergoing homogeneous plastic shear defor
mation and void growth is written as 

..:. E-(":''':'P) 
a(!(! = €-€ee, (53) 

where Eis Young's modulus of a porous material element 
and i is the total strain rate - (au/ ah ) t in the equivalent 
one-dimensional system. The plastic strain-rate tensor is of 
the form 

o 1 o , 
- !tf;P 

(54) 

I 
rate is - a/a which comes solely from the first matrix on 
the right-hand side ofEq. (54). Thus Eq. (53) becomes 

liee = E(i + a/3a -1/1'). (55) 

If the material under consideration is elastic-perfectly plas-
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tic (constant yield strength Yo), then aoo = Yo/a during 
plastic flow, i.e., the yield strength is reduced by the factor 
1/ a as a result of material porosity. Therefore an additional 
expression must be satisfied when plastic void growth 
occurs: 

UfiO = - (Yo/a) (a/a). (56) 

Finally, experimental data of Shockey et al. is used to give if!' 
in terms of a, a, and rfI'. A plot of the relative void volume 
- £ v = Ina as a function of rfI' for uniaxial-stress tension on 

A533B pressure-vessel steel is a straight line on a log-log 
graph, Fig. 13. Thus 

d In(lna) = k (57) 
d ImpP 

or 

a = ka Ina.!t:.. 
t/tP 

(58) 

Below a value of rfI' = 0.11, the plastic volume strain is as
sumed to be constant at 0.0006. From rfI' = 0.11 to 1.0, Eq. 
(58) applies with k = 1.74. At t/tP = 1.0, or -Ina = 0.03, 
catastrophic fracture occurs. 

Therefore Eqs. (55), (56), and (58), when integrated, give 
aoo , a, and rfI' for a known strain-rate history 
t = - (au/ ah ) t. These equations are combined with Eq. 
(52) and solved numerically with an initial random distribu
tion for the distension a to give the fragmentation response 
of an A533B steel ring. The statistical distribution of the 
distension is given in the Appendix. In the sample problems 
it is assumed that the cross-sectional area is initially uniform 
and that changes are small. It is also assumed that the initial 
radius is large enough to neglect the second term on the 
right-hand side ofEq. (52). The thermomechanical proper
ties of steel that are used in this problem are given in Table I. 

The results of these calculations for four independent 
samplings of the random variable if> (from which the initial 
distention a o is determined) defined in the Appendix are 
shown in Fig. 15. The steel ring (of initial circumference 
21Tro = 16 cm) is given an initial outward velocity of 
V = 0.01 cm/ps, and nA = 107 cm -I. The finite-difference 
calculation is performed with 100 zones and A h = 0.16 cm. 
Fracture occurs at elements that reach a relative void vol
ume, or porosity, of 0.03. This occurs at a time of approxi
mately 1.7 ms when the circumference has reached a value of 
- 33 cm. The final porosity in the unfractured elements gen
erally lies between 0.029 and 0.030; i.e., all computational 
zones are close to the point offracture at the time offragmen
tat ion when the circumferential stress is relieved. 

The four calculations shown in Fig. 15 (clockwise start
ing from the upper left-hand corner) resulted in 4, 2, 5, and 3 
intact segments or fragments as a result of the four indepen
dent random samplings of initial distention a o. This is simi
lar to experimental studies of radial fracture and fragmenta
tion in which one cannot reproduce exactly the same number 
of fragments in identical experiments, but only a statistical 
distribution. 

The calculated fragment distribution of Fig. 15 is due to 
the statistical variation in initial porosity and the assumption 
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FIG. 15. Calculated hoop stress, porosity, and fracture locations for impul
sively loaded steel ring. The only difference between the four calculations is 
in initial porosity assigned to each volume element according to the statisti
cal distribution given in the Appendix. 

that ductile void growth is the mechanism of failure. It is 
often observed that ductile fracture of expanding rings is 
preceded by necking, possibly due to a combination of initial 
porosity and variation in cross-sectional area. 34 The latter 
effect has been completely ignored in the computations 
shown here. However, it would be possible to include if in
formation were available on the variation in cross-sectional 
area due to the particular fabrication process. Taylor et al. 23 

considered the instability in stretching plates and shells due 
to variation in shell thickness. The theory was based on the 
formalism of hydrodynamics and neglected random materi
al property effects such as initial porosity and ductile hole 
growth. A combination of the effects of area variation and 
porosity distribution would perhaps lead to a physically 
more realistic description of the phenomenon of dynamic 
fracture of rings. This remains to be investigated. 

Another important effect that has been ignored here is 
that of adiabatic shear banding; this is the localization of 
plastic shear deformation yP = ~ t/tP to a number ofheteroge
neous regions of extremely large inelastic strain rather than 
the homogeneous deformation process treated here. The 
possible occurrence of adiabatic shear banding depends on a 
number of material properties: (i) low thermal conductivity, 
(ii) low work-hardening coefficient, and (iii) a substantial de
crease in the flow stress with increasing temperature. For 
materials in which adiabatic shear banding occurs, the frag
mentation process will differ from the ductile hole growth 
model presented here, and a modified theory will be con
structed. One of the necessary ingredients of such a theory is 
quantification of the type of flaw that leads to shear instabil
ity. These flaws have not yet been identified.35 

The calculations for A533B stainless steel that are 
shown here illustrate the kind of statistical treatment that 
can be undertaken to describe fracture and fragmentation of 
rings and shells. The development of a genuine quantitative 
theory that works for a range of materials and experimental 
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loading conditions will require pre- and postshot micros
tructural examination and identification of the actual flaws 
which lead to instability and the resulting fracture. 

