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Abstract 

 

From phase field simulations, we investigate the size-dependent polarization distribution in 

ferroelectric nanostructures embedded in a nonferroelectric medium. The simulation results 

exhibit that vortex structures of polarizations and single-domain structures are formed in 

ferroelectric nanodots and nanowires, respectively. Furthermore, a single-vortex structure is 

formed in the ferroelectric nanodots, if the aspect ratio of thickness to lateral size is less than a 

critical value, whereas the ferroelectric nanodots are in a multi-vortex state if the aspect ratio 

exceeds the critical value. When the aspect ratio approaches infinity, nanodots will become 

nanowires, in which polarizations are homogeneous.    
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Nanoscale ferroelectric materials are receiving great interest from academia and industry due 

to their various potential applications to memory and storage devices, sensors, and actuators. 

The properties of low dimensional ferroelectrics in nanometer scale substantially deviate from 

those of their bulk counterparts.
1-3
 For example, ferroelectric nanodisks and nanorods exhibit 

vortex structures with the shrinking of the relevant lengths to
 
the nanometer scale.

3
 The vortex 

structure in the nanoscale ferroelectrics, similar to the vortex structure in magnetic 

nanostructures, is regarded as a toroidal order which is different from the common 

homogeneous polarization order. The finding of the vortex in ferroelectric nanostructures opens 

exciting opportunities for designing nanomemory devices.
4
 The formation of the vortex 

structure depends on many factors, such as the sizes of the nanostructures and different 

boundary conditions.
5
 A solid understanding of size-dependent three-dimensional vortex 

structures in nanoferroelectrics is essential for their applications. 

 

The properties of nanoscale ferroelectric materials are investigated through different 

theoretical approaches. For instance, first-principles and first-principles-derived methods are 

employed to study the properties of ferroelectric nanostructures.
6-9
 In addition to first-principles 

calculations, phenomenological approaches are effectively used to study ferroelectric materials 

at the nanoscale.
10-12

 Phenomenological approaches can simulate ferroelectrics with larger size 

and are able to deal with problems with more complicated electrical and mechanical boundary 

conditions.
13 

  

In this letter, we present three-dimensional simulations on the equilibrium polarization 
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distribution in ferroelectric nanodots and nanowires with different sizes, which are embedded in a 

nonferroelectric medium, using a phenomenological phase field model that incorporates the 

long-range elastic and electrostatic interactions. In ferroelectric phase-field simulations,
14-16

 it is 

often assumed that the mechanical equilibrium is established instantaneously for a given 

polarization distribution. Therefore, the spontaneous polarization, P=(P1, P2, P3), is taken as the 

order parameter. The temporal evolution of the polarization pattern is calculated from the 

following time-dependent Ginzburg-Landau equation 
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where L is the kinetic coefficient, F is the total free energy of the system, ),(/ tPF i rδδ  

represents the thermodynamic driving force for the spatial and temporal evolution of the 

simulated system, and r denotes the spatial vector, ),,( 321 xxx=r . The total free energy can be 

expressed as  
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in which Lanf  is the Landau free energy density, which is given by
18 
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where 1α  is the dielectric stiffness and 1231121111211 ,,,, ααααα  are higher order dielectric 

stiffnesses. In Eq. (2), )/)(/(
2

1
lkjiijklgrad xPxPgf ∂∂∂∂=  is the gradient energy density, where 

ijklg  are the gradient energy coefficients.
16-18

 It gives the energy penalty for spatially 

inhomogeneous polarization. ))((
2

1 00

klklijijijklelas cf εεεε −−=  denotes the elastic energy density, 

where ijklc  are the elastic constants, ijε  are the total strains and 0

ijε  are the spontaneous 

strains or stress-free strains. The spontaneous strains are related to the spontaneous polarization 
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components in the form of lkijklij PPQ=0ε , where ijklQ  are the electrostrictive coefficients. The 

crystal symmetry requires that all the odd-rank tensor coefficients are zero in the 

