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Abstract

In this paper we discuss nonlinear anisotropic anelasticity formulated based on the two multiplicative

decompositions F =
e

F
a

F and F =
a

F
e

F. Using the Bilby-Kröner-Lee decomposition F =
e

F
a

F one can define
a Riemannian material manifold (the natural configuration of an anelastic body) whose metric explicitly

depends on the anelastic deformation
a

F. We call this the global material intermediate configuration.
Deformation is a map from this Riemannian manifold to the flat ambient space. Using the reverse

decomposition F =
a

F
e

F, the reference configuration is a (flat) submanifold of the Euclidean ambient
space, while the global intermediate configuration is a Riemannian manifold whose metric explicitly

depends on the elastic deformation
e

F. We call this the global spatial intermediate configuration. We

show that the direct F =
e

F
a

F and reverse F =
a

F
e

F decompositions correspond to the same anelastic

motion if and only if
e

F and
e

F are equal up to local isometries of the reference configuration. We discuss
the constitutive equations of anisotropic anelastic solids in terms of both intermediate configurations. It
is shown that the two descriptions of anelasticity are equivalent in the sense that the Cauchy stresses
calculated using them are identical. We note that, unlike isotropic solids, for an anisotropic solid the
material metric is not sufficient for describing the constitutive behavior of the solid; the energy function

explicitly depends on
a

F (or
a

F) through the structural tensors.
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4 Concluding Remarks 14

1 Introduction

Anelasticity is the study of finite deformations of bodies that, in addition to elastic deformations, undergo
non-elastic deformations or microstructural changes due to other physical, chemical, or biological processes,
e.g., bulk growth and remodelling, accretion, swelling in gels, plasticity, thermal expansion/contraction,
diffusion, etc. We refer to strains due to non-elastic deformations as anelastic strains or eigenstrains.1 As
an example, in bulk growth different material points may change in size or shape even in the absence of
external loads [Epstein and Maugin, 2000, Ben Amar and Goriely, 2005, Yavari, 2010, Goriely, 2017]. Other
examples of anelastic strains appear in accretion [Tomassetti et al., 2016, Sozio and Yavari, 2017, 2019, Zurlo
and Truskinovsky, 2017, 2018, Truskinovsky and Zurlo, 2019], thermoelasticity [Ozakin and Yavari, 2010,
Sadik and Yavari, 2017b], and solids with distributed defects [Yavari and Goriely, 2013b, 2012a,b]. One
should note that stress in anelasticity explicitly depends on the elastic strain, and not the total strain.

A fundamental assumption of nonlinear anelasticity of simple materials2 is that locally the elastic and
anelastic deformations can be decoupled through a multiplicative decomposition of the deformation gradient

into elastic and anelastic parts: F =
e

F
a

F, where the anelastic strains are induced from the material tensor

field
a

F while the elastic strains explicitly depend on the two-point tensor field
e

F. It has been known that

the decomposition F =
e

F
a

F is not unique as F = (
e

FQ)(Q−1
a

F) is another equivalent decomposition for
any isometry Q [Casey and Naghdi, 1980].3 Although the total strain is compatible, neither the elastic
nor the anelastic part needs to be compatible. The incompatibility of elastic strain (and consequently
anelastic strain) is the source of residual stresses in anelastic bodies. Unlike elastic bodies that have a
stress-free reference configuration that can be isometrically embedded into the Euclidean ambient space,
anelastic bodies do not have such Euclidean reference configurations, in general. Anelastic bodies are non-
Euclidean in this sense. Non-Euclidean solids—a term that was coined by Henri Poincaré [Poincaré, 1905]—
has been used interchangeably for anelastic bodies in the recent literature [Zurlo and Truskinovsky, 2017,
2018, Truskinovsky and Zurlo, 2019].

The ideas leading to the decomposition F =
e

F
a

F originated from different scientific communities [Sadik
and Yavari, 2017a]. The first systematic study of nonlinear anelasticity is due to Eckart [1948]. Eckart
suggested that a theory of anelasticity can be formulated by modifying two fundamental assumptions of
the classical theory of elasticity that he called “principle of a constant relaxed state”, and the “principle of
relaxability-in-the-large”. The first “principle” refers to assuming a fixed stress-free reference configuration
independent of applied loads and the history of deformation. The second “principle” is equivalent to assuming
a Euclidean stress-free reference configuration. Motivated by earlier works of geometers [Eisenhart, 1926],
Eckart suggested replacing “relaxability-in-the-large” by “relaxability-in-the-small”. He clearly saw the
connection between anelasticity and Riemannian geometry, and explicitly modeled anelastic strains by a
Riemannian metric. Independently, Kondo [1949] suggested that the natural framework for formulating the
mechanics of residually-stressed bodies is Riemannian geometry. Kondo [1949] used the terms “free manifold”
and “free space” for the natural configuration of a residually-stressed body. Later on he coined the term
“material manifold” [Kondo, 1950a]. Kondo in his attempts of modeling plasticity using Riemannian and

1Eigenstrain is a hybrid German-English term whose origin is in the pioneering paper of Hans Reissner [Reissner, 1931]
(Eigenspannung means proper or self stress). A few decades after the work of Reissner, Mura [Kinoshita and Mura, 1971, Mura,
1982] popularized this term. In the mechanics literature, for the same concept, a few other terms have been used: initial strain
[Kondo, 1949], nuclei of strain [Mindlin and Cheng, 1950], transformation strain [Eshelby, 1957], inherent strain [Ueda et al.,
1975], and residual strain [Ambrosi et al., 2019]. For infinite bodies, and in the setting of linear elasticity, the first systematic
study of eigenstrains and the stresses they induce is due to Eshelby [1957].

2A material whose elastic response at any point depends only on the first deformation gradient (and its evolution) at that
point is called simple [Noll, 1958].

3Casey and Naghdi [1980] claimed that there is an SO(3)-ambiguity in the decomposition F =
e

F
a

F. However, this is not

true for elastically anisotropic anelastic solids. Assuming that
e

FQ is an elastic deformation gradient implies that W (
e

F, G̊, g̊) =

W (
e

FQ, G̊, g̊), where W is the energy function, implies that Q is a material symmetry. Denoting the material symmetry group

by G̊, for an anisotropic solid there is a G̊-ambiguity (and not an SO(3)-ambiguity) in the multiplicative decomposition. In
particular, this implies that for triclinic solids the multiplicative decomposition is unique.
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non-Riemannian geometries [Kondo, 1950a,b, 1952] was motivated by the works of Élie Cartan [Cartan,
1926, 1928].4

These early works focused on modeling anelastic strains as Riemannian metrics. A one-dimensional

analogue of F =
e

F
s

F, where
s

F is the swelling part of the deformation gradient was first introduced by
Flory and Rehner [1944], see also [Duda et al., 2010]. In finite plasticity the multiplicative decomposition
first appeared in [Bilby et al., 1957, Page 41, Eq. (12)], and in [Kröner, 1959, Page 286, Eq. (4)]. This
decomposition was popularized in the plasticity literature by Lee and Liu [1967] and Lee [1969]. In nonlinear
thermoelasticity it is due to Stojanović et al. [1964] and Stojanović [1969]. In the mechanics of bulk growth it
is due to Kondaurov and Nikitin [1987], Takamizawa and Hayashi [1987], Takamizawa and Matsuda [1990],
and Takamizawa [1991]. Similar ideas can also be found in [Tranquillo and Murray, 1992, 1993]. The
multiplicative decomposition was popularized in biomechanics by Rodriguez et al. [1994]. In the past two
decades the multiplicative decomposition of deformation gradient has become a popular modeling tool in
nonlinear solid mechanics, and especially in biomechanics [Goriely, 2017]. We should mention that there
have been several recent works on different aspects of the multiplicative decomposition of the deformation
gradient [Neff, 2008, Neff et al., 2009, Reina and Conti, 2014, Casey, 2017, Del Piero, 2018, Du et al., 2018,
Goodbrake et al., 2021].