VI. SUMMARY 

A ductile hole-growth model is developed which works 
well in describing spall fracture of copper for plate-impact 
and explosive loading conditions. Previous models have 
been found to work well in the incipient stages of ductile 
fracture, 16-19 while others seem to be more applicable to 
complete separation. IS One of the major differences in the 
model proposed here, as compared to other microscopic de
scriptions of ductile hole growth, 16.18 is the fact that the 
mean tensile stress around a single pore is applied at a finite 
radius determined by Eq. (3). This leads directly to a thresh
old mean stress as a function of the current distention, Eq. 
(29), analogous to the "strength function" of Cochran and 
Banner. IS This description thus tends to bridge the gap be
tween the low-damage and complete separation regimes of 
spall fracture. 

In particular, material parameters describing plate-im
pact spallation in copper work well in reproducing measured 
spall thicknesses in explosively loaded samples. The "spall 
gradient" model7 also gives the correct spall thickness, but 
does so because it is simply forced to. In the PHERMEX 
experiments a spall thickness 0, is measured radiographical
ly; this is the only experimental measurement. The maxi
mum tensile mean stress - Ps at the spall plane is then calcu
lated. 7 It is found that below the ultimate spall pressure Pmax 
(on the order of 102 kbars for most materials) a plot of 
Ps vs (jijos )'/2 forms a straight line. Therefore the spallation 
criterion defined by ( - ji) = [( - ji)/o] 1/2 (for - P <Pmax ) is 
absolutely guaranteed to give back the measured spall thick
ness 0,. The ductile hole-growth model presented here actu
ally predicts the locations of material separation and poros
ity near the spall plane. The agreement with the PHERMEX 
radiographs is somewhat remarkable in view of the approxi
mate method used to reproduce the explosive loading condi
tions. If additional work were to be done in the area of explo
sively produced spallation, it would be necessary to actually 
measure the loading history rather than relying totally on 
calculation. 

The influence of internal gas pressure has been included 
in the formal theory of ductile hole growth, but no calcula
tions were performed on spall fracture in reactive solids. 
Wackerle and Anderson36 have studied the problem of ex
plosive initiation in shock compression using an analysis 
similar to the one given here. Additional research is neces
sary to quantify the effect of pore pressure on dynamic ten
sile fracture in reactive media. 

As was stated in the introduction, one of the goals of 
this work was to relate spallation information and data to the 
fracture of expanding rings and shells. This was not 
achieved. Uniaxial-strain conditions associated with spall
ation produce a stress state which is predominantly isotropic 
with a smaller deviatoric effect added on. Therefore the duc
tile hole-growth model based on mean tensile stress alone is 
applicable. 
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In the case of expanding rings, the mean stress jO' 00 and 
the circumferential deviatoric stress pO' Of) are not indepen
dent and are of the same order of magnitude. Also, large 
homogeneous plastic shear strains precede hole growth in 
the expanding ring; consequently, a model describing ductile 
hole growth will have to include homogeneous shear defor
mation as well as nonisotropic stress fields. This paper pre
sents a phenomenological description of ductile fracture of 
an expanding ring. The essential ingredients of the kinds of 
things that must be included in such a theory are given here. 
These include identification and quantification of the domi
nant flaws that eventually grow to produce a fracture, and 
the appropriate one-dimensional differential equation de
scribing circumferential wave propagation (including initial 
conditions) of an expanding ring, Eq. (52). 

Some attempt has already been made to develop ductile 
fracture models for more general non isotropic stress and 
strain states.-~2.B.37 By continuing this line of investigation 
theoretically, complemented by careful experimental mea
surement and microscopic observation, the connection be
tween the fracture of expanding rings (by means of ductile 
hole growth, adiabatic shear banding, brittle failure, or oth
er) and spallation can eventually be made. 
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APPENDIX 

The initial porosity if; or distension a = 1/( I - if; ) is a 
random variable which depends on the volume of the materi
al element being considered. Let if; be the average porosity of 
a representative sample containing a very large number of 
voids. As one samples smaller and smaller elements, the sta
tistical chance for significant departure from if; increases. 
Poisson statistics are used to obtain a statistical distribution 
of if;. 

Let the porosity be due to a large number of small voids, 
n per unit volume, each of the same size (radius ao) and ran
domly distributed throughout the sample. Let the average 
porosity of the entire sample by if;. If the total volume V is 
divided into a number of elements each of volume .1 V, then 
the probability of the volume.1 V containing at least) voids is 
given by the Poisson distribution38

: 

P(j,.1V)=e n.1v~(n.1V)I. (AI) L ., 
i~O I. 

The number) is related to the porosity if; according to 

) = 3if;.1 V /41Ta6. (A2) 

For large n.1 Vthe Poisson distribution approaches the nor
mal distribution with expectation n.1 Vand variance, n.1 V 38 
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i.e., 

P(jAV)~-- e-z'dz, I JU 
V1T - ~ 

(A3) 

where 

u = j - njj V = (njj V\1I2 (4) __ i), 
(2njjV)1/2 2-) 4> 

(A4) 

where i = j41Ta6n. Thus the probability that the porosity is 
less than or equal to 4> in a volume element jj V can be ob
tained from the normal random variable u, with expectation 
o and unit variance (this is generated numerically with a 
random number routine), and Eq. (A4) according to 

4> = i(1 + C~ vY12

u). (A5) 

If one-dimensional finite-difference calculations are being 
performed, jj V = Ajj h, where A is the cr-oss-sectional area of 
the ring and jjh is the Lagrangian step size. Therefore, for 
smaller and smaller jjh, the departure of 4> from the average 
i increases. This is an important consideration in any mathe
mathetical model of statistical fracture or fragmentation. 

One might argue that not all of the holes are the same 
size, and additional considerations are necessary. Future sta
tistical analyses can take these effects into account. 
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