Landau-Devonshire free energy. Therefore, the first-rank tensor, representing piezoelectricity, 

vanishes in the expression of spontaneous strains. The internal stresses generated by the 

inhomogeneous spontaneous strains are )(
0

klklijklij c εεσ −= . The stresses must satisfy the 

mechanical equilibrium equation of 0/
3

1

=∂∂∑
=

jij
j

xσ . The mechanical equilibrium equation is 

solved analytically by employing the general eigenstrain theory for a given polarization 

distribution under the periodic boundary condition.
18
 The last term in Eq. (2) is the 

self-electrostatic energy density, which is expressed as iielec PEf
2
1−= ,

19
 where iE are three 

components of the electric field vector along the 1x , 2x  and 3x  directions, respectively. The 

self-electrostatic field is the negative gradient of the electrostatic potential, i.e. ii xE ∂−∂= /φ . 

The electrostatic potential is obtained by solving the following electrostatic equilibrium equation 

332211

2

3

2

33

2

2

2

22

2

1

2

110 ///)///( xPxPxPxxx ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂ φκφκφκε where 0ε is the dielectric 

constant of vacuum and iiκ denotes the relative dielectric constants of the material. In the 

electrostatic equilibrium equation, by assuming 0=ijκ  when ji ≠ , the relative dielectric 

constant matrix is diagonal.
19
 The charge compensation is not considered in the present study  

because the ferroelectric nanostructures are assumed to be embedded in an electrically insulating 

medium, which means all the simulations are conducted under the open-circuit boundary 

condition.  

 

In the simulations, we employ N××3232  discrete grid points at a scale of 

5.0321 =∆=∆=∆ xxx  nm to model the nanodots. The dot thicknesses are represented by the 
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letter N  in the 3x  direction. The nonferroelectric medium surrounding the ferroelectric 

nanodots is modeled to be 32 discrete grid points in the 1x , 2x  and 3x  directions with the 

grid size of 0.5 nm. Periodic boundary conditions in the 1x , 2x  and 3x  directions are 

employed for the outer boundaries of the nonferroelectric medium. For the ferroelectric 

nanowire, the discrete grid points and boundary conditions in the 1x  and 2x  directions are the 

same as those of the dots, but a periodic boundary condition is applied directly to the 

ferroelectric wire in the 3x  direction without nonferroelectric medium in order to mimic the 

infinite length of the wire. The wire is discretized to 96 grid points in the longitudinal direction 

with the grid size of 0.5 nm. The material constants adopted in the present simulations are the 

same as those used in Ref [19]. The elastic and dielectric constants of the nonferroelectric 

medium are assumed to be the same as those of the ferroelectric nanostructures so that the 

solutions to the mechanical and electrostatic equilibrium equations can be obtained 

analytically.
18,20

 The interfaces between the ferroelectric nanostructures and the nonferroelectric 

medium are assumed coherent. The zero boundary condition, i.e. P=0, is used for spontaneous 

polarizations at the interfaces between the ferroelectric nanostructures and the nonferroelectric 

medium. The semi-implicit Fourier-spectral method 
20
 is employed to solve Eq. (1). In this letter, 

we present simulation results only at steady state, at room temperature. 

 

Figure 1 (a) shows the three-dimensional polarization distribution in a 16 nm x 16 nm square 

nanodot with a thickness of 8 nm along the 3x  direction, where every other polarization vector 

is plotted for clarity. The polarizations form a single-vortex pattern with the vortical axis 

perpendicular to the 21xx  plane. It is found that polarizations at the dot center and four corners 

have smaller magnitudes than those at other parts. It should be noted that some polarizations in 
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the 31xx  plane are not parallel to the 1x  axis. This result is different from that of the 

first-principle-derived effective Hamiltonian simulation, in which all polarizations are parallel to 

the 1x  axis for the free-standing dots with complete stress relaxation.
21
 The difference may be 

due to the present simulated dots assumed to be embedded in a nonferroelectric medium, while 

the dots are traction-free at surfaces in the first-principle-derived effective Hamiltonian 

simulations. Figure 1 (b) gives the two dimensional projection of polarizations in the middle 

plane perpendicular to the thickness direction. One can find that the polarizations form four 

domains with each side of the square. The four domains are separated by four 90˚ domain walls 

along the diagonals of the square. The maximal magnitude of the polarizations is located at the 

center of each domain. The average values of polarization components 1P  and 2P  in the dot 

are found to be approximately zero, while the toroidal moment of polarization in the 3x  

direction is nonzero, which can be used as an order parameter in potential nanomemory 

devices.
22
  

 