In linear anelasticity, the total linearized strain is additively decomposed into elastic and anelastic strains:
ε =

e
ε +

a
ε. This decomposition is unambiguous for linearized strain. However, this is not the case for

nonlinear anelasticity as there are different measures of strain and even for a given measure of strain there
is more than one possible decomposition [Nemat-Nasser, 1979]. In the case of deformation gradient another

possibility is F =
a

F
e

F,5 which following Lubarda [1999] we call the reverse decomposition. Clifton [1972]
considered the polar decompositions of the different elastic and anelastic deformation gradients and under
certain assumptions concluded that for isotropic solids the two decompositions are equivalent. Lubarda [1999]

restricted his analysis of the reverse decomposition to isotropic solids and assumed that
e

F =
e

F.6 He showed
that there is a duality between the constitutive formulations of finite plasticity using the two decompositions
for isotropic solids. He also concluded that the Bilby-Kröner-Lee decomposition is preferable in the case
of anisotropic solids. In [Davoli and Francfort, 2015] it was concluded that the reverse decomposition
corresponds to a more natural dissipation functional.

The main contributions of this paper can be summarized as follows:
• A global spatial intermediate configuration is constructed for anisotropic anelasticity.
• The relation between the spatial intermediate configuration and the material intermediate configuration

(material manifold) is established.

• In the decompositions F =
e

F
a

F =
a

F
e

F, a priori there is no relation between
e

F and
e

F (or between
a

F and
a

F). When the direct and reverse decompositions represent the same anelstic deformation, we find such a

relationship between
e

F and
e

F, see (3.9). This result is summarized in Theorem 3.1.
• Constitutive equations of anisotropic solids are formulated with respect to the global spatial intermediate

configuration.
• We show that for anisotropic solids the two decompositions are equivalent, i.e., Cauchy stresses calculated

with respect to the two decompositions are identical (Theorem 3.5). This is a generalization of the works
of Clifton [1972] and Lubarda [1999].

This paper is organized as follows. Nonlinear elasticity is tersely reviewed in §2. In §3 the geometry and
the constitutive equations of nonlinear anelasticity are discussed. Material metric and some strain tensors
are defined in §3.1 and §3.2. In §3.3 the global material intermediate configuration is discussed. In §3.4 we
construct a global spatial intermediate configuration that reflects the reverse multiplicative decomposition

4Interestingly, in his development of non-Riemannian geometries, and more specifically torsion of a connection, Cartan [1922]
was motivated by the work of Cosserat brothers on generalized continua [Cosserat and Cosserat, 1909]. See [Scholz, 2019] for
a detailed history and discussion.

5Note that F = (
a

FQ−1)(Q
e

F) is an equivalent decomposition for any invertible Q. Material-frame-indifference implies that

the two multiplicative decompositions F =
a

F
e

F and F = (
a

FQ−1)(Q
e

F) are equivalent for any Q ∈ SO(TxC) = SO(3). We
observe that for anisotropic solids there is much more freedom in choosing the elastic and anelastic deformations in the reverse
decomposition compared to the Bilby-Kröner-Lee decomposition.

6Note that
e

F and
e

F have the same tensorial character and
e

F =
e

F makes sense intrinsically.
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F =
a

F
e

F. We make a connection between the geometries of the two intermediate configurations. The
constitutive equations of elastically anisotropic anelastic bodies are discussed in §3.5, and it is shown that
the two decompositions are equivalent for anisotropic solids. The concluding remarks are given in §4.

2 Nonlinear anisotropic elasticity

2.1 Kinematics and strain tensors

Deformation of an elastic body is a time-dependent map ϕt : (B, G̊) → (S, g̊), where S is the Euclidean

ambient space, and g̊ is the Euclidean background metric. B is a submanifold of S, and G̊ = g̊|B.7 In
elasticity (and anelasticity) the local change of length is a quantity of interest and that is why the reference
configuration and the ambient space are equipped with Riemannian metrics. For a fixed value of t we denote
ϕ = ϕt, and C = ϕ(B) ⊂ S. Therefore, at any instant of time, deformation is a map from the stress-
free reference configuration B to the current configuration C. Therefore, we write deformation as the map
ϕ : (B, G̊)→ (C, g̊).

In nonlinear elasticity deformation gradient F is the tangent map of the deformation map ϕ. More
precisely, F(X) = Tϕ|π−1(X), where π : TB → B is the natural projection in the tangent bundle onto the
base space. In other words, F(X) is the restriction of Tϕ to the fiber over X. The tangent map Tϕ is
a vector bundle morphism that maps the tangent bundle TB to the tangent bundle TC, and hence it also
includes ϕ as the map on the base space. As S, and consequently B and C, are parallelizable, TB and TC
are trivial, and hence one can write Tϕ = (ϕ,F), where F is understood as a tensor field that maps tangent
vector fields on B to tangent vector fields on C. Note that F(X) is a linear mapping that maps the vector
U ∈ TXB to F(X)U ∈ Tϕ(X)C. Let us consider coordinate charts {XA} : B → Rn and {xa} : C → Rn, for
B and C, respectively (n = 2 or 3). With respect to these coordinate charts deformation gradient has the
following representation

F(X) =
∂ϕa(X)

∂XA

∂

∂xa
⊗ dXA = F aA(X)

∂

∂xa
⊗ dXA . (2.1)

To avoid self-penetration of matter, a necessary condition is that detF(X) > 0, ∀X ∈ B, i.e., ϕ is locally
invertible and orientation preserving. The dual of F is defined as

F? : T ∗ϕ(X)C → T ∗XB , 〈α,FV〉 = 〈F?α,V〉 , ∀V ∈ TXB, α ∈ T ∗xC , (2.2)

where T ∗ϕ(X)C and T ∗XB denote the cotangent spaces of Tϕ(X)C and TXB, respectively, and 〈., .〉 is the natural

pairing of a 1-form and a vector: 〈α,v〉 = αa v
a. F? has the following coordinate representation

F?(X) = F aA(X) dXA ⊗ ∂

∂xa
. (2.3)

The transpose of deformation gradient is defined as8 FT̊ : TxC → TXB, 〈〈FV, v〉〉̊g = 〈〈V,FT̊v〉〉G̊, ∀V ∈
TXB, v ∈ TxC, where 〈〈, 〉〉G̊ and 〈〈, 〉〉̊g are the inner products induced by the metrics G̊ and g̊, respectively.

FT̊ has the following representation

FT̊(X) = (F T̊(X))Aa
∂

∂XA
⊗ dxa = g̊ab(x)F bB(X) G̊AB(X)

∂

∂XA
⊗ dxa . (2.4)

Note that FT̊ = G̊]F?g̊, where G̊] is the inverse of G̊, i.e., G̊AC G̊CB = δAB . For V a vector field on B,
ϕ∗V = Tϕ ·V ◦ϕ−1 = F ·V ◦ϕ−1 is a vector field on C ⊂ S—the push-forward of V by ϕ. Similarly, if v is

7Our notation is slightly different from that of Marsden and Hughes [1994]. We use g̊ and G̊ for metrics of the Euclidean am-
bient space and the induced Euclidean metric in the reference configuration. We reserve g and G for the (non-flat) Riemannian
metrics of the spatial and material intermediate configurations, respectively.

8We use (.)T̊ when the metrics G̊ and g̊ are used in calculating the transpose. In §3, we will use the notation (.)T for
transpose calculated using the metrics G and g̊, where G is the material metric that as we will see in §3 explicitly depends on
the local anelastic deformation.
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a vector field on C = ϕ(B), the pull-back of v by ϕ is defined as ϕ∗v = T (ϕ−1) · v ◦ ϕ = F−1 · v ◦ ϕ, which
is a vector field on B. The pull-back and push-forward of tensor fields are defined similarly.

The right Cauchy-Green strain is defined as C[ = ϕ∗g̊ = F? g̊ F. Note that the two Riemannian
manifolds (C, g̊) and (B,C[) are isometric. Therefore, the deformation can be equivalently described by

the map idB : (B, G̊) → (B,C[). The left Cauchy-Green deformation tensor is defined as B] = ϕ∗g̊], and
in components BAB = (F−1)Aa(F−1)Bb g̊

ab, where g̊] is the inverse of g̊, i.e., g̊ac g̊cb = δab. The spatial
analogues of C[ and B] are denoted by c[ and b] (the Finger deformation tensor), respectively, and are

defined as c[ = ϕ∗G̊ and b] = ϕ∗G̊
], with their corresponding components cab = (F−1)Aa(F−1)Bb G̊AB and

bab = F aA F
b
B G̊

AB , respectively. Note that c[ = ϕ∗G̊ is the spatial analogue of C[. This means that the
two Riemannian manifolds (B, G̊) and (C, c[) are isometric. Therefore, the deformation can be equivalently
described by the map idC : (C, c[)→ (C, g̊). In summary, one has the following measures of strain:

C[ = ϕ∗g̊ , C = G̊]C[ = FT̊F ,

b] = ϕ∗G̊
] , b = b]g̊ = FFT̊ ,

B] = ϕ∗g̊] , B = B]g̊ = F−1F−T̊ ,

c[ = ϕ∗G̊ , c = g̊]c[ = F−T̊F−1 .

(2.5)

Note B = C−1 and b = c−1. The following commutative diagram summarizes the three equivalent descrip-
tions of motion in nonlinear elasticity.

(B, G̊)

idB
��

idB // (B,C[)

ϕ

��

(B, G̊)

ϕ

��

ϕ
// (C, g̊)

idC

��

(C, c[) idC // (C, g̊)

(2.6)

The three horizontal maps describe the same elastic deformation while the vertical maps are isometries.9 In
this paper we use dotted arrows to emphasize that a map is an isometry.

The principal invariants of b (and C) are defined as [Ogden, 1997]: I1 = trb = baa = bab g̊ab, I2 =
1
2

(
I2
1 − trb2

)
= 1

2

(
I2
1 − bab bba

)
= 1

2

(
I2
1 − babbcd g̊ac g̊bd

)
, and I3 = detb. Note that

trb = tr̊g(ϕ∗G̊
]) = trϕ∗g̊ G̊

] = trG̊] ϕ
∗g̊ = trG̊] C

[ = trC ,

detb = det(b]g̊) = detb] det g̊ = det(ϕ∗G̊
]) det g̊ = det(FG̊]F?) det g̊

= det G̊] det(F?g̊F) = det(C[G̊]) = detC .

(2.7)

We assume a hyperelastic solid, i.e., there exists an energy function W̊ = W̊ (X,F, G̊, g̊). As the focus of
this paper is on kinematics and constitutive equations of anelasticity we will not discuss the balance laws
(see Sozio and Yavari [2020] for discussions on balance laws in anelasticity).

2.2 Constitutive equations in nonlinear elasticity

We restrict ourselves to hyper-elastic solids, i.e., assume the existence of an energy function that for a simple
material depends on the deformation gradient. However, as deformation gradient is a two-point tensor,
the energy function (which is a scalar) must explicitly depend on the metrics of the reference and current

configurations as well, i.e., W̊ = W̊ (X,F, G̊, g̊).

9The Lagrangian strain calculated using the first two rows is 1
2

(
C[−G̊

)
, while using the third row one obtains its pushforward,

i.e., 1
2

(
id∗C g̊ − c[

)
= 1

2

(̊
g − c[

)
= 1

2
ϕ∗

(
C[ − G̊

)
.
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2.2.1 Material symmetry in elasticity

The material symmetry group G̊X of an elastic body made of a solid with the energy function W̊ at a point
X with respect to the Euclidean reference configuration (B, G̊) is defined as [Šilhavý, 2013]

W̊ (X,FK̊, G̊, g̊) = W̊ (X,F, G̊, g̊) , ∀ K̊ ∈ G̊X 6 Orth(G̊) , (2.8)

for all deformation gradients F, where K̊ : TXB → TXB is an invertible linear transformation, and Orth(G̊) =

{Q̊ : TXB → TXB | Q̊T̊ = Q̊−1}. The condition Q̊T̊ = Q̊−1 is equivalent to Q̊∗G̊ = G̊, or Q̊−?G̊Q̊−1 = G̊.
When G is a subgroup of H , this is denoted as G 6 H . For hyperelastic solids, objectivity (material-frame-
indifference) requires that the energy function depend on the deformation through the right Cauchy-Green

deformation tensor C[, i.e., W = W (X,C[, G̊). This implies that the material symmetry group G̊X of a

hyperelastic solid is the subgroup of G̊-orthogonal transformations Orth(G̊) such that

W (X, K̊∗C[, G̊) = W (X,C[, G̊) , ∀ K̊ ∈ G̊X 6 Orth(G̊) , (2.9)

where K̊∗C[ = K̊?C[K̊. The material symmetry group can be characterized using a finite collection of
structural tensors ζ̊i of order µi, i = 1, . . . , N [Liu, 1982, Boehler, 1987, Zheng and Spencer, 1993, Zheng,
1994, Lu and Papadopoulos, 2000, Mazzucato and Rachele, 2006]

Q̊ ∈ G̊ 6 Orth(G̊) ⇐⇒ 〈Q̊〉µ1 ζ̊1 = ζ̊1 , . . . , 〈Q̊〉µN ζ̊N = ζ̊N . (2.10)

The set of structural tensors is a basis for the space of tensors that are invariant under the action of the group
G̊. The µ-th power Kronecker product 〈Q̊〉µ of a G̊-orthogonal transformation Q̊ for a µ-th order tensor ζ̊ is

defined as (〈Q̊〉µζ̊)Ā1...Āµ = Q̊Ā1
A1 . . . Q̊

Āµ
Aµ ζ̊

A1...Aµ
. Notice that 〈Q̊〉m (v1 ⊗ · · · ⊗ vm) = Q̊v1⊗· · ·⊗Q̊vm,

where vi ∈ TXB, i = 1, . . . ,m, are arbitrary vectors. Eq. (2.10) tells us that the material symmetry group

G̊ is the invariance group of the set of the structural tensors ζ̊i, i = 1, . . . , N . The energy function has the
following functional form

W = Ŵ (X,C[, G̊, ζ̊1, . . . , ζ̊N ) . (2.11)

When structural tensors are considered as arguments of the energy function, the energy function becomes
an isotropic function of its arguments—the so-called principle of isotropy of space [Boehler, 1979].