In order to study the size-dependent polarization distribution, ferroelectric dots with 

different thicknesses are examined. Single-vortex structures similar to Fig.1 (a) are found for all 

dots with thickness less than 16 nm (N =32). In the thickness range from 16 nm to 24 nm, the 

dots still have a single-vortex structure, but the vortical axis changes its direction and becomes 

perpendicular to the 31xx  plane, which is not shown here due to page limitation. Figure 2 

shows the number of vortices versus nanodot thickness. There is a change from a single-vortex 

state to a double-vortex state when the thickness increases from 24 nm to 30 nm as shown in 

Fig.2. Then, the double-vortex state remains in a range from 30nm to 56 nm. With the thickness 
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further increasing to 60 nm, three vortices are found in the ferroelectric nanodots. Figures 1(c) 

and 1(d) show a typical double-vortex structure of the 32 nm-thick dot and the corresponding 

two-dimensional projection of polarizations in the middle plane parallel to the thickness 

direction. The axes of the two vortices are parallel to each other and both are perpendicular to 

the 31xx  plane. This result is different from that of the nanodot in Fig.1(a), in which the 

polarizations form a single-vortex structure and the vortex axis is perpendicular to the 21xx  

plane. Figure 1(d) shows that seven domains exist in the double-vortex structure with two 

vortices sharing one domain in the middle. The polarizations in the upper and lower vortexes 

change their orientations clockwise and counterclockwise, respectively. This result is reasonable 

from energy point of view. If both vortices had the same vortical direction, clockwise or 

counterclockwise, there must be an additional domain wall between them that would increase 

the total free energy of the system. 

 

Figures 3(a) and 3(b) show the polarization distribution of a 16 nm x 16 nm square 

nanowire and the corresponding two-dimensional projection of polarizations in the middle plane 

parallel to the wire length direction, respectively. The polarizations are found to be 

homogeneous along the wire. This is because the wire is infinitely long in the 3x  direction,  

thus, there is no depolarization field generated in this direction. When all polarizations are 

parallel to the wire, there are also no depolarization fields in the 1x  and 2x  directions. In this 

case, the energy of the nanowire is minimal in a homogenous state. The same result is also 

obtained by the first-principle-derived effective Hamiltonian simulation.
5
 Although all the 

polarizations are parallel to the longitudinal direction of the wire, the polarization can be 
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induced in the transversal direction by an external electric field, which will be stable for a period 

of time when the electric field is removed, if the surface charges are compensated by 

surrounding charges.
23
              

   

In summary, we demonstrate that the dipole vortex structures in ferroelectric nanodots are 

highly dependent on the dot size. For the ferroelectric nanodots with the size of 16 nm in both 1x  

and 2x  directions, a single-vortex structure will be formed when the dot thickness is less than 24 

nm in the 3x  direction. When the thickness increases from 24 nm to 30 nm, the ferroelectric 

nanodots change from a single-vortex state to a multi-vortex state. However, there is no vortex 

structure in a ferroelectric nanowire, in which polarizations are found to be homogeneous along 

the wire. The simulation results provide guidelines on how to obtain desirable vortex structures 

of polarizations by manipulating geometrical configurations, which might be crucial for the 

applications of nanoscale ferroelectric materials. 

 

 

Acknowledgements  

 

JW gratefully acknowledges the Alexander von Humboldt Foundation for awarding a 

research fellowship to support his stay at Forschungszentrum Karlsruhe. TYZ is grateful for the 

support from the Hong Kong Research Grants Council under the grant number G_HK015/06-II. 

LQC thanks the supports from the US Department of Energy under the grant number DOE 

DE-FG02-07ER46417 and the National Science Foundation under grant numbers 

DMR-0507146 and DMR 0708759. 