Instead of using the set of tensors {C[, G̊, ζ̊1, . . . , ζ̊N}, one can use a corresponding set of isotropic
invariants. According to a theorem by Hilbert for any finite collection of tensors there exists a finite set of
isotropic invariants—the integrity basis for the set of isotropic invariants of the collection [Spencer, 1971].
Let us denote the integrity basis by Ij , j = 1, . . . ,m. Thus, one can write W = W (X, I1, ..., Im). In terms
of the integrity basis, the second Piola-Kirchhoff stress tensor has the following representation [Doyle and
Ericksen, 1956, Marsden and Hughes, 1994]

S = 2
∂Ŵ

∂C[
=

m∑
j=1

2Wj
∂Ij
∂C[

, Wj = Wj(X, I1, ..., Im) :=
∂W

∂Ij
, j = 1, . . . ,m , (2.12)

where the second Piola-Kirchhoff stress S has the following relationship with the first Piola-Kirchhoff and
Cauchy stresses: SAB = (F−1)AaP

aB = J(F−1)Aa(F−1)Bb σ
ab.

2.2.2 Covariant constitutive equations

In nonlinear elasticity, conservation of mass and the balance of linear and angular momenta can be derived
by postulating the balance of energy and its invariance under rigid body translations and rotations of the
Euclidean ambient space [Green and Rivlin, 1964]. This approach was generalized to nonlinear elasticity in
a Riemannian ambient space by Hughes and Marsden [1977] and led to a covariant formulation of nonlinear
elasticity. Covariant elasticity was further developed in [Marsden and Hughes, 1994, Simo and Marsden,
1984, Yavari et al., 2006, Yavari and Golgoon, 2019].
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Let us consider a body with an energy function W = W̊ (X,F, G̊, g̊), and a diffeomorphism ξt : S → S,
which can be thought of a change of coordinates in the ambient space or a mapping of the ambient space
to itself. Spatial covariance of the energy function is the invariance of the energy function under any such
diffeomprphism, i.e., W̊ (X, ξt∗F, G̊, ξt∗g̊) = W̊ (X,F, G̊, g̊) (note that ξt∗G̊ = G̊). Marsden and Hughes

[1994] proved that spatial covariance of energy function implies that W̊ (X,F, G̊, g̊) = W (X,C[, G̊).
Let us next consider a material (referential) diffeomorphism Ξ : B → B. A homogeneous energy

function W (C[, G̊) is materially covariant if it is invariant under any material diffeomorphism Ξ, i.e.,

W (Ξ∗C
[,Ξ∗G̊) = W (C[, G̊). For inhomogeneous bodies material covariance is defined locally and using

local diffeomorphisms such that Ξ(X) = X. Marsden and Hughes [1994] showed that material covariance
of energy function implies isotropy. They suggested that a covariant description of non-isotropic materials
requires some additional variables in the energy function. Material covariance was further studied by Lu
and Papadopoulos [2000] and Lu [2012]. Lu [2012] showed that when structural tensors are included as
arguments of the energy function, in addition to the material metric and the right Cauchy-Green tensor, the
energy function becomes a materially covariant function, i.e.,

Ŵ (X,Ξ∗C
[,Ξ∗G̊,Ξ∗ζ̊1, . . . ,Ξ∗ζ̊N ) = Ŵ (X,C[, G̊, ζ̊1, . . . , ζ̊N ) . (2.13)

Lu [2012] also showed that spatial and material covariance of an energy function imply the principle of
isotropy of space [Boehler, 1979], i.e., the energy function of an anisotropic solid is an isotropic function of
its arguments when structural tensors are included.

3 Nonlinear anisotropic anelasticity

In this section we first review the global intermediate configuration of nonlinear anelasticity corresponding

to the Bilby-Kröner-Lee decomposition F =
e

F
a

F following an approach similar to that of [Goodbrake et al.,
2021]. We next construct a global intermediate configuration that corresponds to the reverse multiplicative

decomposition F =
a

F
e

F. We then make a connection between the two intermediate manifolds. Finally, we
will discuss constitutive equations for elastically anisotropic anelastic solids and will show the equivalence of
the two decompositions.

For factorizations of the tensor field F =
e

F
a

F =
a

F
e

F we are interested in constructing the corresponding
factorizations of ϕ : (B, G̊) → (S, g̊) through some Riemannian manifolds that we call global material and
spatial intermediate configurations. We assume that the maps

a

F(X) : TXB → TXB ,
e

F(X) : TXB → Tϕ(X)C ,
e

F(X) : TXB → Tϕ(X)C ,
a

F(X) : Tϕ(X)C → Tϕ(X)C ,
(3.1)

are invertible. Here, we have assumed that in both decompositions the local elastic deformations are two-

point tensors. In the direct decomposition instead of (3.1)1 one can assume that
a

F(X) : TXB → Tϕ(X)C, and
e

F(X) : Tϕ(X)C → Tϕ(X)C. Similarly, in the reverse decomposition one can assume that
e

F(X) : TXB → TXB,

and
a

F(X) : TXB → Tϕ(X)C. It is important to clearly define the tensor character of the different fields.10

3.1 Material metric in anelasticity

The rest (natural) configuration of an anelastic body cannot be isometrically embedded into the Euclidean
ambient space, in general. In this sense an anelastic body is non-Euclidean and the natural distances in
its natural configuration are measured using a metric—the material metric—that explicitly depends on the

local anelastic deformations. Knowing that
a

F is a linear map from TXB to itself and given the (Euclidean)

metric G̊ one can define another metric G =
a

F∗G̊. Anelastic strain (or eigenstrain) can be visualized as

10An example of ignoring the tensor character of tensor fields in elasticity is how deformation gradient has been related to
the displacement field in the literature. This has led to the incorrect view that linear elasticity is not frame indifferent, see
[Steigmann, 2007, Yavari and Ozakin, 2008].
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follows [Yavari, 2021]. Given a vector W ∈ TXB, it has the length square 〈〈W,W〉〉G̊, where 〈〈, 〉〉G̊ is the

inner product induced by G̊. The anelastic deformation maps this vector to the vector
a

FW in the Euclidean

reference configuration (B, G̊) and its length square is 〈〈
a

FW,
a

FW〉〉G̊. This is the natural square length

of the vector. From the definition of pull-back of a metric, one has 〈〈
a

FW,
a

FW〉〉G̊ = 〈〈W,W〉〉a
F∗G̊

, where

G =
a

F∗G̊ =
a

F? G̊
a

F. In components, (
a

F∗G̊)AB =
a

FMA

a

FNB G̊MN , where {XA} is a coordinate chart

for B.11 In summary, the material metric is related to the flat Euclidean metric G̊ and the local anelastic

deformation
a

F as G =
a

F∗G̊.