 

 

 

 



 9

References 

 

1
W.L. Zhong, Y.G. Wang, P.L. Zhang, and B.D. Qu, Phys. Rev. B 50,698 (1994). 

2
I. Ponomareva, L. Bellaiche, and R. Resta, Phys. Rev. Lett. 99, 227601 (2007). 

3
I.I. Naumov, L. Bellaiche, and H. Fu, Nature (London) 432, 737 (2004). 

4
P. Ghosez and K. M. Rabe, Appl. Phys. Lett. 76, 2767 (2000). 

5
I. Ponomareva, I.I. Naumov, and L. Bellaiche, Phys. Rev. B 72, 214118 (2005). 

6
J. Junquera, and P. Ghosez, Nature (London) 422, 506 (2003). 

7
B. Meyer and D. Vanderbilt, Phys. Rev. B 63, 205426 (2001). 

8
S. Prosandeev, I Ponomareva, I Korrev, I. Naumov, and L. Bellaiche, Phys. Rev. Lett. 96, 

237601 (2006). 

9
R.E. Cohen, Nature (London) 358, 136 (1992). 

10
C.H. Ahn, K.M. Rabe, and J.M. Triscone, Science 303, 488 (2004). 

11
Y.G. Wang, W.L. Zhong, and P.L. Zhang. Phys. Rev. B 51, 5311 (1995). 

12
S. Li, J.A. Eastman, Z. Li, C.M. Foster, R.E. Newnham, and L.E. Cross. Phys. Lett. A 212, 341 

(1996). 

13
J. Wang, and T.Y. Zhang, Appl. Phys. Lett. 88, 182904 (2006). 

14
R. Ahluwalia, and W. Cao, J Appl. Phys. 93, 537 (2003). 

15
Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett. 78, 3878 (2001). 

16
S. Nambu, and D.A. Sagala, Phys. Rev. B 50, 5838 (1994). 

17
J. Wang, and T.Y. Zhang, Phys. Rev. B 73, 144107(2006). 

18
J. Wang, S.Q. Shi, L.Q. Chen, Y.L. Li, and T.Y. Zhang, Acta. Mater. 52, 749 (2004). 

19
Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett. 81, 427 (2002). 

20
H.L. Hu, and L.Q. Chen, J Am. Ceram. Soc. 81, 492 (1998). 



 10 

21
S. Prosandeev, and L. Bellaiche, Phys. Rev. B 75, 094102-1 (2007). 

22
J.F. Scott, Nature Materials 4, 13 (2005).  

23
J.E. Spanier, A.M. Kolpak, J.J. Urban, L. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, and H. 

Park, Nano Lett. 6, 735 (2006). 

 



 11 

FIGURE CAPTIONS 

 

 

Fig.1 (Color online) Polarization distributions of 16 nm x 16 nm square nanodots with 

the thicknesses of 8 nm (a)-(b) and 32 nm (c)-(d), respectively, in the 3x  direction. (a) 

and (c) are the 3D vortex structures; (b) and (d) are the 2D projections of polarizations 

in the middle planes of the corresponding dots.  

 

Fig.2 Number of vortices versus nanodot thickness. 

 

Fig.3 (Color online) Polarization distribution of a 16 nm x 16 nm square nanowire. (a) 

3D polarization distribution and (b) 2D projection of polarizations in the middle plane 

of the wire. The periodic boundary condition is used in the 3x  direction for the 

simulated ferroelectric nanowire.
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Fig.1 (Color online) Polarization distributions of 16 nm x 16 nm square nanodots with 

the thicknesses of 8 nm (a)-(b) and 32 nm (c)-(d), respectively, in the 3x  direction. (a) 

and (c) are the 3D vortex structures; (b) and (d) are the 2D projections of polarizations 

in the middle planes of the corresponding dots.  
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Fig.2 Number of vortices versus nanodot thickness 
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Fig.3 (Color online) Polarization distribution of a 16 nm x 16 nm square nanowire. (a) 

3D polarization distribution and (b) 2D projection of polarizations in the middle plane 

of the wire. The periodic boundary condition is used in the 3x  direction for the 

simulated ferroelectric nanowire. 
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