3.2 Strain tensors in anelasticity

In anelasticity, the elastic strains are defined by replacing F with
e

F in (2.5). In the geometric approach,

strain tensors are defined by replacing G̊ with G in (2.5), while the transpose operator (.)T is defined using
g̊ and G. Hence, one has the following strains

e

C[ =
e

F∗g̊ ,
e

C = G̊]
e

C[ =
e

FT̊
e

F , C[ = ϕ∗g̊ , C = G]C[ = FTF ,
e

b] =
e

F∗G̊
] ,

e

b =
e

b]g̊ =
e

F
e

FT̊ , b] = ϕ∗G
] , b = b]g̊ = FFT ,

e

B] =
e

F∗g̊] ,
e

B =
e

B]G̊ =
e

F−1
e

F−T̊ , B] = ϕ∗g̊] , B = B]G = F−1F−T ,

e
c[ =

e

F∗G̊ ,
e
c = g̊]

e
c[ =

e

F−T̊
e

F−1 , c[ = ϕ∗G , c = g̊]c[ = F−TF−1 .

(3.2)

It should be noticed that the strain tensors obtained starting from the material metric tensors G̊ and G are
the same, viz.

e

b = b ,
e

b] = b] ,
e
c = c ,

e
c[ = c[ . (3.3)

This is not the case for the strain tensors obtained by pulling back the Euclidean ambient metric g̊, as

e

B =
a

F∗B ,
e

B] =
a

F∗B
] ,

e

C =
a

F∗C ,
e

C[ =
a

F∗C
[ . (3.4)

3.3 The global material intermediate configuration

One can write the following factorization of the total deformation:

(B, G̊)
idB−−→ (B,G)

ϕ−→ (C, g̊) . (3.5)

We call (B,G) the global material intermediate configuration. The intermediate configuration is unique up
to isometry by construction (equality of elastic strain). This configuration is what has also been called the
material manifold in the literature [Kondo, 1950a, Ozakin and Yavari, 2010, Yavari, 2010, Lu, 2012, Yavari
and Goriely, 2012a,b, 2013b]. Note that the Riemannian manifold (B,G) is the natural configuration of the

anelastic body. The local anelastic deformations are encoded in the metric G =
a

F∗G̊ [Yavari, 2021]. Note
that the local anelastic deformations are fully encoded in the material metric only in the isotropic case [Sozio
and Yavari, 2020]; for elastically anisotropic anelastic solids one would need to include structural tensors

that explicitly depend on
a

F as we will discuss in §3.5.

It should be noted that, in general,
a

F is incompatible, i.e., it is not the tangent of any map from B
to itself. Incompatibility of

a

F is a necessary condition for non-flatness of the material metric G, which is

11In nonlinear elasticity strain is usually defined using line elements in the reference and current configurations. Instead of
using vectors, one can define the material metric in terms of line elements as follows. The line element at X ∈ B associated
with G̊ is written as d̊s2 = G̊AB(X) dXAdXB . This is the natural line element in the absence of eigenstrains (the natural
distance of two points with coordinates XA and XA + dXA is d̊s). Let us imagine that an infinitesimal segment dXA is

detached from the rest of the body and is allowed to relax in the Euclidean space (B, G̊). One obtains a segment
a

FA
M dXM ,

with length square ds2 = G̊AB (
a

FA
M dXM ) (

a

FB
N dXN ) = GAB dXAdXB = (G̊AB

a

FA
M

a

FB
N ) dXMdXN . The new metric

GAB = G̊AB

a

FA
M

a

FB
N is the material metric and ds2 = GAB dXAdXB is the natural line element in the presence of

eigenstrains.
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the source of residual stresses. However, it is not sufficient; there are incompatible distributions of
a

F that
do not induce residual stresses—contorted aeolotropy [Noll, 1967] or zero-stress (impotent) eigenstrains (or
impotent dislocation distributions in the case of plasticity) [Mura, 1989, Sozio and Yavari, 2021].

3.4 The global spatial intermediate configuration

Let us next consider the reverse decomposition F =
a

F
e

F. Similarly to (3.2), we define the following strain
tensors:

e

C[ =
e

F∗g̊ ,
e

C = G̊]
e

C[ =
e

FT̊
e

F ,
e

b] =
e

F∗G̊
] ,

e

b =
e

b]g̊ =
e

F
e

FT̊ ,
e

B] =
e

F∗g̊] ,
e

B =
e

B]G̊ =
e

F−1
e

F−T̊ ,

ec[ =
e

F∗G̊ ,
ec = g̊]

ec[ =
e

F−T̊
e

F−1 .

(3.6)

First note that while
a

F is a material tensor,
a

F is a spatial tensor. Also notice that both
e

F and
e

F are two-
point tensors. Let us consider a vector W in the reference configuration. It has the natural length square

〈〈W,W〉〉G̊. The local elastic deformation
e

F maps the vector W in the reference configuration to w =
e

FW

in the ambient space. Thus, 〈〈W,W〉〉G̊ = 〈〈
e

F−1w,
e

F−1w〉〉G̊ = 〈〈w,w〉〉e
F∗G̊

= 〈〈w,w〉〉g, where g =
e

F∗G̊ =
ec[

is the push-forward of the Euclidean metric of the reference configuration by the local elastic deformation.
We call g the spatial material metric. Therefore, we have the following factorization of the total deformation

(B, G̊)
ϕ−→ (C,g)

idC−−→ (C, g̊) . (3.7)

We call (C,g) the global spatial intermediate configuration, which is unique up to isometry by construction.
In summary, we have the following material and spatial factorizations of the total deformation

(B, G̊)

idB
��

idB // (B,G)

ϕ

��

ϕ
// (C, g̊)

idC

��

(B, G̊)
ϕ
// (C,g)

idC // (C, g̊)

(3.8)

In each of the two rows, the elastic deformation is represented by a map from the material intermediate con-
figuration (B,G) and from spatial intermediate configuration (C, g̊), respectively, to the Euclidean ambient
space. Hence, in order for the two intermediate configurations to represent the same anelastic process, they

must be isometric. In other words, the multiplicative decompositions F =
e

F
a

F =
a

F
e

F have the same “elastic

strain” if and only if g = ϕ∗G.12 This means that the metric g =
e

F∗G̊ can be written as g = F∗G =
e

F∗G̊.

Thus,
e

F∗
e

F∗G̊ = (
e

F−1
e

F)∗G̊ = G̊. This implies that
e

F−1
e

F = Q is an isometry for G̊. Therefore,

e

F =
e

FQ , Q ∈ I(B, G̊) , (3.9)

where I(B, G̊) is the isometry group of (B, G̊). In components, F aA =
e

F aB
a

FBA =
a

Fab
e

FbA, and
e

FaA =
e

F aB Q
B
A. The previous discussion can be summarized in the following result.

Theorem 3.1. The direct F =
e

F
a

F and reverse F =
a

F
e

F decompositions are equivalent if and only if
e

F∗G̊ =
e

F∗G̊, i.e.,
e

F and
e

F are equal up to local isometries of the reference configuration (B, G̊).

Finally, it should be noticed that a deformation in terms of the global material intermediate configuration
can be described fully referentially. Similarly, it can be described fully spatially using the global spatial

12Lagrange strain is calculated using the first row as E = 1
2

(ϕ∗g̊ − G). Similarly, using the second row spatial strain is

calculated as e = 1
2

(̊g − g) = ϕ∗E.
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intermediate configuration. This is shown in the following commutative diagram, which is a generalization
of (2.6) to anelasticity.

(B, G̊)

idB
��

idB // (B,G)

idB

��

idB // (B,C[)

ϕ

��

(B, G̊)

idB
��

idB // (B,G)

ϕ

��

ϕ
// (C, g̊)

idC

��

(B, G̊)

ϕ

��

ϕ
// (C,g)

idC

��

idC // (C, g̊)

idC

��

(C, c[) idC // (C,g)
idC // (C, g̊)

(3.10)

Notice that the first and second rows of the above commutative diagram describe an anelastic deformation us-
ing the global material intermediate configuration. The third and fourth rows describe the same deformation
using the global spatial intermediate configuration. Note that all the vertical maps are isometries.

Example 3.2 (Radially-symmetric finite eigenstrains in a spherical ball). Consider a homogeneous spherical

ball of radius Ro made of a nonlinear elastic solid. The metric of the eigenstrain-free reference configuration G̊
in the spherical coordinates (R,Θ,Φ) has the representation G̊ = diag

(
1, R2, R2 sin2 Θ

)
. For the Euclidean

ambient space we choose the spherical coordinates (r, θ, φ). The Euclidean metric of the ambient space g̊ has
the representation g̊ = diag

(
1, r2, r2 sin2 θ

)
. We assume that the ball has a radially-symmetric distribution

of radial ωR = ωR(R) and circumferential ωΘ = ωΘ(R) finite eigenstrains. This means that with respect to

the spherical coordinates (R,Θ,Φ),
a

F has the following representation [Yavari and Goriely, 2013a, Golgoon
and Yavari, 2018a, Yavari, 2021]13

a

F =
a

F(R) =

eωR(R) 0 0
0 eωΘ(R) 0
0 0 eωΘ(R)

 . (3.11)

Therefore, metric of the global material intermediate configuration (material metric) reads

G =
a

F∗G̊ =

e2ωR(R) 0 0
0 e2ωΘ(R)R2 0
0 0 e2ωΘ(R)R2 sin2 Θ

 . (3.12)

We assume radial deformations, i.e., (r, θ, φ) = (r (R) ,Θ,Φ). Thus, with respect to the spherical coordinates
(R,Θ,Φ) and (r, θ, φ), the total deformation gradient has the representation F = diag (r′(R), 1, 1). Metric
of the global spatial intermediate configuration is written as

g = F∗G =

 e
2ωR(R)

r′2(R)
0 0

0 e2ωΘ(R)R2 0
0 0 e2ωΘ(R)R2 sin2 Θ

 . (3.13)

Example 3.3 (Radially-symmetric eigentwists in a circular cylindrical bar). Let us consider a circular
cylindrical bar with a radial distribution of eigentwists. This problem was analyzed for isotropic solids in
[Yavari and Goriely, 2015] and for orthotropic solids in [Yavari, 2021]. We assume an eigentwist distribution

ψ(R). In cylindrical coordinates (R,Θ, Z), G̊ = diag
(
1, R2, 1

)
, and

a

F has the following representation

a

F =
a

F(R) =

1 0 0
0 1 ψ(R)
0 0 1

 . (3.14)

13Goodbrake et al. [2020] showed that the eigenstrain distributions (3.11) are the only universal eigenstrains that are consistent
with Family 4 universal deformations of incompressible isotropic spherical shells [Ericksen, 1954].
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Therefore, metric of the global material intermediate configuration (material metric) reads

G =
a

F∗G̊ =

1 0 0
0 R2 ψ(R)R2

0 ψ(R)R2 1 + ψ2(R)R2

 . (3.15)

For the Euclidean ambient space we choose the cylindrical coordinates (r, θ, z). The Euclidean metric
of the ambient space g̊ has the representation g̊ = diag(1, r2, 1). We assume deformations of the form:
(r, θ, z) = (r(R),Θ+τZ, λZ), where τ and λ are some unknown constants to be determined. The deformation
gradient is written as

F =

r′(R) 0 0
0 1 τ
0 0 λ

 . (3.16)

Metric of the global spatial intermediate configuration reads

g = F∗G =

 1
r′2(R)

0 0

0 R2 λ−1R2[ψ(R)− τ ]
0 λ−1R2[ψ(R)− τ ] λ−2

[
R2[τ − ψ(R)]2 + 1

]
 . (3.17)

Remark 3.4. Goodbrake et al. [2021] provided an interpretation of Kondo [1950a]’s material manifold of
nonlinear anelasticity, and found that any Riemannian manifold (M,H) is a global intermediate configuration
if there exist two maps

a
ϕ : B → M and

e
ϕ : M→ C such that i) ϕ =

e
ϕ ◦ a

ϕ, and ii) H =
a
ϕ∗G. Hence, the

global material intermediate configuration corresponds to the choices
a
ϕ = idB and

e
ϕ = ϕ, while the global

spatial intermediate configuration corresponds to
a
ϕ = ϕ and

e
ϕ = idC . Note that the fact that (B,G) and

(C,g) are isometric reflects the principle that Goodbrake et al. [2021] called “equality of anelastic strain”.
Note also that although T

a
ϕ and T

e
ϕ are compatible by construction, the incompatibility of the local anelastic

deformations is reflected in the non-flatness of the intermediate manifold (M,H).

3.5 Constitutive equations in nonlinear anelasticity

In §2.2 for an elastic solid an energy function of the form W̊ = W̊ (X,F, G̊, g̊) was assumed. In the
presence of local anelastic deformations, energy explicitly depends on the local elastic deformation, i.e.,

W = W̊ (X,
e

F, G̊, g̊). Objectivity implies that this can be put in the form ıW (X,
e

C[, G̊), where
e

C[ =
e

F∗g̊.
Changing variables, one has ıW (X,

e

C[, G̊) = ıW (X,
a

F∗C
[,

a

F∗G) . (3.18)

This cannot be put in any of the forms W = W̌ (X,C[,G) = Ŵ (X,C[, G̊) = W (X,
e

C[,G). In other words,
the material metric G is not enough to describe the constitutive behavior of an anisotropic material, and an

explicit
a

F-dependence is unavoidable:

W = W̃ (X,C[,G,
a

F) = Ŵ (X,C[, G̊,
a

F) = W (X,
e

C[,G,
a

F) . (3.19)

Let us define W (X,F,
a

F, G̊, g̊) = W (X,
e

F
a

F,
a

F, G̊, g̊) = W̊ (X,F
a

F−1, G̊, g̊) = W̊ (X,
e

F, G̊, g̊).

3.5.1 Material symmetry in anelasticity

Note that

W (X,
e

F
a

F,
a

F, G̊, g̊) = W̊ (X,
e

F, G̊, g̊) = W̊ (X,
e

FK̊, G̊, g̊) = W (X,
e

FK̊
a

F,
a

F, G̊, g̊)

= W (X,F
a

F−1K̊
a

F,
a

F, G̊, g̊) = W (X,FK,
a

F, G̊, g̊) , ∀ K̊ ∈ G̊X ,
(3.20)

where K =
a

F−1K̊
a

F. This means that GX =
a

F−1G̊X
a

F, which is Noll’s rule [Noll, 1958, Coleman and Noll,
1959, 1963, 1964]. Material symmetry can be expressed in the following three equivalent forms:14

W (X,F, K̊
a

F, G̊, g̊) = W̊ (X,F(K̊
a

F)−1, G̊, g̊) = W̊ (X,F
a

F−1K̊−1, G̊, g̊) = W̊ (X,F
a

F−1, G̊, g̊)

14One should note that for any invertible tensor A on has W (FA,
a

FA, G̊, g̊) = W̊ (FA(
a

FA)−1, G̊, g̊) = W̊ (F
a

F−1, G̊, g̊) =

W (F,
a

F, G̊, g̊).
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= W (X,F,
a

F, G̊, g̊) , ∀ K̊ ∈ G̊X , (3.21)

W (X,FK,
a

F, G̊, g̊) = W̊ (X,FK
a

F−1, G̊, g̊) = W̊ (X,F
a

F−1K̊, G̊, g̊) = W̊ (X,F
a

F−1, G̊, g̊)

= W (X,F,
a

F, G̊, g̊) , ∀ K ∈ GX , (3.22)

W (X,F,
a

FK, G̊, g̊) = W̊ (X,F(
a

FK)−1, G̊, g̊) = W̊ (X,FK−1
a

F−1, G̊, g̊) = W̊ (X,F
a

F−1K̊−1, G̊, g̊)

= W̊ (X,F
a

F−1, G̊, g̊) = W (X,F,
a

F, G̊, g̊) , ∀ K ∈ GX . (3.23)

We assume that the energy function is materially covariant. Using (2.13) this implies that

W = W(X,
e

C[, G̊, ζ̊1, . . . , ζ̊N )

= W(X,
a

F∗C
[,

a

F∗G, ζ̊1, . . . , ζ̊N )

= W(X,C[,G,
a

F∗ζ̊1, . . . ,
a

F∗ζ̊N )

= W(X,C[,G, ζ1, . . . , ζN ) ,

(3.24)

where ζi =
a

F∗ζ̊i, i = 1, . . . N . Hence, the material symmetry group of an anelastic body can be characterized
using the structural tensors ζi of order µi, i = 1, . . . , N :

Q ∈ G 6 Orth(G) ⇐⇒ 〈Q〉µ1
ζ1 = ζ1 , . . . , 〈Q〉µN ζN = ζN , (3.25)

where Orth(G) = {Q : TXB → TXB | QT = Q−1}, and (.)T is defined with respect to G, and not G̊.
In other words, the material symmetry group of an anelastic body is written with respect to the material

manifold (B,G). Note that Noll’s rule implies that Q =
a

F−1Q̊
a

F and induces an isomorphism between

Orth(G) and Orth(G̊). In summary, (3.24) implies that in the classical anisotropic constitutive equations

of elasticity if one replaces G̊ by G one finds the corresponding anelastic constitutive equation.15

3.5.2 Constitutive equations written with respect to (C,g)

Next, we would like to write the constitutive equations with respect to the global intermediate configuration
(C,g). Let us denote the symmetry group of the material relative to (C,g) by ‹G. Note that C = ϕ(B) and
g = ϕ∗G. Thus, Noll’s rule [Noll, 1958, Coleman and Noll, 1959, 1963, 1964] tells us that‹G = ϕ∗G = FG F−1 . (3.26)

This means that G and ‹G are conjugate subgroups of the general linear group, and hence, are isomorphic.
The relation (3.26) holds if and only if it holds for all the generators of the group G. Let us assume that

G is finitely generated and denote the generating sets of G and ‹G by {Q1, . . . ,Qm} and {‹Q1, . . . ,‹Qm},
respectively. In this case, (3.26) holds if and only if ‹Qj = FQj F

−1, j = 1, . . . ,m. The material symmetry

group with respect to (C,g) is characterized using the structural tensors ζ̃i of order µi, i = 1, . . . , N :‹Q ∈ ‹G 6 Orth(g) ⇐⇒
〈‹Q〉

µ1
ζ̃1 = ζ̃1 , . . . ,

〈‹Q〉
µN

ζ̃N = ζ̃N , (3.27)

where using (3.26) and (2.10), one has ‹Q = ϕ∗Q = FQF−1, and ζ̃i = ϕ∗ζi, i = 1, . . . , N . This, in
particular, implies that the type of the symmetry group of the material with respect to (C,g) and (B,G) is
the same. The energy function written with respect to the global intermediate configuration (C,g) is related
to that written with respect to (B,G), e.g., (3.24), by push forward:

w = ϕ∗W = W(ϕ−1(x), ϕ∗C
[, ϕ∗G, ϕ∗ζ1, . . . , ϕ∗ζN ) =: ŵ(x, g̊,g, ζ̃1, . . . , ζ̃N ) . (3.28)

In particular, for an elastically isotropic anelastic solid from (3.28) one has w = ŵ(x, g̊,g). For an isotropic
elastic solid this is reduced to w = ŵ(x, g̊, c[).

15This is what was done in [Golgoon and Yavari, 2018a,b].
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Theorem 3.5. The direct F =
e

F
a

F and reverse F =
a

F
e

F decompositions corresponding to the same local
elastic deformation have identical corresponding Cauchy stresses. In this sense, for anisotropic solids the
two decompositions of deformation gradient are equivalent.

Proof. For an anisotropic solid, the second Piola-Kirchhoff with respect to (C,g) is written as

s̃ = 2ϕ∗
∂W

∂C[
= 2

∂ ϕ∗W

∂ ϕ∗C[
= 2

∂ŵ

∂g̊
. (3.29)

The Cauchy stress is calculated as

σ̃ = 2‹J (T idC) s̃ (T idC)
? = 2‹J ∂ŵ

∂g̊
. (3.30)

Note that det(T idC) = 1, and hence,‹J =

√
det g̊

detg
=

√
det g̊

detG
detF = J . (3.31)

Therefore,

σ̃ = 2J
∂ŵ

∂g̊
= σ , (3.32)

where the Doyle-Ericksen formula [Doyle and Ericksen, 1956, Marsden and Hughes, 1994, Yavari et al., 2006]
was used in the second equality.

Example 3.6 (Elastically isotropic anelastic solids). One can show that the principal invariants using
the two intermediate configurations are identical. The first invariant with respect to the two intermediate
configurations is calculated as

I1 = trC = trG](F?g̊F) = G] : F?g̊F ,

Ĩ1 = trg] g̊ = tr̊g g
] = tr̊g(FG]F?) = FG]F? : g̊ = G] : F?g̊F .

(3.33)

Thus, Ĩ1 = I1. We know that I2 = 1
2

(
I2
1 − trC2

)
, and Ĩ2 = 1

2

(
I2
1 − tr g̊2

)
. But notice that

trC2 = trG](CG]C) = G] : CG]C ,

tr g̊2 = trg] (̊gg
]g̊) = FG]F? : g̊FG]F?g̊ = G] : F?g̊FG]F?g̊F = G] : CG]C .

(3.34)

Hence, Ĩ2 = I2. Finally

I3 = detC = det(C[G]) = det(F?g̊F) detG] = (detF)2 det g̊ (detG)−1 ,

Ĩ3 = det(̊gg]) = det g̊ det(FG]F?) = (detF)2 det g̊ (detG)−1 ,
(3.35)

and hence, Ĩ3 = I3. For a compressible elastically isotropic anelastic solid, W = W (X, I1, I2, I3), where I1, I2,
and I3 are the principal invariants of the right Cauchy-Green deformation tensor calculated using G as in
(3.33), (3.34), and (3.35). With respect to the global material intermediate configuration and the deformation
map ϕ : (B,G)→ (C, g̊), and using (2.12) one writes S = 2W1G

]+2W2(I2C
−1−I3C−2)+2W3I3C

−1, where
Wi = ∂W

∂Ii
, i = 1, 2, 3. Similarly, the Cauchy stress has the following representation [Doyle and Ericksen,

1956, Truesdell and Noll, 2004]

σ =
2√
I3

[
W1 b

] + (I2W2 + I3W3)̊g] − I3W2 c
]
]
. (3.36)

With respect to the global spatial intermediate configuration and the map idC : (C,g)→ (C, g̊), the Cauchy
stress has the following representation

σ̃ =
2√
I3

[
W1 b̃

] + (I2W2 + I3W3)̊g] − I3W2 c̃
]
]
, (3.37)
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where c̃[ = (idC)∗g = g = ϕ∗G = c[, and b̃] = (idC)∗g
] = g]. Note that g = F−?GF−1, and hence

g] = FG]F?. Thus, b̃] = b]. This means that, as expected, σ̃ = σ.

Example 3.7 (Elastically transversely isotropic anelastic solids). As the simplest example of an elastically
anisotropic anelastic solid let us consider transverse isotropy. A transversely isotropic solid at every point
X ∈ B has a plane of isotropy. When there are no anelastic strains, the plane of isotropy has the unit normal

vector N̊ such that 〈〈N̊, N̊〉〉G̊ = 1. The energy function has the form W = W(X,
e

C[, G̊, ζ̊), where ζ̊ = N̊⊗N̊
is a structural tensor [Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. Thus, knowing
that the energy function is materially covariant, one has

W = W(X,
e

C[, G̊, ζ̊) = W(X,
a

F∗C
[,

a

F∗G, ζ̊) = W(X,C[,G,
a

F∗ζ̊) = W(X,C[,G, ζ) , (3.38)

where ζ =
a

F∗N̊ ⊗
a

F∗N̊ = N ⊗ N. Note that N =
a

F∗N̊ =
a

F−1N̊. This implies that when
a

F evolves,

i.e., when
a

F =
a

F(X, t), although the anelastic body remains elastically transversely isotropic, the plane of
symmetry at every point evolves as well. Note that in the presence of anelastic strains, N(X) is a unit vector

with respect to the material metric G because 〈〈N,N〉〉G = 〈〈
a

F∗N̊,
a

F∗N̊〉〉a
F∗G̊

= 〈〈N̊, N̊〉〉G̊ = 1. The integrity

basis consists of five members {I1, I2, I3, I4, I5}, where the first three are the principal invariants of C. With
respect to the global material intermediate configuration (B,G) the extra invariants are defined as

I4 = C[(N,N) = NANB CAB , I5 = (C[G]C[)(N,N) = NANB CBM CMA . (3.39)

We know that ζ̃ = ϕ∗ζ = ϕ∗N ⊗ ϕ∗N = n ⊗ n, where n = FN. Thus, with respect to the global
spatial intermediate configuration (C,g), the energy function has the functional form w = ŵ(x, g̊,g,n⊗ n).

Note that Ĩ4 = g̊(n,n) = g̊(ϕ∗N, ϕ∗N) = ϕ∗g̊(N,N) = C[(N,N) = I4. Also, Ĩ5 = (̊g g] g̊)(n,n) =
ϕ∗(̊g g] g̊)(N,N) = (ϕ∗g̊ϕ∗g] ϕ∗g̊)(N,N) = (C[G]C[)(N,N) = I5. Therefore, as expected, the Cauchy
stresses calculated using the two intermediate configurations are identical.

4 Concluding Remarks

In this paper we studied the geometry of the reverse multiplicative decomposition F =
a

F
e

F. Over the years,
intermediate configuration and its interpretation has been a controversial topic in anelasticity. Following the
early works of Eckart [1948] and Kondo [1949] for elastically isotropic anelastic solids one can bypass this
configuration and directly start with a material manifold—a Riemannian manifold whose metric encodes

the anelastic strains. However, for elastically anisotropic solids, in addition to the material metric G,
a

F

(or
a

F) is needed in describing the constitutive equations. Constructing global intermediate configurations
and understanding their connections with the material manifold is a fundamental problem in nonlinear
anelasticity. Goodbrake et al. [2021] provided an interpretation of the material manifold (B,G) as a global
intermediate configuration. We call (B,G) the global material intermediate configuration. It is exactly what
one would call material manifold and can be identified with the natural configuration of a residually-stressed
anelastic body. By construction the intermediate configuration (B,G) is unique up to isometry.

In the literature there have been discussions on other possible decompositions, and particularly, the

reverse decomposition of the deformation gradient F =
a

F
e

F. It has been shown that under certain assumptions
the reverse decomposition is equivalent to the Bilby-Kröner-Lee decomposition for isotropic solids. In this
paper we showed the equivalence of the two decompositions for anisotropic solids. First, we constructed a

global spatial intermediate configuration (C,g) without assuming any relationship between
e

F and
e

F. In the

spatial intermediate configuration C = ϕ(B), and g =
e

F∗G̊, where G̊ is the flat metric of the Euclidean

reference configuration (B, G̊). Next, we noted that the two decompositions F =
a

F
e

F =
e

F
a

F locally represent
the same anelastic deformation if and only if they induce the same elastic strain (and consequently anelastic

strain). We proved that this is equivalent to
e

F and
e

F being equal up to isometry, i.e.,
e

F(X) =
e

F(X)Q(X),

where Q is an isometry of (TXB, G̊). We also showed that this is equivalent to the two manifolds (B,G)
and (C,g) being isometric.
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The constitutive equations of elastically isotropic anelastic solids can be written with respect to (B,G);

in the classical constitutive equations the Euclidean metric G̊ is replaced by the Riemannian metric G

that encodes the anelastic strains. In the case of elastically anisotropic anelastic solids, in addition to G,
a

F
explicitly enters the constitutive equations through the structural tensors. It was shown that the constitutive
equations with respect to (C,g) are push forward of those with respect to (B,G) by the deformation mapping,
which is an isometry between the two intermediate configurations. This, in particular, implies that the
Cauchy stresses calculated with respect to the two intermediate configurations are identical. In this sense,
the two decompositions of deformation gradient are equivalent even for arbitrary anisotropic solids.
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